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ABSTRACT

Few-shot image classification, where the goal is to generalize to tasks with limited
labeled data, has seen great progress over the years. However, the classifiers are
vulnerable to adversarial examples, posing a question regarding their generalization
capabilities. Recent works have tried to combine meta-learning approaches with
adversarial training to improve the robustness of few-shot classifiers. We show that
a simple transfer-learning based approach can be used to train adversarially robust
few-shot classifiers. We also present a method for novel classification task based on
calibrating the centroid of the few-shot category towards the base classes. We show
that standard adversarial training on base categories along with centroid-based
classifier in the novel categories, outperforms or is on-par with state-of-the-art
advanced methods on standard benchmarks such as Mini-ImageNet, CIFAR-FS
and CUB datasets. Our method is simple and easy to scale, and with little effort
can lead to robust few-shot classifiers.

1 INTRODUCTION

Few-shot learning presents the challenge of generalizing to unseen tasks with limited data. The
problem is aimed at learning quickly from few examples of data, which is generally considered the
hallmark of human intelligence. This is an important practical problem due to the scarce availability
of fully annotated data in the real world. Researchers have shown that such a setting can be considered
for various real world computer vision tasks such as image classification (Finn et al., 2017; Chen
et al., 2019), object detection (Wang et al., 2020), image segmentation (Rakelly et al., 2018), face-
recognition (Guo et al., 2020) and medical analysis (Maicas et al., 2018). As a result, it is of paramount
importance that such safety-critical systems are reliable and robust to changes in input. Specifically
in this work, we consider robustness to adversarial examples - carefully crafted perturbations using
gradients that when added to inputs, fool the classifier. The most common method of improving
robustness is by adversarial training (Goodfellow et al., 2015) which involves training on adversarial
examples using adversary of choice. Traditional adversarially robust methods (Madry et al., 2018;
Goodfellow et al., 2015; Szegedy et al., 2013) consider a data-rich setting where many examples
are available per category. It has also been shown that adversarial generalization possibly requires
significantly more data (Schmidt et al., 2018). This becomes challenging in a scenario where the
end-user has access to limited amount of annotated data but is interested in building a robust few-shot
classifier. Such a setting is more practical and it is important to develop methods which can work with
minimal effort in the pre-deployment stage. We show from our experiments that a simple approach of
finetuning the network on clean data from an adversarially robust base model can lead to significant
improvement in robustness with minimal resources.

Previous works on improving robustness for few-shot classifiers focus mainly on meta-learning
approaches. Here the base model is trained on adversarial examples of episodic data. We show that
standard adversarial training on a large dataset is sufficient for learning a robust classifier. This makes
our method simple and scalable, making the process of training robust classifiers straightforward and
also creating directions to explore methods from robustness literature for few-shot setting.

It is important to understand the problem of few-shot learning in order to develop their robust
counterparts. The goal in few-shot learning is to learn transferable knowledge for generalization to
tasks with limited data. These have generally been partitioned into metric learning (Snell et al., 2017;
Vinyals et al., 2016; Sung et al., 2018), optimization-based (Finn et al., 2017; Ravi & Larochelle,
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2016) and hallucination based methods (Hariharan & Girshick, 2017; Yang et al., 2021; Antoniou
et al., 2017; Wang et al., 2018). The most common work among optimization based methods is
MAML (Finn et al., 2017) which aims at learning a network initialization using a bi-level optimization
procedure, that when finetuned on limited data is able to generalize to the new task. Recent works
have shown that meta-learning methods can be extended to include adversarial robustness as well.
(Goldblum et al., 2019; Wang et al., 2021) perform adversarial training on top of meta-learners to
improve robustness significantly. However, adversarial training on its own is expensive and combining
with meta-learning makes the problem computationally intensive. (Wang et al., 2021) showed that
there exists a compromise between training robust meta-learners and performance, both in terms of
standard and robust accuracy, motivating the need for a simpler approach.

Another interesting line of work, focused on improving few-shot learning, shows that a simple method
which involves training on large scale data and finetuning the model on the few-shot dataset can match
or even outperform meta-learning methods (Chen et al., 2019; Dhillon et al., 2019). The intuition is
that the model sees examples from all categories and can get a general sense of semantics rather than
seeing only episodic data. Such a setting also makes it easier to train on large scale data that can lead
to further improvements as shown in (Dhillon et al., 2019). Our results show considering a simple
setting can be beneficial for adversarial robustness as well.

We consider the few-shot setting and show that adversarial training along with simple nearest centroid
based classifier can outperform previous methods in terms of robustness. Such a setting is practically
relevant, since the adversarial training on large data needs to be done just once and robustness for
few-shot classes can be achieved without creating adversarial examples for the specific task. We
believe it also becomes easier to incorporate new approaches to robustness, such as verifiably robust
classifiers (Gowal et al., 2018; Cohen et al., 2019) and can bring together robust methods for both
large and limited dataset settings.

In the following sections, we describe our method and discuss relevant related work. We present
experimental findings and implementation details in the subsequent sections followed by conclusion
and directions for future work.

2 METHOD

Here we introduce notation and provide a description of our method. Our first objective is to learn a
feature extractor fθb and linear classifier Cωb

using the abundantly-labeled base dataset Xb. At the
next stage, when a N -way K-shot few-shot task is sampled from the novel dataset Xn, we use only
the feature extractor fθb and learn a new linear classifier Cωn

such that it can generalize to unseen
examples from the novel categories. We show that a simple approach of training a robust base model
and then adapting it to novel categories can outperform previous approaches. We divide our approach
into two stages: (1) Robust Base training and (2) Novel training.

2.1 ROBUST BASE TRAINING

Given a base datasetXb with large number of annotated examples per category, we perform adversarial
training using an iterative adversary such as PGD (Madry et al., 2018). Specifically, we solve the
min-max objective

θ∗ = min
θ

E(x,y)∈Xb

[
max
||δ||p<ε

L(θ, x+ δ, y)

]
(1)

Here, L(θ, x, y) represents the training objective, which is commonly cross-entropy and θ = (θb, ωb)
represents the combination of the feature extractor and base classifier parameters. There are different
methods for optimizing the inner maximization in Equation 1. For all our experiments we use the
Projected Gradient Descent (PGD) algorithm, an iterative algorithm presented in (Madry et al., 2018)
with p =∞ which corresponds to finding a perturbation δ around an ε-bounded hypercube around
x that maximizes the objective. Once we find the perturbation, the perturbed input is added to the
training set and parameters are tuned. This method is called adversarial training and is the most
widely used method to improve robustness to adversarial examples. Note that adversarial training,
which is a computationally expensive procedure, needs to be performed just once using base dataset.
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In the next stage, we use only clean examples which makes it practical and easy to train robust
few-shot classifiers for novel tasks.

Weight averaging: Weight averaging (WA) has been shown as a simple way to improve generaliza-
tion (Izmailov et al., 2018; Garipov et al., 2018) in deep networks as it approximates ensembling in
temporal fashion and can find flatter optima in loss surface. This method has been used in adversarial
training (Gowal et al., 2020; Chen et al.) for improving robustness in standard classification task.
Since we are interested in using base parameters at the next stage, we perform weight averaging for
only the feature extractor parameters θb and show this can be used for few-shot setting.

Similar to (Gowal et al., 2020), we keep a separate copy of the weights and for every iteration perform
exponential moving average method θb′ ← τθb

′ + (1 − τ) ∗ θb and use θb′ during the evaluation.
We set τ = 0.999 in all our experiments.

2.2 NOVEL TRAINING

During this stage, we consider the N -way, K-shot method as the novel task and adapt our learnt
feature extractor fθb using classifier Cωn

. For all our experiments, we found best results when the
weights of feature extractor fθb are frozen and not optimized during novel training. Intuitively, this
can be understood not wanting the parameters of the feature extractor to be biased towards the few-
shot examples. And since we are interested in learning only from clean data during the novel training,
there can also be an effect of forgetting the robustness learnt at the base stage. This was observed in
(Goldblum et al., 2019) where only the final layer was trained and rest of the parameters were frozen.
During the novel training stage, we use only clean examples and not adversarial examples, making
the process straightforward.

Linear classifier: The simplest possible baseline is to learn a linear model on top of the frozen
feature extractor using the few shot examples of novel categories. As shown in our experiments,
this simple baseline on its own achieves reasonable performance compared to previous approaches.
This baseline also suggests that a robust base classifier corresponds to a robust novel classifier and
a simple approach such as ours is enough to achieve robustness for few-shot classifiers. However,
as observed in previous works (Wang et al., 2021; Goldblum et al., 2019) and in our experiments,
this approach alone is not sufficient to achieve improved robustness. Interestingly, we achieve much
closer results to state of the art compared to previous works using this simple baseline. One challenge
associated with using few-shot data is that the model can become biased towards the specific samples
and may not capture the true class distribution. Hence there is a need for more calibrated classifiers.

Background on Distribution Calibation (DC) (Yang et al., 2021): Recent work (Yang et al., 2021)
has shown that standard accuracy of few-shot classifiers can be improved by using Distribution
Calibration. They present a free-lunch hallucination-based method where the feature distributions of
the novel categories are calibrated using the base dataset, due to the similarity between the base and
novel datasets. The mean and covariance of each novel category is calibrated using the statistic of
base data. They use these statistics to hallucinate or sample many points from a Gaussian distribution,
and learn a logistic regression classifier. This simple method was shown to improve standard accuracy
significantly under various settings.

Mean Calibration and Nearest Centroid (NC):

DC method can be computationally expensive due to the calculation of covariance matrix which
can be of O(N ∗D2) complexity where D is the dimensionality of the feature space and N is the
number of data points in the base dataset. The covariance matrix is also expensive to store in memory.
Moreover, sampling from a multivariate Gaussian with non-diagonal covariance is also expensive
and can be of the order of at least O(D2.3) (Bishop, 2006). These can reduce the applicability of the
approach for certain architectures.

Another aspect of using the hallucinated features is that the model can become biased to the clean
features and learn a non-robust final classifier. Note that since these additional data points are
generated in the feature space and not the image space, it is not possible to create adversarial versions
of these features and perform adversarial training using the large set of features. This poses a problem
of improving the performance during novel training without sacrificing robustness.
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To overcome these problems, we present a simple method where we rely only on the calibrated mean
and classify query sample using a non-parametric Nearest Centroid based algorithm. We find the
nearest base-category centers to each novel training sample and then average them along with the
novel training sample to obtain the new mean or centroid for the novel category, similar to (Yang
et al., 2021). We do not consider the covariance matrix in our method and we find this approximation
works equally well in our experiments. More formally:

µj =
1

m+ 1
(zj +

∑
i∈Sj

µbi ) (2)

where µj is the center for the novel category j and Sj is the set of m base category centers that are
closest to zj , µbi is the mean of base category i in the feature space. In the case of k-shot setting, we
calculate a centroid for each sample and average them to get one centroid for each category.

At inference time, we simply find the nearest center to the query point and assign its label:

ŷ = {yj | argmax
j

µ̃Tj z̃} (3)

where ã = a
||a||2 is the `2 normalized version of the vector a and ŷ is the predicted category. Note that

`2 normalization is performed for both query point and centroids. Since we consider the normalized
version of the vectors, euclidean distance reduces to the form in Equation 3, similar to recent works
(Grill et al., 2020). Our inference can be considered similar to the Linear Classifier method exceptthat
our centres ( µj ) are estimated with simple averaging rather than learnt using SGD. Note that similar
to (Yang et al., 2021), as a preprocessing step, we transform the embeddings by taking the square root
of each dimension so that their distribution gets closer to Gaussian form. It can be seen as “Tukey’s
Ladders of Power Transformation” (Tukey et al., 1977) with λ = 0.5.

At the inference time, the Nearest Centroid (NC) method requires less memory and computation
compared to a Nearest Neighbor classifier since we only have to store and compare with one prototype
per class rather than the entire training set.

3 RELATED WORK

Few shot Image Classification: Few-shot learning is a challenging problem in computer vision
where the goal is rapid generalization to unseen tasks. Metric learning approaches such as (Snell
et al., 2017; Vinyals et al., 2016; Sung et al., 2018) were some of the earliest approaches towards
tacking this problem. (Snell et al., 2017) learn a metric space where prototypical representation
of each category is utilized for classifying novel data. The prototypes are calculated to be the
euclidean average over the support examples. (Ravichandran et al., 2019) showed that rather than
taking the average, learning the prototypes along with the model can lead to better performance.
More recently, a family of algorithms based on learning to learn (Andrychowicz et al., 2016) or
meta-learning have gained considerable attention. (Ravi & Larochelle, 2016) develop an LSTM
based meta-learner which learns the optimization algorithm required to train another neural network.
(Finn et al., 2017; Nichol et al., 2018) create a model agnostic algorithm which aims to learn a
good initialization that can be finetuned easily within a few gradient steps to adapt to new tasks.
Hallucination based methods such as (Hariharan & Girshick, 2017; Wang et al., 2018; Antoniou et al.,
2017) also present promising directions towards improved generalization. (Gidaris & Komodakis,
2018; Qi et al., 2018) try to directly predict the weights of the classifier for novel categories. (Yang
et al., 2021) calibrate the distributions of few shot examples using the statistics of categories with
larger number of examples. . However a recent line of work have questioned the need for meta-
learning or metric learning approaches and showed that simple baselines which are non-episodic in
nature can provide competitive performance for few-shot image classification task (Chen et al., 2019;
Dhillon et al., 2019). Such line of work provide for non-sophisticated baselines and pose a question
to the community to rethink the approach towards few shot learning.

Adversarial examples: Adversarial examples are carefully crafted perturbations designed to fool the
model (Szegedy et al., 2013; Goodfellow et al., 2015; Kurakin et al., 2016). (Goodfellow et al., 2015)
showed that adversarial examples can be created rather easily using the sign of single gradient step,
which they called as Fast Gradient Sign Method (FGSM). The existence of such examples raises a
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question regarding the generalization capabilities of Deep Neural networks while also posing a threat
to practical deployment. Many defenses have been proposed to overcome this problem (Papernot
et al., 2016; Xie et al., 2017; Feinman et al., 2017; Li & Li, 2016), but they have been bypassed with
slight modifications to the adversary (Athalye et al., 2018; Carlini & Wagner; 2017). One of the most
common approaches called adversarial training involves incorporating the adversarial examples into
the training set. (Madry et al., 2018) showed that the first order adversary, based on the Projected
Gradient Descent (PGD) algorithm can be used to train robust neural networks. Provable methods
have developed which can provide certification on the susceptibility of an input towards adversaries
(Wong & Kolter, 2018; Wong et al., 2018; Raghunathan et al., 2018; Gowal et al., 2018). A class
of algorithms based on randomized smoothing (Cohen et al., 2019; Yang et al., 2020) have shown
promising results in training large scale neural networks. (Zhang et al., 2019a) provide a theoretical
analysis on the robustness vs accuracy trade-off, which had been studied empirically (Tsipras et al.,
2018), and show that their algorithm named TRADES improves robustness compared to previous
approaches. (Shafahi et al., 2019) use the gradients from the backpropagation algorithm to improve
robustness with minimal cost.

Adversarial Robustness for Few-shot classifiers: Recent works have tried to address the problem
of adversarial examples in the context of few-shot learning. (Yin et al., 2018) was one of the first
works to discuss this problem. They used the FGSM adversary to create adversarial examples and
optimized a meta-learner to be robust to adversarial examples. (Goldblum et al., 2019) showed that
meta-learning algorithms can be supplemented with adversarial examples in the query set to learn
robustness. Their method called Adversarial Querying was shown to be robust to strong attacks such
as PGD. Many meta-learning approaches were extended to their robust counterparts by including
adversarial query examples. Recently, (Wang et al., 2021) also proposed a similar approach where
MAML was used as the base meta learning algorithm. (Wang et al., 2021) also showed that including
a contrastive learning objective similar to (Chen et al., 2020) can provide a way to use unlabelled
data when learning the model and thus improve both standard and robust accuracy.

4 EXPERIMENTS
In this section, we describe our experiments and provide implementation details. We consider three
benchmark datasets - Mini-ImageNet, CIFAR-FS and CUB for our experiments. Mini-ImageNet
consists of 100 classes derived from ImageNet dataset (Russakovsky et al., 2015) where each category
consists of 600 images. This was first proposed in (Vinyals et al., 2016) and recent works follow
the split provided by (Ravi & Larochelle, 2016) consisting of 64 base, 16 validation and 20 novel
classes. We use 84x84x3 images for all experiments with Mini-ImageNet. CIFAR-FS was proposed
in (Bertinetto et al., 2016) as a benchmark for few-shot classification. It splits CIFAR-100 dataset
similar to Mini-ImageNet and we use 32x32x3 images for all our experiments. CUB (Wah et al.,
2011) is a fine-grained dataset which has been used as a benchmark for few-shot classification. It
consists of 11788 images split across 200 categories. We use the split provided by (Hilliard et al.,
2018) consisting of 100 base , 50 validation and 50 novel classes. We use 84x84x3 images for
experiments with CUB and as per our knowledge are the first to show adversarial robustness for a
fine-grained dataset under few-shot setting. We use Pytorch (Paszke et al., 2017) framework and all
our experiments use NVIDIA 2080Ti and Titan RTX GPUs.

Implementation details: In the base training stage, as described in Section 2.1, we follow the attack
parameters of (Goldblum et al., 2019) and use iterative PGD attack with 7 iterations during training
with ε = 8/255 and α = 2/255 for all experiments unless otherwise mentioned. We mainly use the
standard network architecture ResNet (He et al., 2016) and also provide results for other architectures.
For weight averaging, we set the parameter τ = 0.999. We use SGD optimizer with a learning rate of
0.1 and weight decay of 1e− 5 for the feature extractor parameters θb and 1e− 4 for the classifier
parameters ωb. We train the model for 250 epochs with a batch size of 64. For novel training and
learning the Linear Classifier, we follow the setting described in (Chen et al., 2019) and learn the
parameters using SGD with momentum 0.9 and learning rate η = 0.01. We set the dampening as 0.9
and weight decay of 1e − 3. For our Mean Calibration, we use m = 2 number of base categories.
For calculating Robust Accuracy, we use 20 iterations of PGD to create an adversarial example and
measure accuracy w.r.t ground truth. We report both Standard Accuracy and Robust Accuracy for
5-way, 1-shot and 5-way, 5-shot settings averaged over 1000 different trials on the test set. We report
the mean of the different trials as well as the 95% confidence intervals for all our experiments. Since
our goal is to build robust models, we mainly focus on improving Robust Accuracy.
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We compare our results with (Goldblum et al., 2019) ,which we refer to as Adversarial Querying
(AQ) where adversarial examples are created for query data and (Wang et al., 2021) which we refer as
OFA where MAML (Finn et al., 2017) is used to adversarially train the model. We refer to training a
linear classifier during the novel training stage as Linear and the Nearest Centroid classifier as NC.

4.1 MINI-IMAGENET

We present our results on Mini-ImageNet in Table 1. We observe that NC method outperforms other
approaches in robust accuracy under most settings. We also show results on large-scale architectures
such as WideResNets (Zagoruyko & Komodakis, 2016) and DenseNets (Huang et al., 2017). We see
that our NC method outperforms on Robust Accuracy in most settings and boosts standard accuracy
as well. The difference becomes clear as we move to larger architectures. Our Linear classifier also
serves as a strong baseline for robust few-shot settings.

Our method is straightforward to scale for large architectures since they are equivalent to training
standard architectures. However, we observed that scaling meta-learning algorithms combined with
PGD adversarial training is a difficult task. To provide a comparison, we trained both AQ and our
model on 4 NVIDIA TITAN RTX GPUs using WideResNet-28-10 backbones. AQ method took 1.7
hour/epoch and required 60 epochs while our method took 0.36 hour/epoch for 250 epochs. The total
training time for AQ was around 100 hours whereas our method took around 90 hours. This shows
that our approach is more easily scalable compared to previous methods.

Method Backbone 1-shot 5-shot
Standard Robust Standard Robust

Acc. Acc. Acc. Acc.
AQ

ResNet18

41.48 ± 0.56 20.52 ± 0.45 59.32 ± 0.53 32.18 ± 0.50
Ours (Linear) 42.63 ± 0.56 19.56± 0.45 61.35 ± 0.51 30.63 ± 0.52
Ours (NC) 44.98 ± 0.59 21.38 ± 0.46 61.30 ± 0.55 33.41 ± 0.51
AQ

WRN-50-2
38.99 ± 0.55 22.09 ± 0.45 57.11 ± 0.51 33.62 ± 0.50

Ours (Linear) 43.14 ± 0.54 19.94 ± 0.43 62.93 ± 0.50 30.52 ± 0.52
Ours (NC) 46.71 ± 0.62 23.04 ± 0.50 63.60 ± 0.55 36.06 ± 0.54
AQ

WRN-28-10

44.17 ± 0.60 23.81 ± 0.48 62.41 ± 0.54 33.62 ± 0.50
Ours (Linear) 52.36 ± 0.62 22.23±0.52 72.11 ± 0.51 32.29 ± 0.59
Ours (NC) 53.22 ± 0.66 22.91 ± 0.51 70.13 ± 0.52 35.40 ± 0.58
AQ

DenseNet121
38.32 ± 0.55 10.19 ± 0.32 56.65 ± 0.51 17.77 ± 0.41

Ours (Linear) 39.77 ± 0.56 18.16±0.42 57.45± 0.54 27.89 ±0.52
Ours (NC) 42.05± 0.60 20.21 ± 0.45 58.59±0.55 32.24±0.56
AQ

DenseNet161
37.35 ± 0.52 9.80 ± 0.31 55.97 ± 0.53 16.69 ± 0.38

Ours (Linear) 40.75 ± 0.55 17.44 ± 0.41 59.84 ± 0.53 27.11± 0.50
Ours (NC) 43.48 ± 0.60 20.63 ± 0.45 60.92 ± 0.54 33.87 ± 0.53

Table 1: Results on Mini-ImageNet dataset. Our NC method outperforms other approaches which
becomes clear as we move to larger architectures. We can also see that our linear classifier serves as
a strong baseline and can be used to learn robust few-shot classifier.

Comparison with OFA: We compare with another recent work OFA (Wang et al., 2021) where
MAML was combined with adversarial training to improve robustness. We present them separately
compared to previous results as the attack parameters and testing configuration followed are different.
For a fair comparison, we use the same setting and we refer the readers to (Wang et al., 2021). Base
training column indicates the type of adversary used during base dataset training where AT indicates
PGD adversarial training, TRADES is the algorithm presented in (Zhang et al., 2019a) and CL
corresponds to using the Contrastive Learning objective (Chen et al., 2020). Both TRADES and CL
use additional unlabelled data in a semi-supervised manner. We observe from Table 2 that our method
has clear gains in terms of robust accuracy and surpasses standard accuracy in some cases as well.

4.2 CIFAR-FS

Here we present results on CIFAR-FS dataset. The organization is similar to Mini-ImageNet dataset
where we presented two tables for fair comparison with previous approaches. To compare with

6



Under review as a conference paper at ICLR 2022

Method Base training Conv4 ResNet18
Standard Robust Standard Robust

Acc. Acc. Acc. Acc.
AQ AT 29.6 24.9 30.04 20.05
OFA AT 40.82 23.04 38.94 19.94
OFA TRADES 37.1 25.51 41.94 20.19
OFA CL 38.60 26.81 43.98 21.47
Ours (Linear) AT 38.39 ± 0.37 28.76 ± 0.33 44.93± 0.37 29.30 ± 0.33
Ours (NC) AT 39.23 ± 0.38 30.77 ± 0.35 49.15 ± 0.41 35.59 ± 0.38

Table 2: Comparison with (Wang et al., 2021) on Mini-ImageNet dataset. Note that both TRADES
and CL use additional unlabelled data in a semi-supervised manner. Our method outperforms previous
approaches using a standard adversarial training procedure.

Method Backbone 1-shot 5-shot
Standard Robust Standard Robust

Acc. Acc. Acc. Acc.
AQ

ResNet18

45.41± 0.68 21.76 ± 0.59 64.98 ± 0.58 34.24 ± 0.65
Ours (Linear) 44.76 ± 0.63 21.01 ± 0.58 62.23 ± 0.63 31.60± 0.66
Ours (NC) 48.89± 0.71 27.16 ± 0.66 64.36± 0.61 39.13 ± 0.71

Table 3: Results on CIFAR-FS dataset. We can see our NC method outperforms compared to
previous approaches. This experiment uses the same attack parameters as (Goldblum et al., 2019).

Adversarial Querying (AQ) (Goldblum et al., 2019), we use a ResNet18 backbone and use attack
parameters ε = 8/255 and α = 2/255 with 20-iteration PGD for testing. Our results for this setting
is presented in Table 10. Our Nearest Centroid classifier outperforms previous approaches on Robust
Accuracy, which is the main focus of our work. We also observe that we match or outperform on
Standard Accuracy under both 1-shot and 5-shot settings.

For fair comparison with (Wang et al., 2021), we train a model with Conv4 backbone and use their
attack parameters. The results for this configuration is presented in Table 4. As explained earlier,
Base training column indicates the type of adversary used during base dataset training where AT
indicates PGD adversarial training, TRADES uses the algorithm presented in (Zhang et al., 2019a)
and CL corresponds to using the Contrastive Learning objective (Chen et al., 2020). We see a similar
trend as before where our NC outperforms previous approaches. We also conduct an experiment
using TRADES during Base Training, allowing us to compare methods that use similar adversary.
This experiment shows that our method can generalize to other adversarial training methods and we
believe that as more advanced methods are developed in the community, they can be incorporated in
a straightforward manner to improve robustness in few-shot settings.

Method Base training 1-shot 5-shot
Standard Robust Standard Robust

Acc. Acc. Acc. Acc.
AQ AT 31.25 26.34 52.32 33.96
OFA AT 39.76 26.15 57.18 32.62
OFA TRADES 40.59 28.06 57.62 34.76
OFA CL 41.25 29.33 57.95 35.3
Ours (Linear) AT 41.12 ± 0.40 25.65 ± 0.37 56.20 ± 0.39 34.73 ± 0.41
Ours (NC) AT 41.81± 0.41 28.22 ± 0.40 53.52 ± 0.40 39.09 ± 0.42
Ours (NC) TRADES 43.56±0.43 28.12 ± 0.41 56.99 ± 0.40 39.48 ±0.43

Table 4: Comparison with (Wang et al., 2021) for Conv4 backbone on CIFAR-FS dataset. Comparing
methods that use same base training procedure (AT or TRADES ) , we can see that our NC method
outperforms on Robust Accuracy under both 1-shot and 5-shot settings. This experiment shows that
our method can generalize to other adversarial training methods as well.

4.3 CUB

For results on CUB dataset, we use the same attack parameters described for Mini-ImageNet i.e,
ε = 8/255, α = 2/255, 7 iterations of PGD during training and 20 during testing. We use ResNet18

7



Under review as a conference paper at ICLR 2022

backbone and implement AQ as per the guidelines given in (Goldblum et al., 2019) and our best
implementation with hyperparameters is presented in Table 5.

Since CUB is a fine-grained classification dataset, the base and novel categories share greater
similarity compared to previous datasets. Hence it serves as an opportunity to understand how the
robustness transfers from base to novel dataset, i.e whether the similarity in classes acts as a boon or
bane under fine-grained dataset settings. As can be seen from our experiments, the linear classifier
baseline performs reasonably well compared to previous approach indicating that a robust base
classifier transfers to a robust novel classifier. The NC method also benefits under such settings and
outperforms all other methods on both Standard and Robust Accuracy.

Method Backbone 1-shot 5-shot
Standard Robust Standard Robust

Acc. Acc. Acc. Acc.
AQ

ResNet18

54.27 ± 0.79 28.23 ± 0.66 68.42 ± 0.62 37.10 ± 0.66
Ours (Linear) 51.93 ± 0.71 27.24 ± 0.64 69.83 ± 0.61 37.06 ± 0.68
Ours (NC) 56.42 ± 0.78 32.18± 0.70 71.51 ± 0.60 44.33 ± 0.69

Table 5: Results on CUB dataset. We show that robustness transfers from base to novel datasets
under fine-grained classification setting as well. Our Linear classifier serves as a strong baseline and
our NC method outperforms on both metrics.

5 DISCUSSION

In this section, we provide additional intuition into our method and also showcase some benefits of
our simple framework. We also refer the readers to appendix for more experiments and analysis.

Understanding the effect of each component : Our proposed approach consists of multiple com-
ponents and we would like to study the effect of each of those. We perform an experiment on
Mini-ImageNet dataset on ResNet18 backbone similar to Table 1 and the results are presented in
Table 6. We observe that the simple baseline of robust base training and training a linear classifier
during novel training works reasonably well which can be a considered a strong baseline (Exp Id
1,4). We also observe that DC algorithm proposed in (Yang et al., 2021) improves standard accuracy
but introduces a drop in robustness (Exp Id 2,5). In most configurations we observe that our method
matches or even outperforms the DC method and more importantly improves robustness (Exp Id
5,6). This shows that the robustness of the base dataset is transferred to the novel setting and the
mean calibration along with Nearest Centroid classifier can improve robustness in few-shot setting.
The impact of weight averaging (WA) method can be observed when considering Exp Ids 3 and 6.
The temporal ensembling nature of the method helps in finding flatter minima, thereby boosting
performance. Previous works (Gowal et al., 2020) have shown that this can be used for standard
robust classifiers. Here, we observe this holds true under a transfer-learning type setting. We find that
the combination of these methods can lead to improved performance.

Base Novel 1-shot 5-shot
Training Training

Exp. WA DC NC Linear Standard Robust Standard Robust
Id Acc. Acc. Acc. Acc.
1 7 7 7 3 41.40 ± 0.56 18.25 ± 0.45 59.30 ± 0.54 27.96 ± 0.50
2 7 3 7 7 43.72 ± 0.57 14.18 ± 0.38 58.04 ± 0.52 13.97 ± 0.39
3 7 7 3 7 42.56 ± 0.60 19.57 ± 0.45 58.22 ± 0.53 30.42 ± 0.50
4 3 7 7 3 42.63 ± 0.56 19.56 ± 0.45 61.35 ± 0.51 30.63 ± 0.52
5 3 3 7 7 44.73 ± 0.59 15.29 ± 0.41 59.78 ± 0.53 19.49 ± 0.49
6 3 7 3 7 44.98 ± 0.59 21.38 ± 0.46 61.30 ± 0.55 33.41 ± 0.51

Table 6: Illustration of different configurations of Base and Novel training. Here we show results on
ResNet18 backbone on Mini-ImageNet dataset. WA represents Weight Averaging, DC represents
Distribution Calibration and NC corresponds to to Nearest Centroid classifier.

Extension to verifiably robust models: An advantage of our simple framework is that we can
incorporate methods from the adversarial examples literature for few-shot learning. Specifically,
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we consider verifiably robust procedures where the goal is to provide a guarantee on adversarial
robustness of the model. Standard adversarial training methods do not lead to provably robust models
leading to low verified accuracy, we observe a similar trend in our experiments as well. Many
methods have been proposed in this area (Mirman et al., 2018; Zhang et al., 2019b; Cohen et al.,
2019) and we consider one of them - Interval Bound Propagation (IBP) (Gowal et al., 2018). Here we
show that replacing PGD-training with IBP during the robust base training stage described in section
2.1 can lead to verifiable robustness for few-shot classifiers. We show results for 1-shot setting in
Table 7 where we use a ResNet18 backbone on CIFAR-FS dataset. We use the training procedure
as described in (Xu et al., 2020) with ε = 8/255 for 1000 epochs. Here Robust Accuracy refers to
20-iteration PGD testing and Verified Accuracy is calculated similar to (Gowal et al., 2018). We
believe this experiment can encourage researchers to incorporate more advanced verification methods
in the future and also develop algorithms specific to few-shot settings.

1-shot
Method Standard Robust Verified

Acc. Acc. Acc.
IBP + Linear 37.01 ± 0.65 26.77 ± 0.59 21.79± 0.55
IBP + NC 37.72 ± 0.65 28.12 ± 0.62 23.25 ± 0.61

Table 7: Extension to verifiably robust classifiers. We show that it is possible to train verifiably robust
models for few-shot settings. This is an added advantage of our framework due to the similarity to
standard classifier training. Results are shown using ResNet18 backbone on CIFAR-FS dataset.

Using Adversarial examples from few-shot categories: We additionally consider an experiment
where adversarial examples of the few-shot data are used when learning the linear classifier. Although
this makes the learning more complex due to the adversarial training procedure, we perform this
baseline experiment and learn the linear layer. As seen in Table 8 we observe a drop in performance
which suggests that the network might be biased towards adversary of the few-shot data. We use a 7-
step PGD and 20-step PGD when learning the classifier, similar to adversarial training. This suggests
that creating adversarial examples increases computation but does not lead to performance gains.
Our NC method does not include adversarial examples and outperforms previous methods without
increasing computational burden. This experiment uses ResNet18 backbone on Mini-ImageNet
dataset.

1-shot
Method Standard Robust

Acc. Acc.
Linear No Adv 42.63 ± 0.56 19.56 ± 0.45
Linear 7-PGD 42.00 ± 0.56 18.83 ± 0.42
Linear 20-PGD 42.03 ± 0.58 19.01 ± 0.42
Ours (NC) 44.98 ± 0.59 21.38 ± 0.46

Table 8: Experiment where adversarial examples from few-shot data are included to perform adversar-
ial training on the linear classifier. No Adv refers to clean examples used for learning the linear layer.
7-PGD refers to 7-step PGD and 20-PGD refers to 20-step PGD used in training. Robust Accuracy
is calculated using 20-step PGD. Our NC method outperforms on both metrics without increasing
computation due to adversarial training.

6 CONCLUSION AND FUTURE WORK

We present a simple and scalable approach for improving robustness in few-shot image classifiers.
Our method outperforms previous approaches when compared with standard few-shot learning
benchmarks on both standard and robust accuracy. Note that our method is similar to traditional
adversarial machine learning approaches rather than meta-learning methods, hence it becomes easier
to introduce concepts such as certified robustness which is unexplored for few-shot classifiers. We
show preliminary results in this direction and plan to explore this direction in future works. We
believe that the simplicity of our approach would be beneficial to the community and upon which
researchers can develop robust few-shot classifiers.

9
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7 ETHICS STATEMENT AND REPRODUCIBILITY

We believe most AI algorithms including ours can be exploited by adversaries for unethical ap-
plications. On the positive side, we are developing algorithms that make deep networks robust to
adversarial attacks, eliminating some of such undesired applications. Moreover, while publishing
such defense algorithms may enable a larger community to access and benefit from them, leading to
democratized AI, it can also enable adversaries to develop better attacks.

To ensure that our results are reproducible, we include all implementation details of our work and
also provide code. We believe that readers will have sufficient knowledge of the hyperparameters
associated with our method to reproduce the results.
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A APPENDIX

Variation of Robust Accuracy with number of attack iterations: We vary the number of attack
iterations of PGD and observe a fairly stable performance for both 1-shot and 5-shot settings, as
seen in Table 9. This shows that defense performs well and is not sensitive to the number of attack
iterations. We perform this experiment on Mini-Imagenet dataset with ResNet-12 backbone.

1-shot 5-shot
PGD Robust Robust
Iterations Acc. Acc.
20 25.32 ± 0.52 38.83 ± 0.57
40 25.19 ± 0.53 38.46 ± 0.54
100 25.64 ± 0.53 38.22 ± 0.56
200 25.09 ± 0.54 38.62 ± 0.57

Table 9: Variation of attack iterations

Variation of Robust Accuracy with perturbation budget ε: To check for the absence of gradient
masking, we increase ε from 8/255 to 128/255 in Figure 1. As expected, we observe that both 1-shot
and 5-shot accuracy drop to zero with increased ε. Note that we plot only the the mean accuracy over
1000 different tasks.

(a) 1-shot (b) 5-shot

Figure 1: Variation of Robust Accuracy with different perturbation budget ε

Variation of Robust Accuracy with number of base neighborsm: We plot the variation of Robust
Accuracy with number of base neighbors m in Figure 2. We find best results with m = 2 which we
use for all our experiments. Note that we plot only the mean accuracy over 1000 different tasks.

(a) 1-shot (b) 5-shot

Figure 2: Variation of Robust accuracy with number of base centers m for 1-shot and 5-shot settings

Number of base categories chosen: We plot the variation of standard accuracy with m in Figure 3
for 1-shot and 5-shot settings. It is to be noted that we plot only the mean accuracy averaged over
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(a) 1-shot (b) 5-shot

Figure 3: Variation of Standard accuracy with number of base centers m for 1-shot and 5-shot settings

1000 test episodes. We find best results with m = 2 which we use for all our experiments.

Results on TieredImageNet: We also consider TieredImageNet(Ren et al., 2018), which is larger
subset of ILSVRC12, sampled from hierarchically. We use the standard split of 351 base classes and
160 novel classes. We see once again that the linear classifier acts as a strong baseline and our NC
method outperforms previous method. This is an interesting experiment compared to the one using
Mini-ImageNet which is also sampled from ILCVRC12 and shows that our method works even when
the similarity between base and novel classes is varied.

Method Backbone 1-shot 5-shot
Standard Robust Standard Robust

Acc. Acc. Acc. Acc.
AQ

ResNet18
49.77 ± 0.70 29.78 ± 0.65 66.72 ± 0.56 43.73 ± 0.63

Ours (Linear) 50.47 ± 0.69 27.90 ± 0.60 68.48 ± 0.60 40.30 ± 0.65
Ours (NC) 51.38 ± 0.71 30.27 ± 0.62 68.50± 0.59 44.64± 0.66

Table 10: Results on TieredImageNet dataset.
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