
TNASP: A Transformer-based NAS Predictor with a
Self-evolution Framework

Shun Lu1,2, Jixiang Li3, Jianchao Tan3, Sen Yang3, Ji Liu3

1 Research Center for Intelligent Computing Systems, State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences

2 University of Chinese Academy of Sciences
3 Kuaishou Technology

lushun19s@ict.ac.cn, {lijixiang,jianchaotan,senyang,jiliu}@kuaishou.com

Abstract

Predictor-based Neural Architecture Search (NAS) continues to be an important
topic because it aims to mitigate the time-consuming search procedure of traditional
NAS methods. A promising performance predictor determines the quality of final
searched models in predictor-based NAS methods. Most existing predictor-based
methodologies train model-based predictors under a proxy dataset setting, which
may suffer from the accuracy decline and the generalization problem, mainly due to
their poor abilities to represent spatial topology information of the graph structure
data. Besides the poor encoding for spatial topology information, these works
did not take advantage of the temporal information such as historical evaluations
during training. Thus, we propose a Transformer-based NAS performance predictor,
associated with a Laplacian matrix based positional encoding strategy, which better
represents topology information and achieves better performance than previous
state-of-the-art methods on NAS-Bench-101, NAS-Bench-201, and DARTS search
space. Furthermore, we also propose a self-evolution framework that can fully
utilize temporal information as guidance. This framework iteratively involves
previous evaluation information as constraints into current optimization iteration,
thus further improving the performance of our predictor. Such framework is model-
agnostic, thus can enhance performance on various backbone structures for the
prediction task. Our proposed method helped us rank 2nd among all teams in
CVPR 2021 NAS Competition Track 2: Performance Prediction Track.

1 Introduction

Neural Architecture Search (NAS) aims to automatically find out superb architectures in a pre-
defined search space. The NAS models have outperformed human-designed models in many domains
[37, 18, 13, 3, 15]. However, traditional NAS methods like Reinforcement learning and Evolutionary
learning require enormous computation resources, i.e., hundreds or thousands of GPU hours, to train
sub-models to obtain their performance estimation. The intensive computation prohibits NAS models
from deployments to real applications. Although differentiable NAS methods [26] have less search
time than traditional methods, they usually suffer from performance collapse due to several problems
such as optimization gap [6], discretization discrepancy and the unfair advantage [9], trapping into
sharp minimum and the dominant eigenvalue [49, 5].

To reduce the search cost in NAS, predictor-based NAS methods [30, 23, 43, 29, 32, 7, 46, 4, 1]
use performance predictors to predict the accuracy of architectures quickly instead of training all
architectures to get the accuracy. Simple training-free predictors have been shown promising in
some applications, however, those performances are usually not good enough in practice. Many

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



works focus on how to design effective training-based predictors [43, 29, 32, 7, 46]. A training-based
predictor usually consists of an encoder module and a regressor module, and only needs to learn
from a few architecture-accuracy sampled pairs, thus leading to a fast learning procedure. After the
performance predictor learns the relationship between the architecture and its corresponding accuracy,
it is able to predict the performance of other unseen architectures in the search space, which greatly
accelerates the search process of NAS.

One of the key components of a performance predictor is to encode discrete architectures into
continuous feature representations. Neural predictor[43] and CTNAS[7] applied GCN [20] to capture
the feature representation of input model structures. Both SemiNAS [29] and GATES [32] learned
an embedding matrix for the candidate operations in the search space, and represented architectures
as a combination of different embeddings. ReNAS[46] calculated the types matrix, flops matrix,
and parameters matrix, and then concatenated them together to form a feature tensor to represent a
specific architecture. Unlike previous methods, we propose a Transformer-based NAS performance
Predictor (TNASP) and use the linear transformation output over the Laplacian matrix of the model
structure graph to be the positional encoding.

There are several advantages of the Transformer that can be used to train a good performance predictor.
First, the self-attention module can help explore better feature representations from the graph structure
data. Second, the multi-head mechanism can further help encode the different subspace information
at different positions from the graph structure data, as also claimed by the original Transformer paper.
Third, the Laplacian matrix based positional encoding method also fits well to find topology position
information on the graph. In summary, we demonstrate that Transformer is an effective method to
extract feature representation from discrete architecture graphs, and also has superb generalization
abilities for processing unseen data, as shown in our experiments. Since the predictors are trained on
a small size proxy dataset but the test dataset is much larger, training-based NAS predictors usually
have poor generalization abilities. The powerful Transformer encoder can mitigate this problem to a
certain degree, due to its good ability to encode topology information.

To further improve our predictor, we introduce a self-evolution framework, which makes full use
of temporal information to guide the training. The framework iteratively involves each evaluation
score of the previously predicted results on a validation dataset into a gradient based optimization
iteration as constraints, to push the predictions close to ground truths gradually. We demonstrate the
framework can make our predictor have better generalization, and also achieve better performance
than previous predictors.

Our proposed framework is fruitful and practical in several scenarios, for example, all of the machine
learning competitions. In competition, the test set that the host provided to users is exactly the
validation role in our setting. And the temporal information, such as the feedback of each submission,
is able to gradually improve original training iteratively with our framework. Generally speaking, our
contributions can be summarized as follows:

• We propose a Transformer-based NAS performance predictor (TNASP) to better encode
the spatial topology information, utilizing the multi-head self-attention mechanism to map
the discrete architectures to a meaningful feature representation and applying the linear
transformation of the Laplacian matrix as the positional encoding.

• By leveraging each evaluation score information in history as constraints in training, and
applying a gradient based optimization method to iteratively solve the constrained opti-
mization problem, we introduce a generic self-evolution framework to further improve the
performance of the proposed predictor, making full use of temporal information.

• Our proposed method surpasses the previous state-of-the-art methods under the same proxy
training dataset and achieves state-of-the-art results on NAS-Bench-101 [48], NAS-Bench-
201[14], and DARTS [26] search space.

2 Related Work

Due to the enormous search cost of traditional NAS methods such as reinforcement learning based
methods [52, 2] and evolutionary methods [34, 27], network performance predictor based NAS
methods have become a pretty active topic recently. Most works only require a few architecture-
accuracy data pairs to train a predictor and estimate the performance of unseen architectures, which

2



can be categorized as training-based network performance predictors. Other works propose to
calculate some kinds of metrics over network structure to represent network performance without
training, which are denoted as training-free network performance predictors.

Training-based network performance predictors Training-based predictors follow a unified
paradigm to learn the correlation from network architectures and their corresponding accuracy. As it’s
hard to learn useful features directly from the discrete network architectures, various methods have
been explored to map the discrete representation into a continuous latent space and can be roughly
divided into sequence-based schemes and graph-based methods. Sequence-based schemes denote
each architecture by a discrete sequence with fixed length and use MLP [25, 44, 46], embedding
matrix [11, 32], Auto-Encoder [30, 51, 29] or GBDT [28] to convert the sequence into continuous
representation. However, graph-based methods treat the architecture as a graph and use the graph-
format data i.e. adjacency matrix and node features as inputs. Diverse graph processing methods such
as GHN [50], GCN [22, 43, 36, 7], GIN [47] and WL-Kernel [35] have been tried. Similar to these
methods, our Transformer-based predictor also belongs to the training-based network performance
predictors category. Differently, we propose a novel encoding scheme by utilizing the Laplacian
matrix as the positional encoding and leveraging the multi-head self-attention mechanism from the
Transformer [41] to encode network architectures to excavate more representative features.

Training-free network performance predictors Recently, several works proposed to predict the
network performance by designing some metrics, without training a model to perform prediction.
[31] scored networks at initialization by computing correspondence between binary codes in the
whole mini-batch. TE-NAS [4] analyzed trainability and expressivity to evaluate each network
performance. Zero-Cost NAS [1] compared six proxies to predict network performance, such as
grasp [42], fisher [39, 40], synflow [38], and so on, but failed to rank architectures in NAS-Bench-101
[48]. Zen-NAS [24] measured the expressivity of a network by expected Gaussian complexity to
represent its performance. Although these training-free network performance predictors are efficient
and have achieved satisfying results on several datasets, their robustness can not be guaranteed and
the performance fluctuated dramatically among different tasks. Compared to these methods, our
training-based predictor is more time-consuming, but its performance is dramatically better.

3 Methods

In this section, we first briefly review the common paradigm for the training-based NAS predictors as
preliminary. Following the same paradigm, we then introduce the details of our Transformer-based
predictor. Furthermore, we introduce a general framework to utilize the information in evaluation
histories over a validation dataset as constraints in a gradient based optimization to advance the
predictor by a self-evolution framework.

3.1 Training-based network performance predictors

Previous works [30, 43, 46, 7] proposed to first apply an encoder fE to encode the discrete architec-
tures into continuous feature representations, which can be formulated as:

e = fE(A, κ) (1)

where A ∈ RN×N denotes the adjacency matrix and stands for the directed acyclic connections
between nodes, N denotes the number of the nodes. κ ∈ RN×F stands for the feature matrix and
represents the characteristics of the nodes, F denotes the output dimension of the embedding extractor.
For NAS predictors, the adjacency matrix A shows the topology information of an architecture and κ
usually indicates the representation of operations for nodes or edges. Among previous works, the
encoder fE can be a GCN or LSTM or simply an embedding matrix, and the embedding vector e can
be interpreted as a latent representation of a specific architecture.

After encoding the discrete architecture into a continuous representation using an encoder, it is easier
and more accurate to estimate the network accuracy ŷ by a simple regressor fR once the embedding
vector e meaningfully represents the architecture in the latent space.

ŷ = fR(e) (2)

3



2

3

1
5

0

Embedding 
Extractor

3 -1 -1 -1 0
0 2 -1 0 -1
0 0 1 -1 0
0 0 0 1 -1
0 0 0 0 0

MLP

...

...

Transformer 
Encoder ... MLP

Laplacian Matrix 

Operation Index

N  x N N  x M

N  x 1 N  x M

N  x M

Operational Representation

Positional Representation

 Fusion Feature Prediction

Po
si

tio
na

l E
nc

od
in

g
O

pe
ra

tio
na

l E
nc

od
in

g

Encoder Regressor

Figure 1: Our Transformer-based NAS predictor mainly consists of an encoder and a regressor. We
first encode the information of operations and connections into continuous representation, followed
by 3 Transformer encoder layers, and the regressor uses the output feature of Transformer encoder
layers to derive the final prediction. Color grey in features denotes integral form and other colors
denote float form. N , F and M denote the number of the nodes, the number of candidate operations
for each node and the latent dimension of the continuous feature, respectively.

Generally, we apply the MSE loss to supervise the training of the encoder and the regressor, and we
use θ to denote the parameters of both encoder fE and regressor fR. The optimal parameters θ? can
be optimized by stochastic gradient descent method:

θ? = arg min
θ

1

n

n∑
i=1

(ŷi − yi)2 (3)

where n represents the total number of the training data, yi denotes the ground truth of the i-th
sample.

3.2 Transformer-based predictor

Recently, the Transformer architecture [41] has attracted much attention and outperformed many
state-of-the-art models due to its powerful representation ability, which motivates us to borrow the
decent encoder structure to be our predictor backbone.

As shown in Fig.1, we first get the operation feature e1 ∈ RN×M by transforming the operation
vector κ with an embedding matrix E ∈ RF×M .

e1 = E(κ) (4)

To characterize the positional information, we have tried various encoding methods, and find that the
Laplacian matrix is an effective scheme and has the potential to better represent topology information
of graph structure data as it contains both the connectivity of a graph and the centrality of each node.
Thus we propose to encode the positional information by utilizing the Laplacian matrix (L ∈ RN×N ),
computed from the adjacency matrix (A ∈ RN×N ) and the degree matrix (D ∈ RN×N ):

L = D −A (5)

We did not choose the normalized Laplacian matrix, because we find it does not perform well in our
experiments.

Then we use a linear layer to map the the Laplacian matrix (L) to a continuous feature vector e2,
whose dimension is same as the embedding vector e1:

e2 = MLP(L) (6)

Finally, we get the the continuous representation from the Transformer encoder with multi-head
self-attention module:

e = ETransformer(e1 + e2) (7)

4



Model 𝑓! ! (#)
!𝑦(")

𝑒(")
𝑦"$%&evaluate at 

iteration 𝑡

Model 𝑓!(#)
𝑓'(𝑥)

train loss
𝑦

valid loss
𝑓'(𝑣) )𝑦

total loss

𝑒(#) constraint 𝑒(%) constraint … 𝑒(&) constraint

!𝑦(() !𝑦()) !𝑦(")

Model 𝑓! !"# (#)
!𝑦("*))

𝑒("*))
𝑦"$%&evaluate at 

iteration 𝑡+1

training at
iteration 𝑡

…
…

Optimization Process Optimization Status

evaluate at iteration 0

!𝑦(") 𝑦"$%&)𝑦

evaluate at iteration 1

evaluate at iteration 𝑇

…

optimize model 
parameters 𝜃

optimize validation 
label parameters'𝑦 … …

training at 
iteration 𝑡+1

training at 
iteration 𝑡+2

Figure 2: The left sub-figure illustrates the optimization process of self-evolution framework, the
blue arrow denotes the input of the validation dataset and the yellow arrow stands for the input of the
training dataset. The right sub-figure shows the status transition of the validation predictions and the
trainable validation label parameters, both are approaching to ground truth gradually. All the symbols
can be found in equations in Section 3.3.

As the continuous representation e contains richer information about the architecture (including
the operations and the connections) in the latent space, it’s easier to learn the relationship between
this representation and its corresponding accuracy. Therefore, we only choose a simple regressor,
specifically 2 Multi-Layer Perceptions (MLP), to estimate the final accuracy. The experiments
demonstrate the promising performance of our whole designs.

3.3 Self-evolution framework

Besides our predictor design that has good encoding ability for spatial topology information, we also
propose a framework that can further improve performance by fully utilizing temporal information
during training. This framework iteratively involves the evaluation information in the previous
iteration over a validation dataset into the current iteration of optimization as constraints, as shown
in Fig. 2. Our training strategy is useful and practical in several scenarios, for example, all of the
machine learning competitions. In competition, the test set that the host provided to users is exactly
the validation role in our framework. And the system feedback of each submission can gradually
improve the original training iteratively by adding more and more historical evaluations as constraints.
Specifically, our objective function can be formulated as below:

min
θ,ȳ

n∑
i=1

‖fθ(xi)− yi‖2 + α

V∑
j=1

‖fθ(vj)− ȳj‖2

s.t.
1

V

V∑
j=1

‖ŷ(t)
j − ȳj‖

2 = e(t), t = 1, 2, 3, ..., T

(8)

where, x is training data with size n. And we call v as help data or validation data with size V in this
paper. We denote the number of evaluation on validation dataset v with t. And α is the weight to
balance train loss and validation loss. We choose different value for α in different experiments. ȳj is
an auxiliary variable that serves as the proxy of ground truth accuracy in validation dataset. fθ(vj) is
current forward pass inference results of predictor fθ(x) over validation data vj , which is used in

5



back-propagation step to update model parameters θ at current iteration. ŷ(t)
j is the corresponding

previous predictions at iteration t = 1, 2, 3, ..., T .

For e(t), it should be computed in the system back-end, for example, in the competition situation,
users can only get the final evaluation score instead of the ground truth label of every validation
sample. For simplicity, we choose MSE as the evaluation metric between the historical prediction
results ŷ(t)

j and the user-unknown ground truth ytruej . In a practical situation, the metric can be more
complicated. ytruej is user-unknown, which has diverse meanings in different situations. On the one

hand, for the Machine Learning competitions, at tth submission, we submit our predictions ŷ(t)
j to

the system, and the system will compute the e(t) at the back-end privately and return only e(t) to us,
and thus we call ytruej is user-unknown. Our self-evolution system can make use of only these e(t)

for t = 1, 2, 3, ..., n to incrementally improve our predictor. On the other hand, for offline benchmark
experiments conducted in this paper, we use evaluation error on validation set V in each previous
iteration as e(t) to guide the current iteration training using our SE framework. We did know the
ground truth on this validation set V, but we did not make use of this ground truth directly in the
SE framework. We just mimic the aforementioned system of the Machine Learning competitions to
compute e(t) as in equation 9, which is used in our evolving procedure. Thus the ground truth here is
also called user-unknown.

e(t) =
1

V

V∑
j=1

‖ŷ(t)
j − y

true
j ‖2, t = 1, 2, 3, ..., T (9)

We formulate above Eq. 8 as a Minimax optimization problem using Lagrangian Multiplier:

L(θ, ȳ, λ) = min
θ,ȳ

max
λ

n∑
i=1

‖fθ(xi)− yi‖2 + α

V∑
j=1

‖fθ(vj)− ȳj‖2

+
1

T

T∑
t=1

λ(t)(
1

V

V∑
j=1

‖ŷ(t)
j − ȳj‖

2 − e(t))

(10)

At each training step, we adopt a gradient based optimization method to update the variables. And
the whole framework is summarized in algorithm 1.

θk+1 = θk − ηθ
∂L(θ, ȳk, λk)

∂θ
(11)

ȳk+1 = ȳk − ηȳ
∂L(θk, ȳ, λk)

∂ȳ
(12)

λk+1 = λk + ηλ
∂L(θk, ȳk, λ)

∂λ
(13)

In summary, the self-evolution framework can make full use of any available information (either the
competition system historical submission feedback or historical evaluation information on validation
dataset during model training) to guide the predictor training to avoid over-fitting, thus generalized
well on the test dataset. Moreover, this framework directly treats each historical validation evaluation
information as each hard constraint during training and reformulates the whole constrained training
problem as a minimax optimization problem, solved by a gradient-based optimization method
efficiently and effectively.

4 Experiments

We employ our TNASP on three different search spaces, specifically NAS-Bench-101[48], NAS-
Bench-201[14] and DARTS[26]. Moreover, we put several experimental results performed on
ImageNet [21]; a comprehensive comparison with GCN, SemiNAS [29], BONAS [36]; the imple-
mentation details; searched architecture visualizations in supplementary materials.

6



Algorithm 1 Self-evolution Optimization Algorithm
Input: Input training data x, input validation data v, input training target y, neural network f .
Output: Network parameters θ, estimated target ȳ.

1: Optimize the network parameters θ until convergence using normal training performed on the
training dataset only.

2: for t = 1 to T do
3: Compute e(t) according to Eq. (9) using predictor’s prediction results on validation dataset.
4: Add a new constraint: 1

V

∑V
j=1‖ŷ

(t)
j − ȳj‖2 = e(t) into Eq. (8)

5: while not converged do
6: Update θ according to the Eq. (11)
7: Update ȳ according to the Eq. (12)
8: Update λ according to the Eq. (13)
9: end while

10: end for
11: return Network parameters θ and estimated targets ȳ

4.1 Experiments on NAS-Bench-101

NAS-Bench-101 There are 423,624 different architectures in NAS-Bench-101[48]. Each architec-
ture is stacked by 9 repeated cells. The maximum number of nodes and edges for each cell are 7
and 9, respectively. Nodes represent different candidate operations and edges show the connection
between nodes. NAS-Bench-101[48] provides the validation accuracy and the test accuracy for three
different runs. Following Neural Predictor [43], we utilize the validation accuracy from a single run
as the training target and apply the mean test accuracy over three runs as the ground truth accuracy
for evaluating the performance of our predictions. We train all models for 300 epochs with batch size
10 using Adam optimizer and the learning rate is 1e-4 with a cosine decay strategy.

Comparison with SOTA methods Following the settings in [43, 7, 46], we choose 0.02%, 0.04%,
0.1% and 1% of the whole data as our training set to train our predictor. And we use all the data as a
test set to calculate Kendall’s Tau to evaluate the performance of different predictors. The results are
shown in Tab.1. We can see that when the training data is extremely deficient (only 0.02% and 0.04%),
our predictor achieves obviously higher Kendall’s Tau than Neural Predictor [43] and NAO [30],
which illustrates the stronger representation capability of our method in few-shot training scenarios.
When using 0.1% of the whole data as the training set, our method still outperforms theirs. When the
training data size becomes larger(1%), the performance of all predictors has been improved obviously,
due to more information gained. However, our method still beats them.

Although our TNASP has got the best results in all kinds of data splits, we demonstrate that the
performance can be further improved with our proposed self-evolution(SE) framework. We use
another 200 data as the validation set and only apply the MSE loss over these validation data as the
constraints to guide the training optimization of our predictor. As shown in Tab.1, when applied
with our SE framework, TNASP can get higher Kendall’s Tau under a variety of different data splits.
Furthermore, our framework is generic and easy to combine with other methods. When applied to
Neural Predictor [43] and NAO [30], both methods achieve higher Kendall’s Tau as shown in Tab.1,
fully demonstrating the effectiveness of our proposed self-evolution framework.

4.2 Experiments on NAS-Bench-201

NAS-Bench-201 Architectures in NAS-Bench-201 [14] are constructed with repeated cells. All
cells are composed of 4 nodes and 6 edges, and every cell inside an architecture shares the same
structure. Each edge represents an operation, and there are 5 candidate operations in total, resulting
in 15,625 different cell candidates. NAS-Bench-201 [14] provides three different results of each
architecture on three different datasets and we choose CIFAR-10 results as our targets.

Comparison with SOTA methods Similar to the experimental setup on NAS-Bench-101 [48],
we directly train predictors ranging from 0.05% to 10% of the whole dataset and also evaluate the
performance on the whole dataset. As shown in Tab.2, TNASP consistently achieves the highest

7



Training Samples 100 (0.02%) 172 (0.04%) 424 (0.1%) 424 (0.1%) 4236 (1%)
Validation Samples 200 200 200 200 200
Test Samples all all 100 all all

Neural Predictor† [43] 0.391 0.545 0.710 0.679 0.769
SPOS [16] - - 0.196? - -
FairNAS [8] - - -0.232? - -
NAO‡ [30] 0.501 0.566 0.704 0.666 0.775
ReNAS [46] - - 0.634? 0.657 0.816
RegressionNAS - - 0.430? - -
CTNAS [7] - - 0.751? - -
TNASP 0.600 0.669 0.752 0.705 0.820

Neural Predictor† + SE 0.458 0.577 0.713 0.684 0.773
NAO‡ + SE 0.564 0.624 0.732 0.680 0.787
TNASP + SE 0.613 0.671 0.754 0.722 0.820

Table 1: Comparison with other methods on NAS-Bench-101. We calculate the Kendall’s Tau by
predicting accuracy of all architectures in NAS-Bench-101. †: re-implemented by ourselves. ‡:
implemented based on their released model. ?: reported by CTNAS[7].

Training Samples 78(0.05%) 156(1%) 469(3%) 781(5%) 1563(10%)
Validation Samples 200 200 200 200 200
Test Samples all all all all all

Neural Predictor† [43] 0.343 0.413 0.584 0.634 0.646
NAO‡ [16] 0.467 0.493 0.470 0.522 0.526
TNASP 0.539 0.589 0.640 0.689 0.724

Neural Predictor† + SE 0.377 0.433 0.602 0.652 0.649
NAO‡ + SE 0.511 0.511 0.514 0.529 0.528
TNASP + SE 0.565 0.594 0.642 0.690 0.726

Table 2: Comparison with other methods on NAS-Bench-201. We calculate the Kendall’s Tau by
predicting the accuracy of all architectures in NAS-Bench-201 and comparing them with ground
truths. †: re-implemented by ourselves. ‡: implemented based on their released model.

Kendall’s Tau and has a large improvement compared to other models regardless of the amount of
training data. When applied with the self-evolution framework, TNASP+SE obtains further higher
Kendall’s Tau at each proportion of the data. Neural Predictor [43] and NAO [30] have the maximum
Kendall’s Tau improvement of 0.034 and 0.044, respectively, indicating the self-evolution framework
is effective for various predictors and different search spaces.

From the above observations, we can conclude that when the number of validation samples is greater
than training samples, the predictor can get a larger performance improvement by using the SE-
framework. On the contrary, the predictor only got little performance gains when the number of
training samples is much larger than validation samples. This phenomenon happens not only on our
Transformer-based predictor but also on Neural Predictor and NAO.

4.3 Experiments on DARTS

DARTS Architectures in DARTS search space are built by normal cells and reductions cells. Each
cell consists of 7 nodes and 14 edges. Every edge is a selection from the 7 candidate operations
(we omit the Zero operation in our experiments). Following CTNAS [7], we first train a supernet
on CIFAR-10 with a uniform sampling strategy as in [16] for 120 epochs, to get proxy labels for
architectures. After the supernet training, we randomly sample 1000 architectures in this search space
and query their test accuracy by inheriting the supernet weights to construct the architecture-accuracy
pair. Finally, we utilize the generated data pairs to train our TNASP model and apply it in an
evolutionary algorithm [10] to search for good architectures in the search space.

8



Architecture Test Accuracy(%) #Params.(M) Search Cost(G·D)
DenseNet-BC [19] 96.54 25.6 -
PyramidNet-BC [17] 96.69 26.0 -

Random search baseline 96.71 ± 0.15 3.2 -
NASNet-A [53] + cutout 97.35 3.3 1,800
NASNet-B [53] + cutout 96.27 2.6 1,800
NASNet-C [53] + cutout 96.41 3.1 1,800
AmoebaNet-A [34] + cutout 96.66 ± 0.06 3.2 3,150
SNAS [45] 97.02 2.9 1.5
ENAS [33] + cutout 97.11 4.6 0.5
DARTS [26] + cutout 97.24 ± 0.09 3.4 4

NAONet [30] 97.02 28.6 200
PNAS [25] + cutout 97.17 ± 0.07 3.2 -
GHN [50] + cutout 97.16 ± 0.07 5.7 0.8
D-VAE [51] 94.80 - -
NGE [22] + cutout 97.40 - 0.1
BONAS-A [36] + cutout 97.31 3.45 2.5
CTNAS [7] + cutout 97.41 ± 0.04 3.6 0.3

TNASP + cutout(avg) 97.43 ± 0.04 3.6 ± 0.1 0.3
TNASP + cutout(best) 97.48 3.7 0.3

Table 3: Comparison with other methods in DARTS [26] search space on CIFAR-10. "cutout":
evaluate the searched cells using cutout [12] data augmentation. "G·D": GPU days.

Comparison with SOTA methods To avoid randomness, we select the top-3 searched architectures
to re-train and report the average metrics in the Tab.3. We can notice that our searched cells achieve
higher average test accuracy than all the other methods, and the best searched cells get the highest
test accuracy 97.48, which implies that our predictor learns the effective correspondence between
architectures and accuracy. We visualize the best searched architecture in Fig.3 and append the other
searched cells in our supplementary material. Noticeably, several convolution operations appear
in the reduction cell and the normal cell contains max_pool_3 × 3, which rarely appears in other
methods searched normal cells. Our searched cells have a novel structure and achieve higher test
accuracy, showing that our method obtains a better local minimum than other methods. It’s interesting
to explore the essential differences between the cells of different methods in the future.

c_{k-2} 0
sep_conv_5x5

1
sep_conv_3x3

2dil_conv_3x3

3
max_pool_3x3

c_{k-1}

sep_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_3x3

c_{k}

(a) Normal Cell

c_{k-2}

0

sep_conv_5x5 1

sep_conv_3x3

2

avg_pool_3x3

c_{k-1}

sep_conv_5x5

max_pool_3x3

3

sep_conv_3x3

dil_conv_5x5

c_{k}
dil_conv_5x5

(b) Reduction Cell

Figure 3: Our best searched normal cell and reduction cell.

4.4 Ablation studies

Different positional encoding strategies We compare different positional encoding schemes in
Tab.4 on NAS-Bench-101 [48]. Adjacency option gets the highest score when training data size is
100, Laplacian option obtains highest Kendall’s Tau in all other cases. Thus we choose the Laplacian
matrix as the positional encoding in our experiments. Interestingly, the Normalized Laplacian option’s
performance is worse than the Laplacian option.

9



Training Samples 100 (0.02%) 172 (0.04%) 424 (0.1%) 424 (0.1%) 4236 (1%)
Test Samples all all 100 all all

Random 0.374 0.366 0.469 0.362 0.365
WL-PE 0.439 0.483 0.509 0.519 0.628
Normalized Adjacency 0.549 0.645 0.685 0.671 0.786
Adjacency 0.620 0.643 0.725 0.693 0.802
Normalized Laplacian 0.592 0.642 0.740 0.697 0.813
Laplacian Eigen-vector 0.414 0.421 0.614 0.524 0.656
Laplacian 0.600 0.669 0.752 0.705 0.820

Table 4: Comparison with different positional encoding strategies. We calculate the Kendall’s Tau by
predicting accuracy of all architectures in NAS-Bench-101 and comparing them with ground truths.

1 5 10 20 30 40 50
Evaluation numbers

0.600

0.605

0.610

0.615

K
en

da
ll'

s 
Ta

u

Figure 4: Kendall’s Tau versus the num-
ber of validation evaluations.

Different evaluation numbers We investigate the rela-
tionship between the number of evaluations performed
on the validation dataset and the final Kendall’s Tau. As
shown in Fig.4, when the number of evaluations increases
from 1 to 10, we can see a noticeable increase of Kendall’s
Tau. However, when the number of evaluations contin-
ues to grow, the increase of Kendall’s Tau seems to be
trivial but the training time increases a lot. Hence, we
choose to evaluate on validation dataset 10 times in our
self-evolution framework for all experiments.

Ranking results over only good architectures Although there are a large number of architectures
in the search space, we usually only care about the top-performing ones. Therefore, we compared our
method with the other two methods on NAS-Bench-101 [48] using Kendall’s Tau as the metric, over
different top portions of good architectures. Specifically, we only evaluate the good architectures
whose ground truth accuracies rank in the top 10%, 20%, and 30%. The results are shown in Fig.5.
When ranking over the top 10% architectures, NAO [30] and our TNASP get similar results and are
better than Neural Predictor [43]. When ranking over more architectures i.e. top 20% and top 30%,
TNASP shows a steady and better performance compared with NAO [30] and Neural Predictor [43].

100 172 424 4236
Training Samples

0.2

0.3

0.4

0.5

0.6

K
en

da
ll'

s 
Ta

u

TNASP
NAO
Neural Predictor

(a) Top 10% architectures

100 172 424 4236
Training Samples

0.2

0.3

0.4

0.5

0.6

K
en

da
ll'

s 
Ta

u

TNASP
NAO
Neural Predictor

(b) Top 20% architectures

100 172 424 4236
Training Samples

0.2

0.3

0.4

0.5

0.6

K
en

da
ll'

s 
Ta

u

TNASP
NAO
Neural Predictor

(c) Top 30% architectures

Figure 5: Ranking results over different top portions of good architectures.

5 Conclusion

In this paper, we propose a Transformer-based NAS performance predictor and utilize the linear
transformation of the Laplacian matrix as the positional encoding. Our predictor has better encoding
ability for spatial topology information, leading to state-of-the-art performance on several benchmarks.
Moreover, we devise a general enough self-evolution framework to further improve our NAS predictor
by fully utilizing the temporal information like historical evaluations during training. Unfortunately,
we didn’t explore how to involve complicated metrics, for example, non-differentiable metrics, as
constraints in our framework. In the future, we will further explore how to choose more reasonable
and effective constraints to improve the NAS predictors stably and efficiently.

10



6 Acknowledgements

This work is supported in part by the National Key R&D Program of China under Grant No.
2018AAA0102701, and in part by the National Natural Science Foundation of China under Grant No.
62176250. Moreover, we would like to thank Yu Hu for careful guidance; Longxing Yang, Peng Yao,
Yuhang Jiao, and Wentao Zhu for insightful discussions.

References
[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D Lane. Zero-cost

proxies for lightweight nas. In ICLR, 2021.

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network
architectures using reinforcement learning. In ICLR, 2017.

[3] Wuyang Chen, Xinyu Gong, Xianming Liu, Qian Zhang, Yuan Li, and Zhangyang Wang.
Fasterseg: Searching for faster real-time semantic segmentation. In ICLR, 2020.

[4] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in
four gpu hours: A theoretically inspired perspective. In ICLR, 2021.

[5] Xiangning Chen et al. Stabilizing differentiable architecture search via perturbation-based
regularization. In ICML, 2020.

[6] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. In ICCV, 2019.

[7] Yaofo Chen, Yong Guo, Qi Chen, Minli Li, Yaowei Wang, Wei Zeng, and Mingkui Tan.
Contrastive neural architecture search with neural architecture comparators. In CVPR, 2021.

[8] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness
of weight sharing neural architecture search. In ICCV, 2021.

[9] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair DARTS: eliminating unfair
advantages in differentiable architecture search. In ECCV, 2020.

[10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,
6(2):182–197, 2002.

[11] Boyang Deng, Junjie Yan, and Dahua Lin. Peephole: Predicting network performance before
training. arXiv preprint arXiv:1712.03351, 2017.

[12] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[13] Shaojin Ding, Tianlong Chen, Xinyu Gong, Weiwei Zha, and Zhangyang Wang. Autospeech:
Neural architecture search for speaker recognition. In InterSpeech, 2020.

[14] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In ICLR, 2020.

[15] Jiemin Fang, Yuzhu Sun, Kangjian Peng, Qian Zhang, Yuan Li, Wenyu Liu, and Xinggang
Wang. Fast neural network adaptation via parameter remapping and architecture search. In
ICLR, 2020.

[16] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In ECCV, 2020.

[17] Dongyoon Han et al. Deep pyramidal residual networks. In ICCV, 2017.

[18] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3.
In ICCV, 2019.

11



[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

[20] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[21] Alex Krizhevsky et al. Imagenet classification with deep convolutional neural networks. Com-
munications of the ACM, 60(6):84–90, 2017.

[22] Wei Li et al. Neural graph embedding for neural architecture search. In AAAI, 2021.

[23] Zhihang Li, Teng Xi, Jiankang Deng, Gang Zhang, Shengzhao Wen, and Ran He. Gp-nas:
Gaussian process based neural architecture search. In CVPR, 2020.

[24] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong
Jin. Zen-nas: A zero-shot nas for high-performance deep image recognition. In ICCV, 2021.

[25] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
ECCV, 2018.

[26] Hanxiao Liu et al. DARTS: Differentiable architecture search. In ICLR, 2019.

[27] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman,
and Wolfgang Banzhaf. Nsga-net: neural architecture search using multi-objective genetic
algorithm. In GECCO, 2019.

[28] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture
search with gbdt. arXiv preprint arXiv:2007.04785, 2020.

[29] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised
neural architecture search. In NeurIPS, 2020.

[30] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimiza-
tion. In NeurIPS, 2018.

[31] Joseph Mellor, Jack Turner, Amos J. Storkey, and Elliot J. Crowley. Neural architecture search
without training. In ICML, 2021.

[32] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A generic graph-based
neural architecture encoding scheme for predictor-based nas. In ECCV, 2020.

[33] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. In ICML, 2018.

[34] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for
image classifier architecture search. In AAAI, 2019.

[35] Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architec-
ture search via bayesian optimisation with weisfeiler-lehman kernels. In ICLR, 2021.

[36] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T Kwok, and Tong Zhang. Bridging the gap
between sample-based and one-shot neural architecture search with bonas. In NeurIPS, 2020.

[37] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In ICML, 2019.

[38] Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neural
networks without any data by iteratively conserving synaptic flow. In NeurIPS, 2020.

[39] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction
with dense networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

[40] Jack Turner, Elliot J Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray. Blockswap:
Fisher-guided block substitution for network compression on a budget. In ICLR, 2020.

12



[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

[42] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In ICLR, 2020.

[43] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Helen Li, Gabriel Bender, and Pieter-Jan Kindermans.
Neural predictor for neural architecture search. In ECCV, 2020.

[44] Colin White et al. Bananas: Bayesian optimization with neural architectures for neural architec-
ture search. In AAAI, 2021.

[45] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: Stochastic neural architecture
search. In ICLR, 2019.

[46] Yixing Xu, Yunhe Wang, Kai Han, Shangling Jui, Chunjing Xu, Qi Tian, and Chang Xu. Renas:
Relativistic evaluation of neural architecture search. In CVPR, 2021.

[47] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. Does unsupervised architecture
representation learning help neural architecture search? In NeurIPS, 2020.

[48] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter.
Nas-bench-101: Towards reproducible neural architecture search. In ICML, 2019.

[49] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank
Hutter. Understanding and robustifying differentiable architecture search. In ICLR, 2020.

[50] Chris Zhang et al. Graph hypernetworks for neural architecture search. In ICLR, 2019.

[51] Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational
autoencoder for directed acyclic graphs. In NeurIPS, 2019.

[52] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR,
2017.

[53] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In CVPR, 2018.

13


	Introduction
	Related Work
	Methods
	Training-based network performance predictors
	Transformer-based predictor
	Self-evolution framework

	Experiments
	Experiments on NAS-Bench-101
	Experiments on NAS-Bench-201
	Experiments on DARTS
	Ablation studies

	Conclusion
	Acknowledgements

