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Abstract

Data poisoning has been proposed as a compelling
defense against facial recognition models trained
on Web-scraped pictures. By perturbing the im-
ages they post online, users can fool models into
misclassifying future (unperturbed) pictures.

We demonstrate that this strategy provides a false
sense of security, as it ignores an inherent asym-
metry between the parties: users’ pictures are per-
turbed once and for all before being published and
scraped, and must thereafter fool all future mod-
els—including models trained adaptively against
the users’ past attacks, or models that use tech-
nologies discovered after the attack.

We evaluate two poisoning attacks against large-
scale facial recognition, Fawkes (500,000+ down-
loads) and LowKey. We demonstrate how an
“oblivious” model trainer can simply wait for fu-
ture developments in computer vision to nullify
the protection of pictures collected in the past.
We further show that an adversary with black-box
access to the attack can train a robust model that
resists the perturbations of collected pictures.

We caution that facial recognition poisoning will
not admit an “arms race” between attackers and
defenders. Once perturbed pictures are scraped,
the attack cannot be changed so any future defense
irrevocably undermines users’ privacy.

1. Introduction
Facial recognition systems pose a serious threat to indi-
vidual privacy. Various companies routinely scrape the
Web for users’ pictures to train large-scale facial recog-
nition systems (Hill, Jan; Harwell, 2021), and then make
these systems available to law enforcement agencies (Lip-
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ton, 2020) or private individuals (Harwell, 2021; Mozur &
Krolik, 2019; Wong, 2019).

A growing body of research explores how tools from adver-
sarial machine learning can help users fight back (Sharif
et al., 2016; Oh et al., 2017; Thys et al., 2019; Shan et al.,
2020; Evtimov et al., 2020; Gao et al., 2020; Xu et al., 2020;
Yang et al., 2020; Komkov & Petiushko, 2021; Cherepanova
et al., 2021; Rajabi et al., 2021; Browne et al., 2020). We
revisit a recently proposed approach where users perturb the
pictures they post online, in order to poison facial recogni-
tion models into misidentifying unperturbed pictures (e.g.,
a picture taken by a stalker or by the police). This idea
was popularized by Fawkes (Shan et al., 2020), an aca-
demic image-perturbation system with 500,000+ downloads,
which promises “strong protection against unauthorized [fa-
cial recognition] models” (Shan et al., 2021). Following
Fawkes’ success, other systems have been proposed by aca-
demic (Cherepanova et al., 2021; Evtimov et al., 2020) and
commercial (Vincent, 2021) parties.

This paper shows that these systems (and, in fact, any poi-
soning strategy) cannot protect users’ privacy. Worse, we
argue that these systems offer a false sense of security, as
users cannot observe if an attack succeeds or not. Thus,
privacy-conscious users might upload perturbed pictures,
under the false belief that data poisoning will protect their
privacy. Figure 1 shows an overview of our results.

The poisoning attacks deployed by these systems ignore a
fundamental asymmetry between Web users and the trainers
of facial recognition models. Once a user commits to an
attack and uploads a perturbed picture that gets scraped,
this perturbation cannot be changed anymore. Thus, if
a defense against the user’s attack is discovered at any
point in the future, the protection offered to the user’s
past pictures is retroactively lost. Indeed, facial recog-
nition models are resilient to changes in users’ faces over
time (Ling et al., 2010). Thus, if the elapsed time before a
defense is found is not too high (e.g., less than a decade), the
defense can be used to train an accurate model on pictures
collected in the past. This holds regardless of any future
attacks by the user, since past attacks cannot be changed.

To illustrate this fundamental asymmetry between model
trainers and users, we show that a fully “oblivious” model
trainer, with no knowledge of users’ attacks, can eventually
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Figure 1: Attacks and defenses for facial recognition poisoning. (1) Users perturb their pictures before posting them
online. (2) A model trainer continuously scrapes the Web for pictures. (3-4) The model trainer builds a model from collected
pictures and evaluates it on unperturbed pictures. With no defense strategy, the poisoned model fails to recognize users
whose online pictures were perturbed. An “oblivious” model trainer can wait until a better facial recognition model is
discovered and retroactively train it on past pictures to resist poisoning. An adaptive model trainer with black-box access to
the attack employed by users can immediately train a robust model that resists poisoning.

train an accurate model. The model trainer scrapes pictures
from the Web until some progress in facial recognition is
made, and then applies the newly discovered method to pic-
tures scraped in the past. For example, we show that attacks
produced by Fawkes (released in July 2020) are ineffective
if the model trainer switches to a MagFace model (Meng
et al., 2021) (released in March 2021). We also find that the
more recent LowKey attack (Cherepanova et al., 2021) is
only moderately effective against features extracted from
OpenAI’s CLIP model (Radford et al., 2021).

We further show that if the model trainer knows what attack
strategies the users employ, it is not necessary to wait for
new progress in facial recognition to nullify the users’ at-
tacks. This assumption is realistic for image-perturbation
systems that are made publicly accessible to cater to a large
user base (e.g., Fawkes offers a public tool (Shan et al.,
2021), and LowKey offers a Web service (Cherepanova
et al.)). We show that with black-box access to the perturba-
tion system, an adaptive model trainer can fully circumvent
the protections offered by Fawkes and LowKey.

Prior work recognized that model trainers could adapt to at-
tacks (Shan et al., 2021) and predicted an "arms race", where
users in turn deploy better attacks. This already happened:
Fawkes’ latest version counteracts changes in Microsoft’s
facial recognition system that broke the attack (Shan et al.,
2021). Yet, changing the attack is futile, as a model trainer
can apply Microsoft’s new system to pictures scraped before
Fawkes updated its attack. Worse, we show that even if
the model trainer collects pictures perturbed with Fawkes’
new attack, this does not salvage the poor protection of past
pictures and the model learns to successfully identify users.

In summary, we argue that poisoning attacks against facial
recognition will not lead to an “arms race”, where new
attacks can continuously counteract new defenses. Since the
perturbation applied to a picture cannot be changed once
the picture is scraped, a successful poisoning attack has
to remain effective against all future models, even models
trained adaptively against the attack, or models that use new
techniques discovered only after the attack.

2. Data Poisoning for Facial Recognition
2.1. Threat Model

We consider a setting where a user uploads pictures of them-
selves to online services such as a social media platform.
The user attempts to protect their pictures by adding pertur-
bations that should be almost imperceptible to other peo-
ple (Szegedy et al., 2013). The user’s goal is that a model
trained on their perturbed pictures will achieve low accuracy
when classifying unperturbed pictures of the user.A second
party, the model trainer, scrapes the Web for pictures to
train a large-scale facial recognition model. We assume that
the data scraped by the trainer is labeled, i.e., all (possibly
perturbed) images collected of a user can be assigned to the
user’s identity.

This setting corresponds to training-only clean-label poi-
soning attacks (Shan et al., 2020; Cherepanova et al., 2021;
Evtimov et al., 2020). Keeping with the terminology of the
data poisoning literature (Goldblum et al., 2020), we refer
to the user as the attacker and the trainer as the defender.

We provide a more formal treatment of (dynamic) training-
only clean-label poisoning attack in Appendix B.
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2.2. Defenses against Facial Recognition Poisoning

We develop two defense strategies for the model trainer.
The first is oblivious: the trainer waits until a new type of
facial recognition model is developed. The second strategy
is adaptive: the trainer uses access to the attacker’s strategy
(as a black-box) to collect perturbed pictures to train on.

An oblivious defense: time is all you need. We recall
the oblivious defense strategy outlined in Section B:

1. Continuously collect and store labeled poisoned pictures.
2. Wait until a time t where a new type of facial recogni-

tion model is invented, preferably one that uses different
techniques than prior models.

3. Train that model on the poisoned pictures that were
scraped and stored before time t, to obtain a classifier f .

4. Use the model f for future evaluations, until the next
significant progress in facial recognition.

To bypass this defense, a poisoning attack must fool not
only today’s models, but also all future models.

An adaptive defense. Our adaptive defense assumes that
the model trainer has black-box access to users’ attack. The
model trainer collects public data of user faces Xpublic (e.g.,
a canonical dataset of celebrity faces). The model trainer
then calls the attack (as a black box), to obtain perturbed
samples: Xpublic

adv ← Attack(Xpublic).

As the model trainer has access to both unperturbed images
Xpublic and their perturbed versions Xpublic

adv , they can teach a
model to correctly classify both unperturbed and perturbed
pictures of these users, and thus encourage the model to
learn robust features that generalize to the perturbations
applied to other users’ pictures.1

3. Experiments
We evaluate the effectiveness of two facial recogni-
tion poisoning tools, Fawkes (Shan et al., 2020) and
LowKey (Cherepanova et al., 2021). We show that:

• An oblivious model trainer can collect images perturbed
with Fawkes and then use a more recent facial recognition
model to retroactively break users’ privacy. For the more
recent LowKey system, new models can significantly
weaken the attack, but not nullify it entirely.

• An adaptive model trainer with black-box access to
Fawkes and LowKey can train a robust model that re-
sists poisoning attacks and correctly identifies all users.

1A black-box adaptive defense might be preventable with an
attack that uses secret per-user randomness to ensure that robust-
ness to an attack from one user does not generalize to other users.
Existing attacks fail to do this, and such an attack would remain
vulnerable to our oblivious strategy.

3.1. Experimental Setup

We perform all of our experiments with the FaceScrub
dataset (Ng & Winkler, 2014), which contains over 50,000
images of 530 celebrities. Additional details on the setup
for each experiment can be found in Appendix A.

User configuration. A user (one of the FaceSrub identities)
uses either Fawkes or LowKey to perturb all of their training
data (i.e., their pictures uploaded online).

Model trainer configuration. The model trainer builds a
facial recognition model on all users’ labeled training data.
We consider three training algorithms:

• NN: 1-Nearest Neighbor on top of a feature extractor.
• Linear: Linear fine-tuning on top of a frozen feature

extractor for 10 epochs.
• End-to-end: End-to-end fine-tuning of the feature extrac-

tor and linear classifier for 10 epochs.

Feature extractors. The model trainer uses a feature ex-
tractor trained on VGGFace2 (Cao et al., 2018) and Web-
Face (Yi et al., 2014). This extractor is also used in Fawkes
v0.3 (Shan et al., 2020). As Fawkes v1.0 and LowKey do
not use this extractor, it is as a suitable benchmark for the
attacks’ transferability. To evaluate oblivious defenses in
Section 3.2, we also use three recent feature extractors:

• Fawkes v1.0: This is the ArcFace (Deng et al., 2018)
feature extractor used in version 1.0 of Fawkes.

• MagFace: This is a recent state-of-the-art facial feature
extractor (Meng et al., 2021).

• CLIP: While not intended for facial recognition,
CLIP (Radford et al., 2021) can extract rich facial fea-
tures (Goh et al., 2021).

Evaluation Metric. We evaluate the effectiveness of
Fawkes and LowKey by the (top-1) error rate (a.k.a. protec-
tion rate) of the facial recognition classifier when evaluated
on the unperturbed test images of the chosen user. We report
the average errors across 20 experiments with a different
user in the position of the attacker.

3.2. Oblivious Defenses

We begin by evaluating oblivious defenses, where the model
trainer waits for a new facial recognition model to be de-
veloped and trains it against pictures collected in the past.
Figure 2a shows the protection rate of Fawkes against fea-
ture extractors over time. The model trainer extracts features
from all collected images and trains a NN classifier on top.

If a user had perturbed their pictures using the original
Fawkes v0.3 system, they would obtain moderate protection
(55% error rate) against a model trained using the same v0.3
feature extractor. However, the same pictures offer no pro-
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Figure 2: Oblivious defenses against Fawkes and
LowKey. (a) Fawkes version 0.3 is ineffective against the
newer feature extractor used in version 1.0 of the tool. Both
versions of Fawkes are ineffective against MagFace. (b)
LowKey targets today’s best models and transfers well to
MagFace but not as well to CLIP.

tection against more recent feature extractors (< 5% error
rate). As a result, Fawkes’ attack was updated in version
1.0 (Shan et al., 2021) to target a more recent ArcFace (Deng
et al., 2018) feature extractor. Yet, while Fawkes v1.0 works
well against past and current extractors used by the system
(36–100% error rate), it fails against the recent MagFace
extractor (Meng et al., 2021) (5% error rate).

Moreover, we find that even if the model trainer does use a
model that is vulnerable to Fawkes’ new attack, users of the
old attack cannot “regain” their privacy by adopting the new
attack. Specifically, if half a user’s pictures were poisoned
with Fawkes v0.3, and half are later poisoned with Fawkes
v1.0, then a model trainer using the v1.0 extractor (which is
vulnerable to the new attack) still defeats the user’s attack
(6% protection rate). Thus, once the model trainer has a
model that resists past attacks, the protection for pictures
perturbed in the past is lost—regardless of future attacks.

LowKey (Cherepanova et al., 2021) fairs somewhat better.
LowKey’s attack targets an ensemble of state-of-the-art mod-
els and transfers well to the recent MagFace model (Meng
et al., 2021)—which uses the same training set and architec-
ture as LowKey’s extractors (see Figure 2b).

Yet, we predict that LowKey’s protections will also fail
against models released in the coming years. To motivate
this prediction, we show that LowKey only transfers mod-
erately to OpenAI’s CLIP (Radford et al., 2021). While
CLIP was not trained for facial recognition, it can extract
rich facial features (Goh et al., 2021), which yield a moder-
ately low error rate of 18% for a nearest neighbor search on
un-poisoned data. Under attack, CLIP’s error rate remains
below 30%. This error rate might already be too low to pro-
tect user privacy (e.g., someone could take many pictures of
a victim, so that at least one of them gets recognized).

3.3. Adaptive Defenses

We have shown that an oblivious defender can wait for
progress in facial recognition to break users’ poisoning at-
tacks. We next consider a model trainer that does not wish
to wait for such progress, and instead adaptively trains a
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Figure 3: Adaptive defenses against Fawkes and
LowKey. We report (a) the baseline performance (i.e. when
no defense is used) for three training modes (Linear, End-to-
end, NN); (b) the attack performance after robust training.

model against users’ attacks. For all experiments below, the
model trainer uses the feature extractor from Fawkes v0.3.

Baseline. We first evaluate the baseline performance of
the Fawkes (v1.0) and LowKey attacks for the three train-
ing strategies that we consider. As shown in Figure 3a,
when the model trainer employs no defense strategy, both
attacks significantly increase the model’s error on the user’s
unperturbed test images.

Robust training. A model trainer with black-box access
to the user’s poisoning tool can adaptively train a robust
facial recognition model as described in Section 2.2. We use
the images of half of the FaceScrub users as the public data
Xpublic that the model trainer feeds to the black-box attack.

When using NNs or linear fine-tuning, we first robustly
fine-tune the feature extractor on Xpublic and Xpublic

adv . To
evaluate the attack, a NN or linear classifier is trained on
top of the robust feature extractor for the entire FaceScrub
dataset, including the attacker’s perturbed pictures. When
the model trainer fine-tunes a model end-to-end, we add
Xpublic

adv to the model’s training set. As shown in Figure 3b,
each of the three facial recognition approaches we consider
can be made robust. In all cases, the user’s protection rate
(the test error rate on unperturbed pictures) drops below 8%.

4. Conclusion
Our work has demonstrated that poisoning attacks cannot
save users from large-scale facial recognition models trained
on Web-scraped pictures. The initial motivation for these
attacks is based on the premise that poisoning attacks can
give rise to an “arms race”, where better attacks can coun-
teract improved defenses. We have shown that no such arms
race can exist, as the model trainer can retroactively apply
new models (obtained obliviously or adaptively) to pictures
produced by past attacks. To at least counteract an oblivious
model trainer, users would have to presume that no signifi-
cant change will be made to facial recognition models in the
coming years. Given the current pace of progress in the field,
this assumption is unlikely to hold. Thus, we argue that leg-
islative rather than technological solutions are needed to
counteract privacy-invasive facial recognition systems.
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A. Experimental Details
A.1. Generation of Perturbed Pictures

For the experiments in Section 3, we generate perturbed
images for random FaceScrub (Ng & Winkler, 2014) users
using Fawkes (either version 0.3 in “high” mode2 or the

2https://github.com/Shawn-Shan/fawkes/
tree/63ba2f
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most recent version 1.0 in “high” mode3) and LowKey.4

We use the official pre-aligned and extracted faces from
the FaceScrub dataset, and thus disable the automatic
face-detection routines in both Fawkes and LowKey. For
LowKey, we additionally resize all images to 112 × 112
pixels as we found the attack to perform best in this regime.

A.2. Attack and Model Training Setup

In each of our experiments, we randomly choose one user
from the 530 FaceScrub identities to be the attacker. We
perturb 100% of the training pictures of that user (70% of
all pictures) with the chosen attack (Fawkes v0.3, Fawkes
v1.0, or LowKey). The training set for the model trainer
contains these perturbed pictures, as well as the training
pictures of all other 529 FaceScrub users.

For linear fine-tuning and end-to-end fine-tuning, we add
a 530-class linear layer on top of a pre-trained feature ex-
tractor, and train either only the linear layer, or the entire
model. For linear fine-tuning, we train a logistic regression
model using sklearn. To fine-tune the entire model, we
minimize the cross-entropy loss for 500 steps with a batch
size of 32 using AdaDelta with learning rate η = 1. We
perform no data augmentation during training.

For nearest neighbor classification, we extract features using
a fixed pre-trained feature extractor and assign test points to
the same class as the closest training point in feature space.

To report the protection rate conferred by an attack (a.k.a.
the model’s error rate), we compute the model’s error rate
on the chosen user’s unprotected test pictures. We then
average these error rates across 20 experiments, each with a
different random attacking user.

A.3. Oblivious Defenses

To generate Figure 2a, we perturb a user’s training pictures
using either the Fawkes v0.3 or the Fawkes v1.0 attack,
and then use either the Fawkes v0.3 model, the Fawkes
v1.0 model or the MagFace model5 to extract features for a
nearest neighbor classifier.

To generate Figure 2b, we perturb a user’s training pictures
using LowKey, and then use either MagFace or CLIP6 to
extract features for a nearest neighbor classifier.

3https://github.com/Shawn-Shan/fawkes/
tree/5d1c2a

4https://openreview.net/forum?id=
hJmtwocEqzc

5https://github.com/IrvingMeng/MagFace/
6https://github.com/openai/CLIP

A.4. Robust Training

Data generation using public attacks. For robust train-
ing, we first generate perturbed pictures for many FaceScrub
users using different attacks:7

Table 1: Number of FaceScrub users whose images are
perturbed for each attack. Both the perturbed and unper-
turbed images of these users are used during robust training.

Attack Number of users
Fawkes v0.3 265
Fawkes v1.0 50
LowKey 150

Note that this corresponds to 265 users in total (i.e., the
users for the Fawkes v1.0 and LowKey attacks are a subset
of the users for the Fawkes v0.3 attack). The public dataset
Xpublic consists of the original pictures of these 265 users,
and the perturbed dataset Xpublic

adv consists of all the perturbed
pictures (across all attacks) of these users.

Robust model training setup. For the model trainer, we
use the feature extractor from Fawkes v0.3 that the original
authors adversarially trained on a dataset different from
FaceScrub (Shan et al., 2020).

For linear fine-tuning and nearest neighbors, we first fine-
tune this feature extractor on the data from the 265 chosen
public users. That is, we add a 265-class linear layer on
top of the feature extractor, and fine-tune the entire model
end-to-end for 500 steps with batch size 32. To evaluate this
robust feature extractor, we pick an attacking user at random
(not one of the 265 public users), and build a training set
consisting of the perturbed pictures of that user, and the
unperturbed pictures of all other 529 users. We then extract
features from this training set using the robust model, and
fit a linear classifier or nearest neighbor classifier on top.

For end-to-end fine-tuning, we pick an attacking user at ran-
dom (not one of the 256 public users), and build a training
set consisting of: (1) the perturbed pictures of the attacking
user; (2) the unperturbed pictures of all other 529 users;
(3) the perturbed pictures Xpublic

adv of the chosen 265 public
users. We then fine-tune the feature extractor with a linear
classifier head on this training set for 500 steps with batch
size 32.

A.5. Attack Detection

We also test whether the detector that was trained on one
system (i.e., Fawkes or LowKey) transfers to the other (see

7We started this project by experimenting with Fawkes v0.3
and thus have generated many more perturbed pictures for that
attack than for the newer attacks.
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Table 2: Performance of a model trained to detect per-
turbed images. Detection performance is very high across
all attacks even when smaller perturbations are used (i.e.
Fawkes “low” and “mid”).

Attack Detection Accuracy Precision Recall
Fawkes high 99.8% 99.8% 99.8%
Fawkes mid 99.6% 99.8% 99.4%
Fawkes low 99.1% 99.8% 98.4%
LowKey 99.8% 99.8% 99.8%

Table 3: Performance of a model trained to detect per-
turbed images of one attack (source) when evaluated on
another attack (destination).

Detection
Source→ Destination Accuracy Precision Recall
Fawkes→ LowKey 99.4% 99.0% 99.8%
LowKey→ Fawkes high 71.9% 100% 43.9%

Table 3).

To evaluate the detectability of perturbed pictures, we
choose 45 users and generate perturbations using Fawkes
v1.0 (in “low”, “mid” and “high” protection modes) and
LowKey. We use 25 users during training and 20 users
during evaluation. For LowKey, we build a training dataset
containing all unperturbed and perturbed pictures of the
25 users. For Fawkes, we do the same but split a user’s
perturbed pictures equally among the three attack modes.

We then fine-tune a pre-trained MobileNetv2 model (Sandler
et al., 2018) on the binary classification task of predicting
whether a picture is perturbed. We fine-tune the model for
3 epochs using Adam with learning rate η = 5 · 10−5. The
model is then evaluated by its accuracy on the unperturbed
and perturbed pictures of the 20 other users (each user has
an equal number of perturbed and unperturbed pictures since
we evaluate the Fawkes modes separately).

Table 2 reports detection accuracy and precision and recall
scores.

B. Poisoning Attack Game
We present a standard security game for training-only clean-
label poisoning attacks in Figure 4a. We argue that this
game fails to properly capture the threat model of our facial
recognition scenario.

In this game, the attacker first samples training data X,Y
from a distribution D and applies an attack to get the per-
turbed data Xadv. The defender gets the perturbed labeled
data (Xadv,Y) and trains a model f . The model f is evalu-
ated on unperturbed inputs x from the distribution D. For a

given test input x, the attacker wins the game if the perturba-
tion of the training data is small (as measured by an oracle
O(X,Xadv) 7→ {0, 1}), and if the model misclassifies x.

The poisoning game in Figure 4a fails to capture an impor-
tant facet of the facial recognition problem. The problem is
not static: users continuously upload new pictures, and the
model trainer actively scrapes them to update their model.
Below, we introduce a dynamic version of the poisoning
game, and show how a model trainer can use a retroactive
defense strategy to win the game. In turn, we discuss how
users and model trainers may adapt their strategies based
on the other party’s actions.

Dynamic poisoning attacks. To capture the dynamic na-
ture of the facial recognition game, we define a generalized
game for clean-label poisoning attacks in Figure 4b. The
game now operates in rounds indexed by i ≥ 1. In each
round, the attacker perturbs new pictures and sends them
to the defender. The strategies of the attacker and defender
may change from one round to the next.

The game in Figure 4b also allows for the data distribution
Di to change across rounds. Indeed, new users might start
uploading pictures, and existing users’ faces will change
over time. Yet, our thesis is that the main challenge faced
by the user (the attacker) is precisely that the distribution
of pictures of their own face changes little over time. For
example, a facial recognition model trained on pictures of a
user at 20 years old can recognize pictures of the same user
at 30 years old with high accuracy (Ling et al., 2010).

Thus, in each round the defender can reuse training data
(Xadv,Y) collected in prior rounds. If the defender scrapes
a user’s images, the perturbations applied to these images
cannot later be changed.

Retroactive defenses. The observation above places a
very high burden on the attacker. Suppose that in round
i, the defender discovers a training technique traini that
is resilient to past poisoning attacks Attackj for j < i.
Then, the defender can train their model solely on the data
(Xadv,Y) collected up to round j. From there on, the at-
tacker can no longer win the game if the defender ignores fu-
ture training data (until the defender finds a defense against
newer attacks as well). Thus, the attacker’s perturbations
would need to work against all future defenses, even those
applied retroactively, for as long as the user’s facial features
do not naturally change due to age. Note that by design,
this retroactive defense does not lead to an “arms race” with
future attacks. The defender applies newly discovered de-
fenses to past pictures only.

As we will show, this retroactive defense can even be instan-
tiated by a fully oblivious model trainer, with no knowledge
of users’ attacks. The model trainer simply waits for a better
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Attacker (User) Defender (Model Trainer)

. . . . . . . . . . . . . . . . . . . . . . . . . . Training . . . . . . . . . . . . . . . . . . . . . . . . . .

X,Y ← D
Xadv ← Attack(X)

Xadv,Y

f ← train(Xadv,Y)

. . . . . . . . . . . . . . . . . . . . . . . . . Evaluation . . . . . . . . . . . . . . . . . . . . . . . . .

x, y ← D
x

ŷ ← f(x)

Attacker wins if ŷ 6= y and O(X,Xadv) = 1

(a) Game 1: Static game. The attacker creates a clean-labeled
poisoned training set (Xadv,Y) and the defender trains a model
f , which is evaluated on unperturbed inputs x. The attacker wins
if f misclassifies x and the poisoned data Xadv is “close” to the
original data X (according to an oracle O).

Attacker (User) Defender (Model Trainer)

X = ∅ Xadv = ∅,Y = ∅
. . . . . . . . . . . . . . . . . . . . . . . . . . Training(i) . . . . . . . . . . . . . . . . . . . . . . . . . .

X,Y ← Di

add X to X
Xadv ← Attacki(X)

Xadv,Y

add Xadv to Xadv

add Y to Y
f ← traini(Xadv,Y)

. . . . . . . . . . . . . . . . . . . . . . . . . Evaluation(i) . . . . . . . . . . . . . . . . . . . . . . . . .

x, y ← Di x

ŷ ← f(x)

Attacker wins in round i if ŷ 6= y and O(X ,Xadv) = 1

(b) Game 2: Dynamic game. In each round i ≥ 1, the attacker
sends new poisoned data to the defender. The defender may train
on all the training data (Xadv,Y) it collected over prior rounds.
The strategies of the attacker and defender may change between
rounds.

Figure 4: Security games for training-only clean-label poisoning attacks.

facial recognition model to be developed, and then applies
the model to pictures scraped before the new model was
published. This oblivious strategy demonstrates the futil-
ity of preventing facial recognition with data poisoning, so
long as progress in facial recognition models is expected to
continue in the future.

Adaptive defenses. A model trainer that does not want to
wait for progress in facial recognition can exploit another
source of asymmetry over users: adaptivity. In our setting,
it is easier for the defender to adapt to the attacker, than
vice-versa. Indeed, users must perturb their pictures before
the model trainer scrapes them and feeds them to a secret
training algorithm. As the trainer’s model f will likely be
inaccessible to users, users will have no idea if their attack
actually succeeded or not.

In contrast, the users’ attack strategy is likely public (at
least as a black-box) to support users with minimal tech-
nical background. For example, Fawkes offers open-
source software to perturb images (Shan et al., 2021), and
LowKey (Cherepanova et al.) and DoNotPay (Vincent,
2021) offer a Web API. The defender can thus assemble
a dataset of perturbed images and use them to train a model.
We call such a defender adaptive.

A note on evasion, backdoor, and obfuscation Attacks.
The security games in Figure 4 assume that the evalua-
tion data is unperturbed. This is the setting considered by
Fawkes (Shan et al., 2020) and LowKey (Cherepanova et al.,
2021), where a user cannot control the pictures that are fed

to the facial recognition model.

The game dynamics change if the user can use adversarial
examples to evade the model (Szegedy et al., 2013; Sharif
et al., 2016; Thys et al., 2019; Gao et al., 2020; Cilloni
et al., 2020; Rajabi et al., 2021; Oh et al., 2017; Deb et al.,
2019; Browne et al., 2020). Such evasion attacks favor the
attacker: the defender must first commit to a defense and the
attacker can then adapt their strategy accordingly (Tramer
et al., 2020).

The case of backdoor attacks (Chen et al., 2017; Turner
et al., 2019; Wenger et al., 2020) is more nuanced. Here,
the attacker first poisons the model to react to a specific
trigger, and then adds this trigger to inputs at evaluation
time. While backdoor attacks involve an attack at evaluation
time, this attack is usually not adaptive, but merely activates
a previously injected trigger. If the initial poisoning attack
fails, the attack fails altogether. The inherent advantage of
the defender in training-only poisoning attacks thus also
applies to backdoor attacks.

Our setting and security game also do not capture obfusca-
tion attacks (Newton et al., 2005; Sun et al., 2018a;b; Sam
et al., 2020). These attacks either remove or synthetically
replace a user’s face, and thus fall outside of our threat
model.
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