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Abstract

How sensitive should machine learning models be to input changes? We tackle the
question of model smoothness and show that it is a useful inductive bias which
aids generalization, adversarial robustness, generative modeling and reinforcement
learning. We explore current methods of imposing smoothness constraints and
observe they lack the flexibility to adapt to new tasks, they don’t account for data
modalities, they interact with losses, architectures and optimization in ways not yet
fully understood. We conclude that new advances in the field are hinging on finding
ways to incorporate data, tasks and learning into our definitions of smoothness.

1 Introduction

How certain should a classifier be when it is presented with out of distribution data? How much mass
should a generative model assign around a datapoint? How much should an agent’s behavior change
when its environment changes slightly? Answering these questions shows the need to quantify the
manner in which the output of a function varies with changes in its input, a quantity we will intuitively
call the smoothness of the model. Today, when learning a smooth function using neural networks the
machine learning practitioner is bound to choose between regularization techniques whose effect on
smoothness is poorly understood and rigid techniques that do not account for the data or task at hand.
Despite these shortcomings, imposing smoothness constraints on neural networks has led to great
progress in machine learning, from boosting generalization and robustness of classifiers to increasing
the stability and performance of generative models and providing better priors for reinforcement
learning agents. We use the potential of smoothness and the downsides of current approaches to
construct the case for incorporating tasks, data modality and learning into smoothness definitions and
argue for a more integrated view of smoothness constraints and their interaction with losses, models
and optimization.

This paper discusses the smoothness of functions parametrized using neural networks; other classes
of functions such as reproducing kernel Hilbert spaces use different notions of smoothness which are
outside our scope. Inside the neural network family of functions, we are looking at model smoothness
with respect to inputs; we do not consider smoothness with respect to parameters.

2 Measuring function smoothness

Neural network “smoothness” is a broad, vague, catch all term. We use it to convey formal definitions
such as differentiable, bounded, Lipschitz, as well as intuitive concepts such as invariant to data
dimensions or projections, robust to input perturbations, and others. One definition states that a
function f : X → Y is n smooth if is n times differentiable with the n-th derivative being continuous.
The differentiability of a function is not a very useful inductive bias for a model, as it is both very
local and constructed according to the metric of the space where limits are taken. What we are looking
for is the ability to choose both the distance metric and how local or global our smoothness inductive
biases are. With this in mind, Lipschitz continuity is appealing as it defines a global property and
provides the choice of distances in the domain and co-domain of f . It is defined as:

‖f(x1)− f(x2)‖Y ≤ K ‖x1 − x2‖X ∀x1,x2 ∈ X (1)
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where K is denoted as the Lipschitz constant of function f . Enforcing Equation 1 can be difficult, but
according to Rademacher’s theorem if X ⊂ Rm is an open set and Y = Rp and f isK-Lipschitz then
‖Df(x)‖ ≤ K wherever the total derivative Df(x) exists. For p = 1, this entails ‖∇xf(x)‖ ≤ K
wherever f is differentiable. Conversely, a function that is differentiable everywhere with bounded
gradient norm is Lipschitz. Thus, a convenient strategy to make a differentiable function K-Lipschitz
is to ensure ‖∇xf(x)‖ ≤ K,∀x ∈ X .

If f and g are Lipschitz with constants Kf and Kg, f ◦ g is Lipschitz with constant KfKg. Since
commonly used activation functions are 1-Lipschitz, the task of ensuring a neural network is Lipschitz
reduces to constraining the learneable layers to be Lipschitz. Many neural networks layers are linear
operators (linear and convolutional layers, BatchNormalization [1]), and to compute their Lipschitz
constant we can use that the Lipschitz constant of a linear operator A under common norms such as
l1, l2, l∞ is supx 6=0

‖Ax‖
‖x‖ .

To avoid learning trivially smooth functions and maintain useful variability, it is often beneficial to
constrain the function variation both from above and below. This leads to bi-Lipschitz continuity:

K1 ‖x1 − x2‖X ≤ ‖f(x1)− f(x2)‖Y ≤ K2 ‖x1 − x2‖X (2)

Another way to measure smoothness is through various matrix norms of the Jacobian J(x) = df(x)
dx .

Instead of constraining the total derivative as in Lipschitz continuity, Jacobian metrics account for
how each dimension of the function output is allowed to vary as individual input dimensions change.

3 Smoothness regularization for neural networks

Smoothness regularizers have long been part of the toolkit of the machine learning practitioner: early
stopping encourages smoothness by stopping optimization before the model overfits the training
data; dropout [2] makes the network more robust to small changes in the input by randomly masking
hidden activations; max pooling encourages smoothness with respect to local changes; L2 weight
regularization and weight decay [3] discourage large changes in output by not allowing individual
weight norms to grow; data augmentation allows us to specify what changes in the input should not
result in large changes in the model prediction and thus is also closely related to smoothness and
invariance to input transformations. These smoothness regularization techniques are often introduced
as methods which directly target generalization and other beneficial effects of smoothness discussed
in Section 4, instead of being seen through the lens of smoothness regularization.

Methods which explicitly target smoothness on the entire input space focus on restricting the learned
model family. A common approach is to ensure Lipschitz smoothness with respect to the l2 metric
by individually restricting each layer to be Lipschitz. Spectral regularization [4] uses the sum of
the spectral norms - the largest singular value - of each layer as a regularization loss to encourage
Lipschitz smoothness. Spectral Normalization [5] ensures the learned models are 1-Lipschitz by
adding a node in the computational graph of the model layers by replacing the weights with their
normalized version: L(W ) becomes L(σ(W )), where σ(W ) =W/||W ||2 and ||W ||2 is the spectral
norm of W . Both methods use power iteration to compute the spectral norm of weight matrices. Gouk
et al. [6] use a projection method by dividing the weights by the spectral norm after a gradient update.
This is unlike Spectral Normalization, which backpropgates through the normalization operation. The
majority of this line of work has focused on constraints for linear and convolutional layers, and only
recently attempts to expand to other layers, such as self attention have been made [7]. Efficiency is
always a concern and heuristics are often used even for popular layers such as convolutional layers [5]
despite more accurate algorithms being available [6, 8]. Parseval networks [9] ensure weight matrices
are 1- Lipschitz by enforcing a stronger constraint, orthogonality. Bartlett et al. [10] show that any
bi-Lipschitz function can be wrriten as a compositions of residual layers [11].

Instead of restricting the learned function on the entire space, another approach of targeting smooth-
ness constraints is to regularize the norm of the gradients with respect to inputs of the network
‖∇xfθ(x)‖, at different regions of the space [12, 13, 14, 15, 16]. This is often enforced by adding a
gradient penalty to the loss function L(θ):

L(θ) + λEpreg(x)

(
‖∇xfθ(x)‖22 −K

2
)2

(3)

where λ is a regularization coefficient, preg(x) is the distribution at which the regularization is applied,
which can either be the data distribution [12, 15] or around it [14, 16], or, in the case of generative
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models, at linear interpolations between data and model samples [13]. Gradient penalties encourage
the function to be smooth around the support of preg(x) either by encouraging Lipschitz continuity
(K 6= 0) or by discouraging drastic changes of the function as the input changes (K = 0).

Smoothness for classification tasks is defined by Lassance et al. [17] as preserving features similar-
ities within the same class as we advance through the layers of the network. The penalty used is∑L

l=1

∑C
c=1 |σl(sc)−σl+1(sc)|, where σl(sc) is the signal of features belonging to class c computed

using the Laplacian of layer l. The Laplacian of a layer is defined by constructing a weighted
symmetric adjacency matrix of the graph induced by the pairwise most similar layer features in the
dataset. This type of task dependent approach to smoothness is promising, as we will discuss later.

4 The benefits of smooth function approximators

Generalization. Learning models that generalize beyond training data is the goal of machine learning.
The common wisdom is that models with small complexity generalize better [18]. Despite this, we
have seen that deep, overparametrized neural networks tend to generalize better [19] and that for
Bayesian methods, Occam’s razor does not apply to the number of parameters used, but to the
complexity of the function [20]. A way to reconcile these claims is to incorporate smoothness
into definitions of model complexity and to show that smooth, overparametrized neural networks
generalize better than their less smooth counterparts. Methods that encourage smoothness such as
weight decay, dropout and early stopping have been long shown to aid generalization [2, 21, 22,
23, 24]. Data augmentation has been shown to increase robustness to random noise or to modality
specific transformations such as image cropping and rotations [25, 26, 27]. Sokolić et al. [12]
show that the generalization error of a network with linear, softmax and pooling layers is bounded
by the classification margin in input space. Since classifiers are trained to increase classification
margins in output space, smoothing by bounding the spectral norm of the model’s Jacobian increases
generalization performance; this leads to empirical gains on standard image classification tasks.

Generalization has been recently reexamined under the light of double descent [24, 28], a phenomenon
named after the shape of the generalization error plotted against the size of a deep neural network:
as the size of the network increases the generalization error decreases (first descent), then increases,
after which it decreases again (second descent). We postulate there is a deep connection between
double descent and smoothness: in the first descent, the generalization error is decreasing as the
model is given extra capacity to capture the decision surface; the increase happens when the model
has enough capacity to fit the training data, but it cannot do so and retain smoothness; the second
descent occurs as the capacity increases and smoothness can be retained. This view of double descent
is supported by empirical evidence which shows that its effect is most pronounced on clean label
datasets and when early stopping and other regularization techniques are not used [24]. We later show
that smoothness constraints heavily interact with optimization which further suggests that empirical
investigations into the impact of smoothness on the observation of double descent are needed.

Reliable uncertainty estimates. Neural networks trained to minimize classification losses provide
notoriously unreliable uncertainty estimates; an issue which gets compounded when the networks are
faced with out of distribution data. However, one can still leverage the power of neural networks to
obtain reliable uncertainty estimates, by combining smooth neural feature learners with non-softmax
decision surfaces [29, 30]. The choice of smoothness regularization or classifier can vary, from
using gradient penalties on the neural features with a Radial Basis Function classifier [29], to using
Spectral Normalization on neural features and a Gaussian Process classifier [30]. These methods are
competitive with standard techniques used for out of distribution detection [31] on both vision and
language understanding tasks. The importance of smoothness regularizing neural features indicates
that having a smooth decision surface such as a Gaussian Process is not sufficient to compensate for
sharp feature functions when learning models for uncertainty estimation.

Robustness to adversarial attacks. Adversarial robustness has become an active area of research in
recent years [32, 33, 34, 35]. Early works have observed that the existence of adversarial examples is
related to the magnitude of the gradient of the hidden network activation with respect to its input,
and suggested that constraining the Lipschitz constant of individual layers can make networks more
robust to attacks [32]. However, initial approaches to combating adversarial attacks focused on data
augmentation methods [33, 36, 37, 38], and only more recently smoothness constraints have come
into focus [9, 12, 17, 19]. We can see the connection between smoothness and robustness by looking
at the desired robustness properties of classifiers, which aim to ensure that inputs in the same ε-ball
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result in the same function output:
‖x− x′‖ ≤ ε =⇒ argmax f(x) = argmax f(x′) (4)

The aim of adversarial defenses and robustness techniques is to have ε be as large as possible without
affecting classification accuracy. Robustness against adversarial examples has been shown to correlate
with generalization [39], and with the sensitivity of the network output with respect to the input as
measured by the Frobenius norm of the Jacobian of the learned function [12, 19]. Lassance et al.
[17] show that robustness to adversarial examples is enhanced when the function approximator is
smooth as defined by the Laplacian smoothness signal discussed in Section 3. Tsuzuku et al. [8]
show that Equation 4 holds when the l2 norm is used if ε is smaller than the ratio of the classification
margin and the Lipschitz constant of the network times a constant, and thus they increase robustness
by ensuring the margin is larger than the Lipschitz constant.

Improved generative modeling performance. Smoothness constraints through gradient penalties
or spectral normalization have become a recipe for obtaining state of the art generative models.
In generative adversarial networks (GANs) [40], smoothness constraints on the discriminator and
the generator have played a big part in scaling up training on large, diverse image datasets at high
resolution [41] and a combination of smoothness constraints has been shown to be a requirement to
get GANs to work on discrete data such as text [42]. The latest variational autoencoders [43, 44]
incorporate spectral regularization to boost performance and stability [45]. Explicit likelihood
tractable models like normalizing flows [46] benefit from smoothness constraints through powerful
invertible layers built using residual connections g(x) = x+ f(x) where f is Lipschitz [47].

More informative critics. Critics, learned approximators to intractable decision functions, have be-
come a fruitful endeavor in generative modeling, representation learning and reinforcement learning.

Critics are used in generative modeling to approximate divergences and distances between the learned
model and the true unknown data distribution, and have been mainly popularised by GANs. A critic in
a function class F can be used to approximate the KL divergence by minimizing the bound [48, 49]:

KL(p||q) = Ep(x)
p(x)

q(x)
= sup

f
Ep(x)f(x)− Eq(x)e

f(x)−1 ≥ sup
f∈F

Ep(x)f(x)− Eq(x)e
f(x)−1 (5)

While due to the density ratio p(x)/q(x) in its definition, the KL divergence provides no learning
signal when the model and data distributions do not have overlapping support, choosing F to be a
family of smooth functions results in a bound on the KL which provides useful gradients and can be
used to train a model [14, 50]. We show an illustrative example in Figure 1a: the true decision surface
jumps from zero to infinity, while the approximation provided by the MLP is smooth. Similarly,
training the critic more and making it better at estimating the true decision surface but less smooth
can hurt training [51]. It’s not surprising that imposing smoothness constraints on critics has become
part of many flavours of GANs [4, 13, 14, 15, 41, 52, 53].

The same conclusions have been reached in unsupervised representation learning, where paramet-
ric critics are trained to approximate another intractable quantity, the mutual information, using
the Donsker–Varadhan or similar bounds [54, 55]. An extensive study on representation learning
techniques based on mutual information showed that tighter bounds do not lead to better repre-
sentations [56]. Instead, the success of these methods is attributed to the inductive biases of the
critics employed to approximate the mutual information. In reinforcement learning, neural function
approximators or “critics” approximate state-value functions or action-state value functions and are
then used to train a policy to maximize the expected reward. Directly learning a neural network
parametric estimator of the action value gradients - the gradients of the action value with respect to
the action - results in more accurate gradients (Figure 3 in [57]), but also makes gradients smoother.
This provides an essential exploration prior in continuous control, where similar actions likely result
in the same reward and observing the same action twice is unlikely due to size of the action space;
encouraging the policy network to extrapolate from the closest seen action improves performance
over both model free and model based continuous control approaches [57].

Distributional distances. Including smoothness constraints in the definition of distributional dis-
tances by using optimal transport has seen a uptake in machine learning applications in recent years,
from generative modeling [13, 52, 58, 59] to reinforcement learning [60, 61], neural ODEs [62] and
fairness [63, 64]. Optimal transport is connected to Lipschitz smoothness as the Wasserstein distance
can be computed via the Kantorovich-Rubinstein duality [65]:

W1(p(x), q(x)) = sup
f :‖f‖Lip≤1

Ep(x)f(x)− Eq(x)f(x) (6)
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p q f * MLP approx to f *

(a) KL divergence optimal critic f∗ = p
q

and smooth critic estimate.

p q f

(b) Optimal Wasserstein critic is smooth.

Figure 1: The importance of critic smoothness when estimating divergences and distances. Left:
When the two distributions do not have overlapping support, the KL divergence provides no learning
signal, while a smooth approximation via a learned critic does. Right: The optimal Wasserstein critic

has a smoothness Lipschitz constraint in its definition.

The Wasserstein distance is finding the critic that can separate the two distributions in expectation,
but constraints that critic to be Lipschitz in order to avoid pathological solutions. The importance of
the Lipschitz constraint on the critic can be seen in Figure 1b: unlike the KL divergence, the optimal
Wasserstein critic is well defined when the two distributions do not have overlapping support, and
does not require an approximation to provide useful learning signal for a generative model.

5 Consequences of poor smoothness assumptions

Weak models. Needlessly limiting the capacity of our models by enforcing smoothness constraints is
a significant danger: a constant function is very smooth, but not very useful. Beyond trivial examples,
Jacobsen et al. [66] show that one of the reasons neural networks are vulnerable to adversarial
perturbations is invariance to task relevant changes - too much smoothness with respect to the
wrong metric. A neural network can be “too Lipschitz”: methods aimed at increasing robustness to
adversarial examples do indeed decrease the Lipschitz constant of a classifier, but once the Lipschitz
constant becomes too low, accuracy drops significantly [67].

There are two main avenues for being too restrictive in the specification of smoothness constraints,
depending on where and how smoothness is encouraged. Smoothness constraints can be imposed on
the entire input space or only in certain pockets, often around the data distribution. Methods which
impose constraints on the entire space throw away useful information about the input distribution
and restrict the learned function needlessly by forcing it to be smooth in areas of the space where
there is no data. This is especially problematic when the input lies on a small manifold in a large
dimensional space, such as in the case of natural images, which are a tiny fraction of the space of all
possible images. Model capacity can also be needlessly restrained by imposing strong constraints on
the individual components of the model, often the network layers, instead of allowing the network to
allocate capacity as needed.

We can exemplify the importance of where and how constraints are imposed with an example, by
contrasting gradient penalties - end to end regularization applied around the training data - and
Spectral Normalization - layerwise regularization applied to the entire space. Figure 2d shows that
using Spectral Normalization to restrict the Lipschitz constant of an MLP to be 1 decreases the
capacity of the network and severely affects accuracy compared to the baseline MLP - Figure 2b - or
the MLP regularized using gradient penalties - Figure 2c. Further insight comes from Figure 3, which
shows that the gradient penalty only enforces a weak constraint on the model and does not heavily
restrict the spectral norms of individual layers; this is in stark contrast with Spectral Normalization
which by construction ensures each network layer has spectral norm equal to 1. To show the effect
of data dependent regularization on local smoothness we plot the Lipschitz constants of the model
at neighborhoods spanning the entire space in Figure 4. Each Lipschitz constant is computed using
an exhaustive grid search inside each local neighborhood rather than a bound - details are provided
in Appendix A.1. As expected, gradient penalties impose stronger constraints around the training
data, while Spectral Normalization has a strong effect on the smoothness around points in the entire
space. This simple example suggests that the search for better smoothness priors needs to investigate
where we want functions to be smooth and reexamine how smoothness constraints should account for
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(a) 2 layer MLP.
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(b) 4 layer MLP.
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(c) Gradient penalty at data;
K = 1.
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(d) Spectral norm;
K = 1.
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(e) Spectral norm;
K = 10.
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(f) Spectral norm;
scaling the data by 10.

Figure 2: Decision surfaces on two moons under different regularization methods.
Unless otherwise specified the model architecture is a 4 layer MLP.
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(a) Unregularized.
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(b) Gradient penalty. K = 1.

0 20 40 60 80 100
Iteration

0
1
2
3
4
5
6
7
8
9

W
ei

gh
t s

pe
ct

ra
l n

or
m

layer_0
layer_1
layer_2
layer_3

(c) Spectral Normalization. K = 1.

Figure 3: Lipschitz constant of each layer of an MLP trained on the two moons dataset.
The decision surfaces for the same models can be seen in Figure 2. Smaller means smoother.

the compositional aspect of neural networks, otherwise we run the risk of learning trivially smooth
functions.

Overlooked interactions with optimization. We show that viewing smoothness only through the
lens of the model is misleading, as smoothness constraints have a strong effect on optimization.
The interaction between smoothness and optimization has been mainly observed when training
generative models; encouraging the smoothness of the encoder through spectral regularization
increased the stability of hierarchical VAEs and led variational inference models to the state of the art
of explicit likelihood non autoregressive models [45], while smoothness regularization of the critic
(or discriminator) has been established as an indispensable stabilizer of GAN training, independently
of the training criteria used [4, 14, 15, 41, 68].

Some smoothness regularization techniques affect optimization by changing the loss function (gradi-
ent penalties, spectral regularization) or the optimization regime directly (early stopping, projection
methods). Even if they don’t explicitly change the loss function or optimization regime, smoothness
constraints affect the path the model takes to reach convergence. We use a simple example to show
why smoothness regularization interacts with optimization in Figure 5a. We use different learning
rates to train two unregularized MLP classifiers on MNIST [69] and observe that the learning rate
used affects its smoothness throughout training, without changing testing accuracy. This shows
that imposing similar smoothness constraints on two models which share the same architecture but
are trained with different learning rates would lead to very different strengths of regularization and
drastically change the trajectory of optimization.
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Figure 4: The effect of regularization on local smoothness. We plot the local Lipschitz constants
obtained this using an exhaustive grid search in local neighborhoods, instead of loose bounds. We
use different colors to emphasize the different scale of the constants for the different methods.
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(b) Spectral Normalization requires low momentum in GAN training.

Figure 5: Smoothness interacts with optimization. Left: MNIST classifiers trained with different
learning rates exhibit different smoothness behaviour throughout training, even at the same test
accuracy. Lower means smoother. Right: The effects of momentum on Spectral Normalization
applied to the GAN discriminator on CIFAR-10. Higher is better.

Beyond learning rates, smoothness constraints also interact with momentum. In the GAN setting, Gul-
rajani et al. [13] observed that weight clipping in the Wasserstein GAN critic requires low to no
momentum. Weight clipping has since been abandoned in the favour of other methods, but as we show
in Figure 5b and Appendix A.1 current methods like Spectral Normalization applied to GAN critics
trained with low momentum decrease sensitivity to learning rates but perform poorly in conjunction
with high momentum, leading to slower convergence and higher hyperparameter sensitivity.

We have shown that smoothness constraints interact with optimization parameters such as learning
rates and momentum, and argue that we need to reassess our understanding of smoothness constraints,
not only as constraints on the final model, but as methods which influence the optimization path.

Sensitivity to data scaling. Sensitivity to data scaling of smoothness constraints can make training
neural network models sensitive to additional hyperparameters. Let f∗ be the optimal decision
function for a task obtained from using i.i.d samples from random variable X , and f∗c obtained
similarly from i.i.d samples obtained from cX . Since f∗ and f∗c can be highly non linear, the
relationship between the smoothness of the two functions is unclear. This gets further complicated
when we consider their closest approximators under a neural family. The effect of data scaling on the
smooth constraints required to fit a model can be exemplified using the two moons dataset: with a
Lipschitz constraint of 1 on the model the data is poorly fit - Figure 2d - but a much better fit can be
obtained by changing the Lipschitz constant to 10 - Figure 2e - or scaling the data - Figure 2f.

Wrong model priors. The wrong kind of smooth functions can have a similar effect to restricting
capacity by introducing the wrong inductive biases. For many regularization techniques it is unclear
what kind of smoothness they are encouraging and how strong their effect is on the smoothness of the
learned function. Lipschitz smoothness constraints on image models are often specified with respect
to the l2 norm, which is notorious for not being a meaningful distance metric for natural images. Why
are we using the power of feature learning if we are restricting our models to be part of a family of
functions which impose constraints that rely on rigid distance metrics? We have seen that smooth
critics can be a catalyst for learning by providing the right signal, but that is only if their similarity
measures are relevant for the task.
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6 Paving the path towards smoothness in neural networks

Smoothness regularization of neural networks has brought forward advances in a plethora of machine
learning tasks, from supervised to unsupervised and reinforcement learning. These advances are
just scratching the surface of the benefits of smoothness, to explore its full potential we have to use
new smoothness definitions, distance metrics and complexity measures; we need to define task and
modality dependent smoothness constraints applied to learned representations; we have to adopt an
integrated view and understand its interactions with losses, data, model architectures and optimization.
Meanwhile, in the world of task agnostic smoothness applied to high dimensional data spaces, we
continue to be surprised that specifying smoothness constraints is not better.

New ways of defining smoothness. Improving model generalization and robustness requires specify-
ing the right level of invariance by using task information to define smoothness constraints. To solve
issues in generative modelling such as “mode dropping” or “mode collapse”, where entire modes
from the data distribution are not captured by the model, we have to go beyond current smoothness
measures such as Lipschitz continuity defined on the input space. With the right feature space,
images of cats are close to images of dogs, and thus a model which is smooth in that space is less
likely to drop one of the two modes. We have to ask what are the desired properties of h such that
‖f(h(x))− f(h(y))‖ ≤ ‖h(x)− h(y)‖ instead of applying the smoothness constraints on the raw
data. Since we require that the mapping h does not discard task relevant information in the data,
maintains useful diversity and accounts for input modalities, it has to be data and task dependent. As
we have seen again and again in the development of machine learning, handcrafting h is not a scalable
solution, and thus the mapping itself has to be learned. Since the approaches used for learning the
right representations have to be task dependent, different insights will be required for supervised and
unsupervised methods. We expect that semi-supervised learning will play an important role, and that
hints for useful properties of representation domains will come from representation learning methods
and inference techniques.

New ways of measuring smoothness. Measuring smoothness of a function parametrized by a
neural network is challenging even for the most common measure of smoothness used in machine
learning, Lipschitzness. Loose upper and lower bounds which rely on function composition are
often used [70, 71]. Fazlyab et al. [67] provide an algorithm with tighter bounds by leveraging that
activation functions are derivatives of convex functions and cast finding the Lipschitz constant as the
result of a convex optimization problem. However, their most accurate approach scales quadratically
with the number of neurons and only applies to feed forward networks. Sokolić et al. [12] provide an
upper bound for the Lipschitz constant of a neural network with linear, softmax and pooling layers
restricted to input space X via ‖f(x)− f(y)‖2 ≤ supz∈convex_hull(X ) J(z) ‖x− y‖2 , ∀x,y ∈
X , but empirically resort to layerwise bounds. If we want to understand the effects of network
architectures, regularization methods and optimization algorithms have on model smoothness, we
have to be able to accurately measure it.

New learning paradigms. Combining non parametric methods with feature learning is a promising
approach to learning smooth decision surfaces. Given the right data representations and the appro-
priate distance metrics, interpolating between training examples is an excellent and interpretable
smoothness prior. Pursuing this avenue of research entails learning the right features, which them-
selves might have to be smooth [30], as well as further avenues for scaling non parametric methods
such as Gaussian Processes, Support Vector Machines and Nearest Neighbours methods to large
datasets.

New measures of model complexity. Standard complexity measures, from VC dimensions and
Rademacher complexity, to simpler measures such as number of learned parameters ignore the
problem the model has to solve. Task definitions need to be accounted for in the new generation of
model complexity measures, since fitting random labels (as per Rademacher complexity) discounts
the inductive bias in smoothness constraints that can help model fitting and generalization. The issue
of measuring model complexity is inherently tied with many other issues discussed so far, such as
choosing ways to define and quantify smoothness.

New approaches to old problems. Smooth learned critics have advanced the state of art in generative
modeling and reinforcement learning. Why stop there? By viewing parametric critics as learned loss
functions, and observing that for any lower layer of a neural network the upper layers are part of a
learned loss function, we can further explore and expand the benefits of smoothness. By exploring
how smoothness helps critics in non stationary environments such as reinforcement learning and
generative models, we can solve notorious neural network training problems such as covariate shift.
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A Appendix

A.1 Additional experimental results and experimental methodology

Architectures. In all the two moons experiments, the DeepMLP has 4 layers and 100, 100, 100 and 1
output units respectively. The shallow MLP has 2 layers of 100 and 1 unit. All methods were trained
for 100 iterations on 50 datapoints. The MNIST plots are obtained from MLP classifiers having 4
layers of 1000, 1000, 1000 and 10 units each and are trained for 500 iterations at batch size 100,
reaching an accuracy of 95% on the entire test set. For the GAN CIFAR-10 experiments, we use the
architectures specified in the Spectral normalization paper [5]. Unless otherwise specified, we use the
default Adam optimizer [72] β1 and β2 parameters.

Computing the local Lipschitz constant in Figure 4. To compute the local Lipschitz function
of the decision surface learned on two moons, we split the space into small neighborhoods (2500
equally sized grids). For each grid, we sample 2500 random pairs of points in the grid and report
max ‖f(x)− f(y)‖ / ‖x− y‖.
Spectral normalization. In Figure 6 we show that the effect of momentum on spectral normalization
is independent of whether caching of the initialization vector for power iteration is performed or not.
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(a) Low momentum: 0.5.
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(b) High momentum: 0.9.
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Figure 6: The effect of momentum on spectral normalization on GAN performance. This shows that
the iteration between momentum and spectral normalization is not due to the caching between

iterations done for computational reasons.
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