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Abstract

We introduce Tritium, an automatic differentiation-based sensitivity analysis frame-1

work for differentially private (DP) machine learning (ML). Optimal noise calibra-2

tion in this setting requires efficient Jacobian matrix computations and tight bounds3

on the L2-sensitivity. Our framework achieves these objectives by relying on a func-4

tional analysis-based method for sensitivity tracking, which we briefly outline. This5

approach interoperates naturally and seamlessly with static graph-based automatic6

differentiation, which enables order-of-magnitude improvements in compilation7

times compared to previous work. Moreover, we demonstrate that optimising the8

sensitivity of the entire computational graph at once yields substantially tighter9

estimates of the true sensitivity compared to interval bound propagation techniques.10

Our work naturally befits recent developments in DP such as individual privacy11

accounting, aiming to offer improved privacy-utility trade-offs, and represents a12

step towards the integration of accessible machine learning tooling with advanced13

privacy accounting systems.14

1 Introduction15

Despite the growing availability of high-performance algorithmic tools for advanced statistical16

modelling and machine learning (ML), solutions to many of the world’s most important problems17

require access to sensitive or confidential data. Technologies such as differential privacy (DP) can18

allow drawing insights from such data while objectively allocating and quantifying individual privacy19

expenditure. Although DP is the gold standard for data protection, its application to everyday ML20

workflows is –in practice –often constrained. For one, tightly introspecting the privacy attributes21

of complex models such as deep neural networks can be very challenging. Moreover, substantial22

expertise is required on the analyst’s behalf to correctly apply DP mechanisms to such models.23

Software libraries [1, 2, 3, 4] are being developed to alleviate these issues in specific domains such24

as DP deep learning. They are, however, limited to a small number of programming languages and25

application programming interfaces (APIs). The democratisation of DP machine learning therefore26

awaits generic infrastructure, not only compatible with arbitrary workflows, but designed “from first27

principles” to facilitate the implementation of DP. At its core, contemporary ML is based around28

the manipulation of multidimensional arrays and the composition of differentiable functions, a29

programming paradigm referred to as differentiable programming. Besides deep learning, some of30

the most successful ML algorithms [5] and a large number of statistical queries, especially from the31

domain of robust statistics, can be expressed within this paradigm. Automatic differentiation (AD)32

systems are the core of differentiable programming frameworks and are able to track the flow of33

computation to return precise derivatives with respect to arbitrary computational quantities. Although34

this functionality may –at first –seem orthogonal to the goals described above, we contend that it is in35

fact not only highly compatible, but synonymous with automatic DP tracking.36
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In the current work, we present Tritium, a differentiable programming framework aiming to integrate37

the requirements of ML and privacy analysis through the use of AD. We recapitulate the link between38

the sensitivity of differentiable queries and the Lipschitz constant in section 2. We outline our system’s39

implementation in section 3 and present the substantial improvements in computational efficiency40

and sensitivity bound tightness in section 4. A discussion of prior work can be found in the appendix.41

2 Theoretical motivation42

We begin by briefly introducing an interpretation of DP using the language of functional analysis,43

which forms the theoretical motivation behind our work. We concentrate on the Gaussian mechanism,44

which forms the basis for private data analysis in high dimensions. Differentially private ML can45

fundamentally be abstracted as the application of a higher-order function (or functional) to private46

data. This higher-order function (often termed a DP mechanism) receives as its input another function47

(termed a query) which has been applied to a private dataset, inspects the query to derive its privacy48

attributes and modifies it to preserve DP (Definitions 1 and 2).49

Definition 1 (Query). A query is a function q : Rm×D → Rn×D, where D represents arbitrary50

(possibly unused) dimensions and n,m ≥ 1 which receives as input some private dataset x, |x| ≥ 151

and outputs a result y representing the result of a computation over x (e.g. a mean calculation or the52

output of a neural network).53

Definition 2 (DP mechanism). A DP mechanism is a higher-order function M which receives54

as its input one or more query functions q1, q2, . . . , qn and outputs M(q1 ◦ q2 ◦ · · · ◦ qn) =55

qn(. . . q2(q1(x))) + ξ, where ξ ∼ N (0, C) and C is selected based on the privacy properties56

of q1 ◦ q2 ◦ · · · ◦ qn.57

The tight characterisation of these privacy properties is central to enabling privacy expenditure58

tracking. The effect on inputs on the output of the query functions is reflected in query sensitivity.59

We use the Lipschitz constant to reason about sensitivity.60

Definition 3 (Lipschitz constant and sensitivity). Let q : X → Y be a function between metric61

spaces X and Y with distance metrics dX and dY , respectively. Then q is Lipschitz continuous with62

constant Kq (equivalently, “K-Lipschitz”) if63

dY (f(x), f(x′)) ≤ K dX(x, x′) ∀x, x′ ∈ X (1)

The smallest value of K corresponds to the sensitivity of q,∆2(q) [6]:64

∆2(q) = max
x,x′
‖q(x)− q(x′)‖2 (2)

where ‖ · ‖2 is the L2 distance. Recall that in this case, d(x, x′) = 1 as x, x′ are adjacent. Thus for65

differentiable query functions, Kq ≡ ∆2(q) when X and Y are Euclidean spaces endowed with the66

L2-norm. Then,67

Kq = sup ‖J (q)‖2 (3)

where J is the Jacobian matrix (the differential operator).68

This equivalence between Lipschitz constant and query sensitivity allows, in principle, to reason over69

the privacy attributes of individual query functions and calibrate noise appropriately. Typical functions70

with globally bounded sensitivity are affine queries or linear functions of the form q(x) = αx(+β),71

with Kq = α. However, queries exist for which the Lipschitz constant is not defined over the72

entire input domain. One example of such a function is q(x) = x2 = x · x with Kq = x, whose73

sensitivity is unbounded, as it depends on the value of x. The sensitivity analysis of such queries74

sometimes therefore depends on (private) properties of the dataset. We term such a case as data-75

dependent sensitivity. Reasoning over sensitivity in such cases is complicated by a requirement to76

propagate this data dependency effect through function composition. Previous works on Lipschitz77

analysis of machine learning algorithms [7, 8] achieve this through techniques such as interval bound78

propagation [9], that carry the bounds on input variables (which, for DP, should be defined in a79

data-agnostic manner) through the computation flow. This technique can easily be made compatible80

with tracing-type AD systems which are widely used in contemporary machine learning. However,81

due to well-known limitations of interval arithmetic (such as interval dependency [10]) and due to82
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the fact that the Lipschitz constant is defined by inequality, the resulting sensitivity terms may be83

valid, but too loose to be of any practical utility (e.g. 105). The last challenge relates to the fact that84

the actual effect of an individual’s data on the query’s output may, in fact, be much smaller than the85

worst case assumed by the definition, resulting in more noise being added by the mechanism than86

would be required for the guarantee to hold. Consequently, although the worst-case sensitivity value87

has typically been used for privacy accounting, newer techniques perform accounting based not only88

the worst case but combine it with the actual output L2-norm [11].89

3 Implementation details90

Our work presents Tritium, an automatic-differentiation-based machine learning and sensitivity91

analysis system engineered to address the above-mentioned challenges. It consists of the following92

components:93

1. A user-facing front-end to specify a query q = q1 ◦ · · · ◦ qn abstractly, i.e. without directly94

utilising private data during model creation. This is achieved through the utilisation of95

abstract tensors with pre-defined dimensions. The system creates an optimised computational96

graph G based on this specification.97

2. During model specification, the user can impose bounds on the quantities (e.g. inputs,98

weights) used in the model.99

3. The user selects the desired privacy parameters, e.g. ε and δ values or a maximum allowed100

sensitivity.101

4. A compiler then emits a program which receives a private dataset and outputs an appropri-102

ately privatised result.103

Internally, Tritium undertakes the following steps:104

1. The computational graph G is compiled into a program which outputs J (q) with respect to105

the inputs.106

2. Kq = sup ‖J (q)‖2 is computed given the input bounds.107

3. Finally, G is compiled into the program described in step (4) above which receives a private108

dataset x, computes q(x), potentially clips out-of-bound values to preserve the required109

Kq, adds noise ξ ∼ N (0, C) with C proportional to Kq to satisfy the required ε value for a110

given δ and outputs M(q).111

This system architecture has several benefits: It avoids utilising private data until the moment the final112

computation is executed (data minimisation). Moreover, it provides a tight sensitivity calculation by113

optimising the entire query function at once [12] instead of the above-mentioned forward-propagation,114

which can lead to vacuous sensitivity values. Furthermore, it utilises the pre-specified bounds on115

the input variables to not only enable the calculation of data-dependent sensitivity, but also greatly116

accelerate the process. Moreover, it is agnostic to the method used to actually obtain the desired117

sensitivity. For example, Lipschitz neural network layers [13, 14] or activation functions with118

bounded outputs and gradients [15] can be used for model building, but bounded sensitivity can also119

be enforced by clipping, as is common in DP-SGD [16]. In addition, the system is able to compute120

the full Jacobian matrix (which is required in DP-SGD) as well as arbitrary higher-order derivative121

matrices (which can be used to accelerate the sensitivity computation). Additionally, as the system122

outputs both the Lipschitz constant and the norm of the outputs, it can be leveraged to provide tighter123

privacy guarantees through the use of e.g. individual privacy accounting, as shown below. Finally, the124

system is designed to output privatised values by default instead of outputting non-private values and125

relying on the user to perform an appropriate privatisation step. This can reduce both user workload126

and the probability of failure due to incorrect application of DP mechanisms on the user’s behalf.127

4 Experimental evaluation128

4.1 Exact sensitivity calculations through a posteriori optimisation129

To assess the benefits of computing query sensitivity by assessing the entire computational graph130

at once instead of forward-propagating interval bounds, we constructed a small neural network131
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comprising 4 linear layers with logistic sigmoid activations and the binary cross-entropy cost function.132

We set the bounds for the neural network weights and the input bounds to the [0, 1] interval. We133

then calculated the sensitivity using two techniques: Interval Bound Propagation (IBP [9]) and our134

proposed method optimising the entire computational graph at once. The estimate of the sensitivity135

was returned as [0.0, 22175.37] by IBP (which is a valid, but vacuous bound) and as 0.99929 by136

Tritium. The IBP bounds are also similar to previous work (compare e.g. [17]). However, IBP137

was faster, requiring 103 ms to return a result, compared with 905 ms for our technique (excluding138

compilation time of ca. 3 s). These results are summarised in Table 1 in the appendix.139

4.2 Compilation improvements140

In this section, we compare the compilation and execution time improvements of Tritium to the previ-141

ously described framework by [18] on neural network architectures with the architecture described142

above, but with increasing width of linear layers. We recall that the system proposed by the authors143

of this work relies on a scalar AD implementation and authors report compilation times quadratic144

in the number of model parameters (that is, around 60 hours for a 2.5 million parameter model). In145

contrast, the here-presented implementation utilises the Aesara library (a fork of the now-defunct146

Theano framework [19]) as a computational back-end. This allows both a memory-efficient vectorised147

execution of tensor operations and a more mature and faster compilation back-end. For all but the148

smallest architectures, this back-end achieved substantially faster compilation times which were149

independent of the number of parameters and able to leverage caching to accelerate re-compilation.150

A similar effect was observed in execution times, where our system achieved considerably higher151

performance. These results are visualised in Figure 1 in the appendix.152

5 Discussion and conclusion153

We propose Tritium, an automatic differentiation-based system for differentially private machine154

learning. Our framework relies on an interpretation of DP queries and mechanisms through the155

language of functional analysis, linking them by the definition of Lipschitz continuity. We found156

the combination of an efficient computational and compilation back-end with the consideration of157

the entire query function at once to yield both improved performance and tighter sensitivity bounds158

compared to previous work. Our proposed framework relies on static graph-based AD, which159

can apply specific compiler optimisations to the entire computational graph and is responsible for160

Tritium’s high performance. However, such systems have noteworthy limitations. For instance,161

the definition of control flow statements is cumbersome and such systems are not well-suited for162

utilisation with just-in-time compilers. Most currently used machine learning frameworks utilise163

tracing/eager execution AD back-ends, which, while more user-friendly, cannot always leverage the164

same optimisations. An alternative AD implementation, source-to-source translation can combine165

the benefits of dynamic graph specification with the high performance and optimisations of static166

compilation. It forms the basis of a recent paradigm in programming language design (e.g. [20]),167

attempting to merge a general-purpose programming language with differentiable programming168

primitives. A limitation of our method stems from the computational hardness of exactly calculating169

the Lipschitz constant [21]. Our system will output the true bound using Simplicial Homology170

Global Optimisation [22] if the bound exists and can be found, and the application of constraints can171

substantially accelerate this process. However, it will output a warning and switch to an approximate172

algorithm without a guaranteed bound otherwise. If such a bound is undesirable, an alternative173

technique is the utilisation of model components with known (or manually adjustable) Lipschitz174

constants, which can allow one to avoid the utility penalty imposed by clipping-based approaches,175

both enabling the design of algorithms with milder privacy-utility penalties and additionally reaping176

the benefits of well-defined model sensitivity, such as (certifiable) robustness to perturbations by177

adversarial samples. In conclusion, our work serves as a first proof-of-concept for the the design of178

generic infrastructure exposing familiar APIs to data scientists while automatically tracking privacy179

loss through the computation flow. We view the further development of such systems as an accelerator180

for the wide-spread adoption of privacy-preserving machine learning algorithms across data-driven181

research disciplines.182
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A Tables and Figures246

Upper bound Computation time (ms)

Ours 0.99929 905
IBP 22175.37 103

Table 1: Comparison of the sensitivity bounds and computation times for our proposed framework
(Ours) vs. Interval Bound Propagation (IBP).

Figure 1: Performance comparison between our proposed framework (Ours, blue) vs. [18] (green).
Compilation times in s and execution times in µs are shown for neural network architectures of
increasing sizes.

B Related works247

Our work can be seen as a natural evolution of the previous study by [18] in the context of AD-248

based sensitivity analysis for DP machine learning. In comparison to this work, Tritium relies on249

a vectorised, GPU-compatible execution engine and a mature graph compiler which drastically250

improves performance, as shown in the experimental section. The properties of Lipschitz continuous251

functions have been leveraged in several domains beyond DP. Works such as [13, 23, 14, 17] attempt252

to constrain the Lipschitz constant to reason over and control the properties of neural networks. The253

utilisation of this approach has been proposed for network certification against adversarial samples254

[24], whereby a network that is ε-certified is provably robust to input perturbations within a norm255

ball of radius ε. Additionally, constraining the Lipschitz constant has been proposed for DP model256

training, as this allows to calibrate the noise addition based on the bounded Lipschitz constant257

[13]. Moreover, certain works [25] have addressed the problem of machine unlearning, providing258

methods for a reliable removal of contributions associated with an individual in the context of neural259

network training. We note that the approach to sensitivity analysis employed in these studies is260
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orthogonal to our work, as our work is compatible with manual sensitivity constraints (such as directly261

adjusting the Lipschitz constant of neural network layers through appropriate layers as described262

above, which however may impair their expressivity) but also with sensitivity tracking for privacy263

loss calculation. Several recent works concentrate on the computation of accurate estimates of the264

Lipschitz constant mostly focused on ReLU networks such as [21, 14], but most of these obtain265

the upper bounds rather than the exact values of the Lipschitz constant, often resulting in valid, but266

extremely loose approximations that are not intended to be applied in DP training. A line of work267

centred on languages for differentially private programming also exists. Among these, the recently268

proposed DDuo framework [26] performs dynamic sensitivity analysis in the context of DP algorithm269

specification. As shown above however, this approach does not attempt to derive a tight bound on270

sensitivity in the setting of unbounded queries, declaring sensitivity as infinite and relying exclusively271

on clipping. More general approaches, including category-theoretical views on the intersection of272

differentiable programming and differential privacy such as [27] have also recently been proposed.273
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