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ABSTRACT

Transformer models have obtained remarkable accomplishments in various NLP
tasks. However, these models have efficiency issues on long sequences, as the
complexity of their self-attention module scales quadratically with the sequence
length. To remedy the limitation, we present Memformer, a novel language model
that utilizes a single unified memory to encode and retrieve past information. It
includes a new optimization scheme, Memory Replay Back-Propagation, which
promotes long-range back-propagation through time with a significantly reduced
memory requirement. Memformer achieves O(n) time complexity and O(1)
space complexity in processing long sequences, meaning that the model can han-
dle an infinite length sequence during inference. Our model is also compatible
with other self-supervised tasks to further improve the performance on language
modeling. Experimental results show that Memformer outperforms the previ-
ous long-range sequence models on WikiText-103, including Transformer-XL and
Compressive Transformer.

1 INTRODUCTION

Memory has a fundamental role in human cognition. Humans perceive and encode sensory infor-
mation into a compressed representation in neurons, and later our brains can effectively retrieve past
information to accomplish various tasks. The formation of memories involves complex cognitive
processes. Modeling and studying the behavior of human memory is still a challenging research
problem in many academic areas.

Many researchers have attempted to incorporate memory systems in artificial neural networks. Early
works like recurrent neural networks (RNN) (Rumelhart et al., 1988), including LSTM (Hochreiter
& Schmidhuber, 1997) model temporal sequences with their internal compressed state vector as
memory. Although RNNs are theoretically Turing-complete, they are limited in preserving the long-
term information due to the memory bottleneck. To alleviate the limitation, more powerful memory
network architectures such as Neural Turing Machine (NTM) (Graves et al., 2014), Differential
Neural Computer (DNC) (Graves et al., 2016) have been proposed by leveraging a large external
memory. However, due to their complex memory addressing mechanism, they are not widely used
in NLP.

More recently, Vaswani et al. (2017) proposes Transformer by ditching the use of memory and
recurrence. Instead, it maintains all O(N2) dependencies in the sequence with self-attention (Bah-
danau et al., 2015). Transformer and its followers have achieved great success in various NLP
tasks. Nevertheless, the quadratic complexity can be extremely costly when the input sequence is
long. Some works address the limitations of self-attention, including Reformer, Sparse Transformer,
Longformer, Linformer, etc (Child et al., 2019; Kitaev et al., 2020; Wang et al., 2020). They suc-
cessfully reduce the complexity of self-attention and can process longer sequences. However, the
space cost still scales with sequence length, which cannot be fully eliminated without memory and
recurrence.

Transformer-XL (Dai et al., 2019) re-introduces the concept of memory and recurrence. It caches
each layer’s hidden states of self-attention into a fixed size queue and re-uses them in the later atten-
tion computation. However, the memory as raw hidden states cannot effectively compress high-level
information. Transformer-XL in practice needs a huge memory size to perform well. Compressive
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Transformer (Rae et al., 2020) improves upon Transformer-XL by further compressing its mem-
ories into fewer vectors via a compression network. However, as mentioned in the papers, both
Transformer-XL and Compressive Transformer still have a theoretical maximum temporal range
due to the uni-directional self-attention constraint.

In this work, we propose Memformer, which includes a more efficient memory system with a Trans-
former encoder-decoder architecture. The resulting model has a theoretically unlimited temporal
range of memorization. We also improve the relative positional encoding in Transformer-XL with
a simplified version. As the traditional back-propagation through time (BPTT) has an unafford-
able memory cost for our model, we introduce a new optimization scheme, memory replay back-
propagation (MRBP), to significantly reduce the memory cost of training recurrent neural networks
with large memory. We show that Memformer is compatible with different self-supervised tasks and
can further improve its performance on language modeling.

Our main contributions can be summarized as follows: (1) We introduce a new optimization scheme
for training recurrent neural networks with large memory and long temporal range. (2) We pro-
pose Memformer, a Transformer-based model, which outperforms the previous Transformer-XL
and Compressive Transformer on WikiText-103 language modeling. (3) We show that Memformer
is compatible with a wide range of self-supervised tasks other than autoregressive language model-
ing.

2 METHODS

2.1 SIMPLIFIED RELATIVE POSITIONAL ENCODING

The standard attention mechanism involves the dot product between the query vector qi and the key
vector kj , where Wq,Wk,Wv are the projection matrices to produce the query, key, and value.
TransformerXL proposes a new type of relative positional encoding method. The attention compu-
tation is decomposed into four parts: (a) content-based addressing, (b) content dependent positional
bias, (c) global content bias, and (d) global positional bias. The relative positional embedding Ri−j
provides the positional information between every pair of xi and xj . The equation is defined below.
u and v are trainable parameters.

Ai,j = E>xi
W>

q WrExj︸ ︷︷ ︸
(a)

+E>xi
W>

q WrRi−j︸ ︷︷ ︸
(b)

+u>WkExj︸ ︷︷ ︸
(c)

+ v>WrRi−j︸ ︷︷ ︸
(d)

. (1)

However, we observe that (c) and (d) can be simplified by introducing a bias term to the original
query and key projection. Thus, we re-formalize the self-attention, as shown in Eq. 3. The product
of bq and Kx is equivalent to the term (c) global content bias. For the term (d), since v, Wr, and
Ri−j are all trainable parameters, it can be simplified into the product between bq and bk, which has a
similar effect to the global attention bias. Different from Transformer-XL that only injects positional
information in the attention computation, our attention mechanism shown in Eq. 4 attends over the
positional information and accumulate the results to have more robust output representations.

Qx = WqEx + bq; Kx = WkEx + bk; Vx = WvEx + bv (2)

Ai,j = Q>xi
Kxj

+Q>xi
Ri−j (3)

Hx =
∑
j

Ai,j (Vxj
+Ri−j) (4)

2.2 MEMFORMER

This section explains the details of Memformer. We first talk about the language model background
and a new way of formulating language generation with text continuation. Then we describe an
instance of such formulation, which is our proposed Memformer model. After that, we introduce the
multi-task training setting. Finally, we describe the newly proposed optimization scheme, memory
reply back-propagation to tackle the memory cost problem.
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(a) Language Model (b) Language model with memory (c) Memformer Enc-Dec

Figure 1: Illustrations of different language model architectures. (a) is the standard Transformer
decoder. (b) is a language model with memory. The decoder takesMt and outputs the next timestep’s
memory Mt+1 at the end of segment. (c) is a Transformer encoder-decoder model. The encoder is
modified to read and write memory.

2.2.1 BACKGROUND: STANDARD LANGUAGE MODEL

To understand Memformer better, we first study the standard language model. Given a document
of N tokens x = (x1, x2, . . . , xN ), an standard language model learns the joint probability of the
document by taking the product of each token’s probability conditioned to the previous tokens,
which is defined as P (x) =

∏
t P (xt|x1:t).

Figure 1a and 1b are the standard language models. They autoregressively predict the next token by
feeding the previous generated tokens into the model. An extension of Figure 1a is to incorporate
relative positional encoding and cache the past hidden states. Then this model would be equivalent
to Transformer-XL.

Figure 1b is an assumed language model with memory. Self-attention module now attends not only
to its token inputs but also to the memory Mt at time t. After all the tokens in the segment are
processed, the model summarizes the computed hidden states in the segment and produce the next
timestep’s memory Mt+1. Each layer has its own individual memory representation. One limitation
for this model is that the read and write operations on memory may not have enough capacity to
retain important information due to the uni-directional attention.

2.2.2 ENCODER-DECODER LANGUAGE MODEL

To address this capacity issue of uni-directional attention, we introduce a more powerful architecture
shown in Figure 1c, where we have an encoder-decoder and a memory system. If a document is
split into T segments of length L, for each segment st, we define st = [xt,1, xt,2, . . . xt,L]. The
encoder’s role is to encode the segment st and inject the information into the memory Mt, while it
also retrieves past information from the previous timestep’s memory Mt−1. The final output of the
encoder will be fed into the decoder’s cross attention layers to predict the token probabilities of the
next timestep’s segment st+1 as standard language modeling. The definition is as below:

Mt = Encoder(st,Mt−1) (5)

P (st) =
∏

n=1:L

PDecoder(xt,n |xt,<n,Mt−1) (6)

P (x) =
∏

t=1:T

PModel(st|s<t) (7)

At each timestep, the process can be deemed as a text continuation task. Given a text segment as
the input, the model needs to continue that segment by generating the next text segment. Since the
memory stores all the past information, we can autoregressively generate all the text segments in a
document. In this fashion, the model can behave as a language model.
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(a) Memformer Encoder-Decoder

(b) Memory Cross Attention

(c) Memory Slot Attention

Figure 2: Illustration of Memformer Encoder-Decoder and its sub-modules. (a) shows the over-
all architecture of Memformer Encoder-Decoder. (b) demonstrates the memory cross attention for
reading from memory. (c) is the memory slot attention module to write the next timestep’s memory.

2.2.3 MEMFORMER ENCODER-DECODER

To implement the encoder-decoder language model, we propose Memformer Encoder-Decoder. The
model incorporates a Transformer encoder-decoder and a memory system. The encoder is equipped
with two new modules: Memory Cross Attention (Figure 2b) and Memory Slot Attention (Figure 2c)
to read from or write to the memory respectively. The encoder is fully responsible for encoding and
retrieving past information via memory. The decoder then takes the last layer’s outputs from the
encoder and feeds them into the cross attention module similar to the standard Transformer. For the
text continuation task, we let the encoder take the input of the current timestep’s text segment, and
let the decoder generate the next timestep’s segment tokens. Figure 2a shows the detailed structure.

Figure 2b demonstrates how Memory Cross Attention module extracts information from the memory
Mt with the current segment’s tokens X . Each input token’s hidden state is projected into queries,
while the memory hidden states are projected into key-value pairs. Then the input hidden states will
attend over the projected memory key-value pairs to produce the final outputs. This module can
effectively retrieve past information from memory Mt given the current text segment.

Memory Slot Attention in Figure 2c produces the next timestep’s memory Mt+1. This module
takes the inputs of the previous timestep’s memory Mt and the encoder’s final hidden states. It then
projects the memory into queries, keys, and values, while the encoder outputs are into keys and
values. Since each memory slot should not be interfering with other memory slots, we design a
special type of sparse attention pattern (details shown in Figure 2c). Thus, each slot in the memory
can only attend over itself and the encoder outputs. This is to preserve the information in each slot
longer over the time horizon. For example, if one slot only attends itself, then the information in
that slot will not change in the next timestep.

2.3 MULTI-TASK SELF-SUPERVISED LEARNING

Unlike existing models built either for denoising objectives or language modeling, Memformer can
accomplish both types of tasks. This flexibility helps the model learn better representations of the
document and strengthen the memory of past information. To avoid conflicts of different tasks, we
use separate special tokens for each task. In this work, we only experiment with three self-supervised
tasks. We believe that our model is flexible with many other self-supervised tasks to further improve
performance. We randomly sample the following three tasks with a probability [0.6, 0.3, 0.1] during
training.

Text Continuation This is the primary task, as our goal is for language modeling. Given the cur-
rent timestep’s text segment, the model needs to generate the tokens in the next timestep’s segment.
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Text Infilling This task is inspired by BART (Lewis et al., 2020). We mask some text spans in
a document. The span length is drawn from a Poisson distribution (λ = 3.5). The span is replaced
with a “[mask]” token. The model needs to predict these masked tokens.

Text Recall Reverse of the text continuation task, Text Recall needs to predict the previous text
segment given the current timestep’s segment. This task aims to directly help the model to better
preserve the past information.

2.4 MEMORY REPLAY BACK-PROPAGATION

Memformer relies on the explicit memory to encode long-range document. At inference time, there
is no additional memory cost because of the single unified memory design. Nevertheless, during
training, such design would require back-propagation through time (BPTT) over a long range of
timesteps so that the memory writer network can potentially learn to retain long-term information.
The problem with BPTT is that it unrolls the entire computational graph during the forward pass
and stores all the intermediate activations. This process would lead to impractically huge memory
consumption for Memformer, which causes training almost impossible.

A favorable existing approach to eliminate this problem is gradient checkpointing (Chen et al.,
2016). The algorithm can significantly reduce the memory cost of a large computational graph.
However, the standard gradient checkpointing still needs to compute all the nodes in the compu-
tational graph and store unnecessary hidden states during the forward pass. We propose Memory
Replay Back-Propagation (MRBP), a more efficient variant of gradient checkpointing, by replaying
the memory at each timestep to accomplish gradient back-propagation over long unrolls.

MRBP is designed specifically for recurrent neural networks. The algorithm takes an input with
a rollout [x0, x1, . . . , xT ] with length T and the previous memory M0. MRBP only traverses the
critical path in the computational graph during the forward pass. It then obtains each timestep’s
memory and stores those memories in the replay buffer. During the backward pass, MRBP back-
tracks the memories in the replay buffer from time T to 0 and recompute the partial computational
graph for the local timestep. It continues the computation of the remaining graph with the output
Ot to get the loss for back-propagation. There are two directions of gradients for the model. One
direction of gradients comes from the local back-propagation of loss, while the other part comes
from the back-propagation of the next memory’s Jacobin ∇Mt+1. The full algorithm is described
in Algorithm 14

Algorithm 1: Memory Replay Back-Propagation
Input: rollout=[x0, x1, . . . , xT ]: a list containing each timestep t’s input xt

prevMemory: memory from the previous rollout
. initialize a list to store all the memories computed

1 replayBuffer = []
2 replayBuffer.append(M0) ; . previous memory
. forward pass

3 for t = 0, 1, 2, . . . , T − 1 do
4 Mt+1, = Model(xt, Mt) ; . No gradient
5 replayBuffer.append(Mt+1)
6 end
. backward pass

7 ∇Mt+1 = 0
8 for t = T, T − 1, . . . , 1, 0 do
9 Mt+1, Ot = Model(xt, Mt) ; . Recompute

10 loss = floss(Ot)
11 loss.backward()
12 Mt+1.backward(∇Mt+1) ; . Computes ∇Mt

13 end
14 save MT for next rollout’s update
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2.5 TEMPORAL RANGE ANALYSIS

We analyze the theoretical maximum temporal range here. Transformer-XL and Compressive Trans-
former store the past hidden states in a FIFO queue as their memories. However, they have a the-
oretical limitation for the maximum temporal range when modeling a sequence. Transformer-XL
has a maximum temporal range of Nm × L, where Nm is the memory size, and L is the number of
layers. Compressive Transformer extends the temporal range to L× (Nm + c×Ncm, by compress-
ing the memories in Transformer-XL into the new compressed memories with a size of Ncm and a
compression ratio c. If a sequence is longer than the maximum temporal range, the model will lose
information when the stored memories are discarded. In contrast, Memformer has a single unified
memory system, which theoretically has a maximum temporal range of infinity.

3 EXPERIMENTS

3.1 SETTINGS

We conduct all experiments on WikiText-103 (Merity et al., 2017), which is a popular long-range
language modeling benchmark. It contains 28K articles with an average length of 3.6K tokens per
article. We adopt byte pair encoding (BPE) (Sennrich et al., 2016) to avoid unknown tokens. The
original Transformer-XL and Compressive Transformer set the attention length to 1,600, close to
the average length per article. We argue that such large attention length is against the purpose of
using memory to compress information. Therefore, to better demonstrate memory efficiency, we set
the input size to 64, and restrict the memory size under 128.

Besides, we make the following changes to the baselines. We have two Transformer-XL model:
base and large. Transformer-XL base has 12 layers. Transformer-XL large has 16 layers. Since
Compressive Transformer does not have code released, we re-implement the model following the
paper. Our Compressive Transformer has 12 layers. The compression ratio is set to 4. For a fair
comparison, Memformer Encoder-Decoder has a 4-layer encoder and an 8-layer decoder. For all
baselines and our models, the hidden size is set to 512, the feed-forward hidden size to 2048, the
number of heads to 8, and the head size to 64. We disable dropout as it causes high variance in the
final score due to randomness, making fair comparisons impossible. We use the simplified relative
positional encoding for all models as it generally performs better under our setting.

3.2 MAIN RESULTS

Model Memory Size #Params Speed (it/s) Perplexity ↓
Transformer-XL base 32 66.69M 1,136 23.52
Transformer-XL base 64 66.69M 928 22.44
Transformer-XL base 128 66.69M 805 21.49

Transformer-XL large 64 80.35M 745 21.95
Transformer-XL large 128 80.35M 640 21.25

Compressive Transformer 16(16) 79.29M 746 22.79
Compressive Transformer 32(32) 79.29M 702 21.98

Memformer Encoder-Decoder 32 76.21M 994 21.26
+ Text Infilling 32 76.21M 994 21.19
+ Text Recall 32 76.21M 994 21.53
+ All Multi-task 32 76.21M 994 21.11

Table 1: Results on WikiText-103. “16(16)” means that the XL memory size is 16 and the com-
pressed memory size is 16.

Table 1 shows the results on WikiText-103. We report the number of parameters, the number of
items per second as the training speed, and perplexity for a comprehensive comparison. Memformer
Encoder-Decoder achieves the best perplexity score with a efficient computation and memory trade-
off.
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When increasing Transformer-XL’s memory size, we observe that the perplexity drops as expected,
because the attention length is also increased. Note that the speed decreases with a larger mem-
ory size. After we have enlarged the memory size of Transformer-XL to 128, the perplexity is
still worse than Memformer Encoder-Decoder, and the speed is much slower. Since Memformer
Encoder-Decoder has slightly more parameters, we compare our model with Transformer-XL large,
which has 16 layers. In Transformer-XL, the number of layers is important for performance, as the
maximum temporal range scales with the number of layers. Transformer-XL large indeed obtains
better perplexity scores than Transformer XL-base models. However, our model still achieves better
perplexity. Not to mention that Memformer Encoder-Decoder is 55% faster than Transformer-XL
large. This suggests that Memformer Encoder-Decoder is more efficient in modeling the document
than Transformer-XL.

Compressive Transformer is another baseline we report in the table. It introduces an extra com-
pression network to compress the memory hidden states in Transformer-XL. For a fair comparison,
Compressive Transformer has half of the memory size for the compressed memory. With the same
memory budget, Compressive Transformer performs better than Transformer-XL. However, the ex-
tra compression network requires more number of parameters and computation. We actually find
that Transformer-XL is more efficient in terms of the number of parameters and speed under our
setting.

(a) Multi-task learning. (b) Effects of different time horizons (c) Effects of different memory sizes

Figure 3: Effects of different configurations. (a) shows how multi-task learning helps. (b) shows the
effects of changing time horizon. (c) shows the effects of changing memory size.

3.3 ABLATION STUDY

We conduct ablation studies to explore how each component contributes to Memformer’s good per-
formance, by analyzing the performance improvement of the simplified relative positional encoding
and memory replay back-propagation

3.4 MODEL HYPER-PARAMETERS

Effects of Multi-Task Training When we combine the three tasks text continuation, text infilling
and text recall, the model yields the best performance. We find that when applying only text con-
tinuation and text recall, the performance drops. This drop might be because the model over-fits on
the text recall task, which hurts the performance of text continuation task. Overall, the performance
improvement of multi-task learning is marginal. However, in Figure 3a, we observe that models
trained with multi-task learning have a smoother validation curve and is less prone to over-fitting.
This indicates that with multi-task learning, the model is more robust and potentially learns better
feature representations.

Effects of Time Horizon We test how the time horizon for back-propagation affects the perfor-
mance. The results are shown in Figure 3b. We vary the back-propagation time horizon from 1 to
32. When the time horizon is set to 1, back-propagation cannot pass gradients through memory to
the previous timestep. Thus, we observe the performance is the worst when the time horizon is 1. As
we increase the time horizon, the model achieves better perplexity scores. When the time horizon is
increased to 32, we observe the marginal improvement on perplexity is almost gone.

Effects of Memory Size A large memory size ideally helps to store more information. From
Table 3c, we can see a huge improvement when increasing the memory size from 1 to 8. However,
when we further increase the memory size, the perplexity stops decreasing. In future work, we will
study how to gain more improvement with larger memory sizes.
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3.4.1 SIMPLIFIED RELATIVE POSITIONAL ENCODING

To test the performance of our simplified relative positional encoding (RPE), we only replace the
self-attention layers in the original Transformer with the new module without changing other parts.
The results in Table 2 show that our proposed simplified relative positional encoding has much better
performance than the original Transformer-XL’s RPE in all metrics.

Method Time(ms) GFLOPS Parameters Perplexity

XL RPE 1.27 68.99 1.32M 23.32
Ours 0.88 68.72 1.05M 21.74

Table 2: Comparison for relative positional encoding.
The experiments are conducted on Transformer-XL.

Method GPU Memory (MB) Speed (relative)

BPTT 16,177 x1.00
GC 9,885 x0.48
MRBP 7,229 x0.90

Table 3: Memory Replay Back-
Propagation performance comparison.

3.4.2 MEMORY REPLAY BACK-PROPAGATION

To test MRBP’s effectiveness, we compare against the standard back-propagation through time
(BPTT) and the standard gradient checkpointing (GC) algorithm. We use Memformer Decoder
with 12 layers, 8 heads, 512 hidden size, and 32 memory size for all the experiments here. The time
horizon for each truncated back-propagation update is set to 4.

The back-propagation through time (BPTT) approach is the fastest because it does not need re-
computation However, it costs the most amount of memory due to unrolling the entire computational
graph. While gradient checkpointing can save huge amount of memory, it is much slower than the
other two methods (x0.48). In contrast, our MRBP saves more GPU memory with only slight speed
degeneration (x0.90). When further increasing the time horizon to 16, we see that the GPU memory
only increases 62 MB, suggesting the sub-linear memory growth with the time horizon.

4 RELATED WORK

Optimizing the attention pattern of Transformer is one direction to process long sequences. Child
et al. (2019) first proposes Sparse Transformer to reduce the computation complexity O(N) to with
a sparse attention pattern for sequence modeling. Longformer (Beltagy et al., 2020) and Big Bird
(Zaheer et al., 2020) follow Sparse Transformer and explore the effectiveness of different sparsity
patterns. Reformer (Kitaev et al., 2020) applies a multi-round locality-sensitive hashing (LSH) to
reduce the computation complexity to O(N logN). Linformer (Wang et al., 2020) further reduces
the complexity to O(N) by observing that self-attention is low-rank and can be approximated with
linear attention. However, the memory cost of these approaches still scales with the sequence length.

Meanwhile, applying recurrence to Transformers is an orthogonal direction comparing to the ef-
ficient attention approaches. Recurrence enables the model to have constant memory complexity
O(1) during inference. There are mainly two works exploring this direction. TransformerXL (Dai
et al., 2019) uses relative positional encoding and consists of a segment-level recurrence mechanism
to encode beyond a fixed-length context. Compressive Transformer (Rae et al., 2020) extends from
Transformer XL by further compressing the previous segment information to achieve longer context.
However, they have a theoretical maximum temporal range of context related to the memory size
and the number of layers. In practice, TransformerXL and Compressive Transformer needs huge
memory size to achieve good performance and are inefficient in their memory representations.

5 CONCLUSION

In this work, we present Memformer, which takes advantage of a memory system to efficiently
process long sequences with a linear time complexity and constant memory complexity. Along with
Memformer, we introduce a new optimization scheme, Memory Replay Back-propagation, which
enables training recurrent neural networks with large memory. Our model achieves strong perplexity
results on WikiText-103. It is also flexible to a wide range of self-supervised learning tasks. With the
infinite temporal range capability, we believe Memformer can spark interesting works in domains
such as lifelong learning and memory-augmented meta-learning.
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