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ABSTRACT

Successful training of deep neural networks with noisy labels is an essential ca-
pability as most real-world datasets contain some amount of mislabeled data.
Left unmitigated, label noise can sharply degrade typical supervised learning ap-
proaches. In this paper, we present robust temporal ensembling (RTE), a simple
supervised learning approach which combines robust task loss, temporal pseudo-
labeling, and a ensemble consistency regularization term to achieve noise-robust
learning. We demonstrate that RTE achieves state-of-the-art performance across
the CIFAR-10, CIFAR-100, and ImageNet datasets, while forgoing the recent
trend of label filtering/fixing. In particular, RTE achieves 93.64% accuracy on
CIFAR-10 and 66.43% accuracy on CIFAR-100 under 80% label corruption, and
achieves 74.79% accuracy on ImageNet under 40% corruption. These are substan-
tial gains over previous state-of-the-art accuracies of 86.6%, 60.2%, and 71.31%,
respectively, achieved using three distinct methods. Finally, we show that RTE
retains competitive corruption robustness to unforeseen input noise using CIFAR-
10-C, obtaining a mean corruption error (mCE) of 13.50% even in the presence of
an 80% noise ratio, versus 26.9% mCE with standard methods on clean data.

1 INTRODUCTION

Deep neural networks have enjoyed considerable success across a variety of domains, and in partic-
ular computer vision, where the common theme is that more labeled training data yields improved
model performance (Hestness et al.,|2017; Mahajan et al.|, |2018; [Xie et al., 2019b; [Kolesnikov et al.,
2019). However, performance depends on the quality of the training data, which is expensive to
collect and inevitably imperfect. For example, ImageNet (Deng et al., 2009) is one of the most
widely-used datasets in the field of deep learning and despite over 2 years of labor from more than
49,000 human annotators across 167 countries, it still contains erroneous and ambiguous labels (Fei-
Fe1 & Deng, [2017; Karpathyl 2014). It is therefore essential that learning algorithms in production
workflows leverage noise robust methods.

Noise robust learning has a long history and takes many forms (Natarajan et al., [2013} Frenay &
Verleysen, 2014; Song et al.| [2020). Common strategies include loss correction and reweighting
(Patrini et al.| 2016; Zhang & Sabuncul |[2018;Menon et al., 2020), label refurbishment (Reed et al.,
2014;Song et al., 2019), abstention (Thulasidasan et al.,|2019)), and relying on carefully constructed
trusted subsets of human-verified labeled data (Li et al.} 2017 [Hendrycks et al.| 2018} Zhang et al.,
2020). Additionally, recent methods such as SELF (Nguyen et al.| 2020) and DivideMix (Li et al.,
2020) convert the problem of learning with noise into a semi-supervised learning approach by split-
ting the corrupted training set into clean labeled data and noisy unlabeled data at which point semi-
supervised learning methods such as Mean Teacher (Tarvainen & Valpolal 2017)) and MixMatch
(Berthelot et al., |2019) can be applied directly. In essence, these methods effectively discard a ma-
jority of the label information so as to side-step having to learning with noise at all. The problem
here is that noisy label filtering tactics are imperfect resulting in corrupted data in the small labeled
partition and valuable clean samples lost to the large pool of unlabeled data. Moreover, caution is
needed when applying semi-supervised methods where the labeled data is not sampled i.i.d. from
the pool of unlabeled data (Oliver et al.). Indeed, filtering tactics can be biased and irregular, driven
by specification error and the underlying noise process of the label corruption. Recognizing the
success of semi-supervised approaches, we ask: can we leverage the underlying mechanisms of
semi-supervised learning such as entropy regularization for learning with noise without discarding
our most valuable asset, the labels?
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2 ROBUST TEMPORAL ENSEMBLING

2.1 PRELIMINARIES

Adopting the notation of Zhang & Sabuncu| (2018]), we consider the problem of classification where
X C R?is the feature space and ) = {1,...,c} is the label space where the classifier function
is a deep neural network with a softmax output layer that maps input features to distributions over
labels f : X — R The dataset of training examples containing in-sample noise is defined as
D = {(x;,9:)}, where (2;,7;) € (X x V) and ¢; is the noisy version of the true label y; such
that p(g; = kly; = j, ;) = nij,. We do not consider open-set noise (Wang et al.| [2018), in which
there is a particular type of noise that occurs on inputs, Z, rather than labels. Following most prior
work, we make the simplifying assumption that the noise is conditionally independent of the input,
x;, given the true labels. In this setting, we can write 1;;, = p(§; = k|y; = j) = n;x which is, in
general, considered to be class dependent nois

To aid in a simple and precise corruption procedure, we now depart from traditional notation and
further decompose 7, as p; - ¢, where p; € [0, 1] is the probability of corruption of the j-th class
and ¢, € [0, 1] is the relative probability that corrupted samples of class j are labeled as class k,
with ¢;2; > 0, ¢j; = 0and ), ¢jr = 1. A noisy dataset with m classes can then be described as
transition probabilities specified by

F = diag(P) - C +diag(1 - P)-Z (1)

where C € R™*™ defines the system confusion or noise structure, P € R™ defines the noise
intensity or ratio for each class, and Z is the identity matrix. When c¢;; = cy; the noise is said to be
symmetric and is considered asymmetric otherwise. If ratio of noise is the same for all classes then
p; = p and the dataset is said to exhibit uniform noise. For the case of uniform noise, equation @)
interestingly takes the familiar form of the Google matrix equation as

Fy=p C+(1-p)-T ©)

Note that, by this definition, 7;; = p - ¢;; = 0 which prohibits g; = y;. This ensures a true effective
noise ratio of p. For example, suppose there are m = 10 classes and we wish to corrupt labels with
80% probability. Then if corrupted labels are sampled from ) rather than Y \ {y}, 15 - 0.8 = 8%
of the corrupted samples will not actually be corrupted, leading to a frue corruption rate of 72%.
Therefored (gigespite prescribing p = 0.8, the true effective noise ratio would be 0.72, which in turn

yields a =5°5 = 40% increase in clean labels, and this is indeed the case in many studies (Zhang &

Sabuncu, 2018} |Nguyen et al., |2020; L1 et al., 2020; Zhang et al.| 2020).

2.2 METHODS

At a very high level, RTE is the combination of noise-robust task loss, augmentation, and pseudo-
labeling for consistency regularization. We unify generalized cross entropy (Zhang & Sabuncul
2018), AugMix stochastic augmentation strategy (Hendrycks et al., 2020), an exponential moving
average of model weights for generating pseudo-labels (Tarvainen & Valpola, [2017), and an aug-
mentation anchoring-like approach (Berthelot et al., 2020) to form a robust approach for learning
with noisy labels.

2.2.1 NOISE-ROBUST TASK LOSS

Generalized cross entropy (GCE) (Zhang & Sabuncu, [2018)) is a theoretically grounded noise-robust
loss function that can be seen as a generalization of mean absolute error (MAE) and categorical
cross entropy (CCE). The main idea is that CCE learns quickly, but more emphasis is put on difficult
samples which is prone to overfit noisy labels, while MAE treats all samples equally, providing
noise-robustness but learning slowly. To exploit the benefits of both MAE and CCE, a negative
Box-Cox transformation (Box & Cox,[1964) is used as the loss function

Lo(f(@:),ys = 3) = (1—J;<x>>

3)

'See|Lee et al.|(2019) for treatment of conditionally dependent semantic noise such that 1 # 7;x.
2Note that|Patrini et al. (2016) define the noise transition matrix 7" such that T} = n;x.
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where ¢ € (0, 1], and f; denotes the j-th element of f. Note that GCE becomes CCE for lim,_, £,
and becomes MAE/unhinged loss when ¢ = 1.

2.2.2 ENSEMBLE CONSISTENCY REGULARIZATION

Consistency regularization works under the assumption that a model should output similar predic-
tions given augmented versions of the same input. This regularization strategy is a common com-
ponent of semi-supervised learning algorithms with the general form of ||pg (y|Taug1) — Po (Y| Taug2) ||
where py(y|z) is the predicted class distribution produced by the model having parameters 6 for
input  (Zheng et al.| [2016; |Sajjadi et al., 2016). We build upon numerous variations from semi-
supervised learning (Laine & Alia, |2017} [Tarvainen & Valpolal 2017} [Berthelot et al., [2019; 2020)
and leverage an ensemble consistency regularization (ECR) strategy as

1 &
EC = ’ — 4
R=9 ;le\pe (ylz) = po(ylAlx))]| “)

where x is the training example, .4 is stochastic augmentation function reevaluated for each term
in the summation, §; = af;_; + (1 — a)f, is a temporal moving average of model weights used
to generate pseudo-label targets, and inputs are pre-processed with standard random horizontal flip
and crop. In practice, this consists of initializing a copy of the initial model and maintaining an
exponential moving average as training progresses. Some methods directly average multiple label
predictions together at each optimization step to form a single pseudo-label target (Berthelot et al.,
2019 [Li et al.,|2020) but we find pseudo-label target distributions generated by 6’ to be better suited
for the learning with noise problem due to the intrinsic ensemble nature of the weight averaging
process over many optimization steps (larvainen & Valpola, |2017). In semi-supervised learning
techniques, it is common to leverage a large batch-size of unlabeled data for consistency regular-
ization. However, we found that modulating N*, rather than the batch size of the consistency term,
yields a monotonic increase in model performance consistent with related works (Berthelot et al.,
2020). Moreover, in semi-supervised learning, different batches are used for between supervised
and unsupervised loss terms but we find (see section that for the case of learning with noise,
batches synchronized with GCE task loss term yields superior performance.

2.2.3 AUGMENTATION

AugMix (Hendrycks et al.,[2020) is a data augmentation technique which utilizes stochasticity, di-
verse augmentations, a Jensen-Shannon divergence consistency loss, and a formulation to mix mul-
tiple augmented inputs. Other augmentation strategies such as RandAugment (Cubuk et al.| |[2020),
augmentations are applied sequentially with fixed intensity which can degrade input quickly. In
AugMix, to mitigate input degradation but retain augmentation diversity, several stochastically sam-
pled augmentation chains are layered together in a convex combination to generate highly diverse
transformations. These mixing coefficients are randomly sampled from a Dirichlet distribution with
shared concentration parameters, and the resulting augmented version of the input is combined with
the original input through a second random convex combination sampled from a beta distribution,
again with shared parameters.

2.2.4 JENSEN-SHANNON DIVERGENCE

The Jensen-Shannon consistency loss is used to enforce a flat response of the classifier by incen-
tivizing the model to be stable, consistent, and insensitive across a diverse range of inputs (Zheng
et al., [2016). The Jensen-Shannon divergence (JSD) is minimized across distributions porig, Paugl»
and pyug of the original sample i and its augmented variants Z,ug1 and Taug Which can be under-
stood to measure the average information that the sample reveals about the identity of its originating
distribution (Hendrycks et al., 2020). This JSD term is computed with M = (Porig + Paugl + Pavg2)/3
and is then

1
ISD = 2 (KL(puri | M) + KL(paset | M) + KL(paug2 || 1)) )
where KL(p || ¢) is Kullback-Leibler divergence from ¢ to p. In this way, the JSD term improves

the stability of training in the presence of noisy labels and heavy data augmentation with a modest
contribution to final classifier test accuracy as shown in Table 5]
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2.3 PUTTING IT ALL TOGETHER

We unify the various components defined in sections together under a single parsimonious loss
function at training defined as

Lrre = L4+ Ajsp - JSD +Agcr - ECR 6)

which is essentially composed of robust task loss and consistency regularization. Here the JSD
term is synchronized with ECR by computing the clean distribution using py-. Final performance is
reported using 6.

To understand the synergy of GCE and ECR it is helpful to first point out that because GCE leverages
a Box-Cox power transform to stabilize loss variance, it can be shown in this case to be a form of
maximum likelihood estimation (Ferrari & Yang, 2010). The ECR term itself is based on pseudo-
labeling and pseudo-labeling can be shown to be form of entropy regularization (Grandvalet &
Bengiol 2004) which in the framework of maximum a posterior (MAP) estimation encourages low-
density separation between classes by minimizing the conditional entropy of the class probabilities
of the noisy data (Lee, |2013). That is, by minimizing entropy, the overlap of class probability
distribution can be reduced. The implicit assumption here is that classes are, in fact, well separated
(Chapelle & Zienl [2005). Moreover, MAP estimation itself acts as a regularization of MLE by
incorporating a priori knowledge of related training examples in order to solve the ill-posed noisy
learning objective and further prevent overfitting. Indeed, entropy regularization is favorable in
situations for which the joint distribution, p(x,y), is mis-specified (Grandvalet & Bengio} 2004)
which further underpins the motivation of pseudo-labeling as an apt basis for regularization of the
GCE loss.

Pseudo-labeling and data augmentation often go hand-in-hand. Data augmentation serves dual pur-
pose as a generic regularizer to mitigate over-fitting of noisy labels (Zhang et al., [2018) as well as
provides additional information about the vicinity or neighborhood of the training examples which
is formalized by Vicinal Risk Minimization (Chapelle et al., 2001). These augmented examples
can be seen as drawn from a vicinity distribution of the training examples to enlarge support of the
training distribution such that samples in the vicinity share the same class but does not model the
relation across examples of different classes (Zhang et al., [2018]). Therefore, data augmentations ap-
proximate samples of nearby elements of the data manifold where the difference, £(z) = A(x) — «,
approximates elements of its tangent space (Athiwaratkun et al.,2019). In this way, ECR can loosely
be seen as generating a set of stochastic differential constraints at each optimization step of the clas-
sification task loss. While stronger augmentation can enrich the vicinity distribution, augmentation
methods such as MixUp (Zhang et al.| |2018) and RandAugment (Cubuk et al.| [2020) can overly
degrade training examples and drift off the data manifold (Hendrycks et al., [2020). When learning
with noise, it is therefore essential to leverage an augmentation process rich in variety but which also
preserve the image semantics and local statistics such as AugMix (Hendrycks et al.| |2020) so as to
minimize the additional strain on an already ill-posed noisy learning objective. Consistent with this
understanding, although RandAugment has been successfully leveraged in semi-supervised learning
(Berthelot et al., 2020} [Kurakin et al.} 2020; [Xie et al., | 2019a)), our experiments with RandAugment
proved unsuccessful for extreme levels of label noise. Moreover, AugMix augmentation used to-
gether with the Jensen-Shannon consistency loss endows trained models with far superior model
robustness to corrupted data in deployment as shown in Table[7]

3 RELATED WORK

Some methods for learning with noise attempt to improve noisy learning performance head-on by
leveraging augmentation as a strong regularizer to mitigate memorization of corrupted labels (Zhang
et al.} 2018) while others attempt to refurbish corrupted labels to control the accumulation of noise
from mislabeled data (Song et al.l 2019). A recent theme in learning with noisy labels has been
to transform the learning with noise problem into a semi-supervised one by removing the labels
of training data determined to be corrupted to form the requisite dichotomy of clean labeled data
and a pool of unlabeled data (Nguyen et al. 2020; L1 et al., |2020); then directly applying semi-
supervised approaches such as MixMatch (Berthelot et al., 2019) and MeanTeacher (Tarvainen &
Valpolal 2017)). Other methods go so far as to require trusted human verified data and combine
re-weighting with re-labeling into a meta optimization approach (Zhang et al., 2020).
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Semi-supervised learning algorithms have advanced considerably in recent years, making heavy
use of both data augmentation and consistency regularization. MixMatch (Berthelot et al., 2019)
proposed a low-entropy label-guessing approach for augmented unlabeled data and mixes la-
beled and unlabeled data using MixUp. In MixMatch, pseudo-label targets are formed by aver-
aging label distributions produce by the model on samples drawn from the vicinity distribution
(% >k po(ylA(z))). However, this averaging requires artificial sharpening to generate low-entropy
pseudo-labels. From the MAP estimation perspective, sharpening does not add auxiliary a priori
knowledge for the optimization step but rather prescribes a desirable property of the model gener-
ated label distribution. Indeed, our experiments with the use of artificial label sharpening in RTE
resulted in failed training at high levels of label noise and subsequent related work recognized that
stronger augmentations can result in disparate predictions so their average may not generate mean-
ingful targets (Berthelot et al.}, 2020). ReMixMatch (Berthelot et al., 2020) introduced augmentation
anchoring which aims to minimize the entropy between label distributions produced by multiple
weak and strong data augmentations of unlabeled data using a control theory augmentation ap-
proach. While pseudo-label guessing and augmentation anchoring motivate the utility of multiple
augmentations of the same data, our proposed ECR for learning with noise differs in the following
important ways: ECR does not use distribution alignment for “fairness”, distribution averaging, or
label-sharpening; ECR forms pseudo-label targets using an exponential average of model weights
and is batch-synchronized with the GCE task loss term. Finally, the recent work, FixMatch (Kurakin
et al., [2020), proposes a simplified semi-supervised approach where the consistency regularization
term uses hard pseudo-labeling for low-entropy targets together with a filtering step to remove low-
confidence unlabeled examples but does not leverage multiple strong augmentations.

4 EXPERIMENTS

In this section we analyze the performance of RTE against various uniform noise configurations for
both symmetric and asymmetric settings. For asymmetric noise, we test both the traditional con-
figuration (Patrini et al., [2016)), typically reported by related works, and an additional configuration
defined by which is in the spirit of (Lee et al., [2019), where we define the asymmetric noise
structure using the confusion matrix of a trained shallow network. In all of these experiments, RTE
outperforms existing methods. Finally, we perform additional ablation studies to better understand
the contribution and synergy of the terms in equation (6) as well as to probe the efficacy of ECR.

In our experiments we consider the standard CIFAR-10, CIFAR-100, and ImageNet datasets
(Krizhevskyl, 2009; |Deng et al., 2009). CIFAR-10 and CIFAR-100 each contain 50,000 training
and 10,000 test images of 10 and 100 classes, respectively; and ImageNet contains approximately
1,000,000 training images and 50,000 validation images of 1000 classes. Additionally, we test net-
works trained with noisy labels against unforeseen input corruptions using CIFAR-10-C (Hendrycks
& Dietterich, [2019) which was constructed by corrupting the original CIFAR-10 test set with a to-
tal of 15 noise, blur, weather, and digital corruptions under different severity levels and intensities.
Classifier performance is averaged across these corruption types and severity levels to yield mean
corruption error (mCE). Since CIFAR-10-C is used to measure network behavior under data shift,
these 15 corruptions are not included during the training procedure. Here, CIFAR-10-C helps to es-
tablish a rigorous benchmark for image classifier robustness to better understand how models trained
with noisy data might perform in safety-critical applications.

To mitigate the sensitivity of experimental results to empirical, and perhaps arbitrary, choices of hy-
perparameters, we present additional results that leverage Population Based Training (PBT) (Jader-
berg et al.|[2017; [Li et al.,|2019) which is a simple asynchronous optimisation algorithm that jointly
optimize a population of models and their hyperparameters. In particular, PBT discovers a per-epoch
schedule of hyperparameter settings rather than a static fixed configuration used over the entirety of
training. These PBT schedules, for example, allow task loss £, to vary between CE and MAE loss
dynamically during training and similarly the number of ECR terms /N* can be modulated to realize
a form of curriculum learning. Moreover, for our purposes, PBT schedules also provide a form of
quasi-ablation study, as optimization of the task-loss parameter ¢, the number of ECR terms N*, and
the ECR weight Agcg allows for the realization of a simplified loss which forgos these components
if determined maximally beneficial. We find, as in other studies, that this joint optimization of hyper-
parameter schedules typically results in faster wall-clock convergence and higher final performance.
(Ho et al.}[2019;|L1 et al., 2019).
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Figure 1: Loss distributions for clean labels versus corrupt labels on CIFAR-10 with 40% label noise
(left) and 80% label noise (right). All losses are computed with respect to the labels used during
training, which mimics a realistic setting (no access to clean labels).

4.1 UNIFORM SYMMETRIC NOISE

Training Setup. Please see Section[C|in the Appendix.

Baselines. To best interpret the effectiveness of RTE, we compare our results to many techniques
for learning with noise (Table[T)). A description of each baseline method can be found in Appendix
Only two of these references provide ImageNet results trained with label noise (Table 2).

Results. Experimental results with uniform symmetric noise for both CIFAR-10 and CIFAR-100 are
presented in Table [T| with comparisons to related work, including current state-of-the-art methods.
RTE establishes new state-of-the-art performance at all noise levels and exhibits especially large
performance gaps at high noise levels. At 80% noise, previous state-of-the-art was achieved by
(Arazo et al., [2019) in the case of CIFAR-10 and by (Li et al.l 2020) in the case of CIFAR-100.
RTE improves performance over these methods by 7.0 absolute percentage points and 6.2 absolute
percentage points, respectively. Of all of these works, only two report results on ImageNet training
with noisy labels. These are included alongside RTE results in Table[2] where once again we see that
RTE performs favorably, improving state-of-the-art performance in terms of both top-1 accuracy and
top-5 accuracy. As in (Arazo et al 2019) and (Li et al.| 2020), we also include loss distributions
over clean and corrupt labels in Figure[I] Here we can see that RTE prevents rote memorization of
noisy labels. Moreover, Table [/| shows that RTE retains strong corruption robustness with an mCE
of 12.05% and 13.50% at noise ratios of 40% and 80% respectively, as measured using CIFAR-
10-C. Put in context, experiments summarized in Table [/ indicate that even with extreme levels of
mislabeled training data, RTE trained models have lower corruption error than models trained using
standard methods using clean data.

4.2 UNIFORM ASYMMETRIC NOISE

Training Setup. For consistency, uniform asymmetric noise experiments use the same hyperpa-
rameter configurations outlined for uniform symmetric noise. Here we test RTE performance using
both the traditional asymmetric noise configuration (Patrini et al.,[2016])) typically reported by related
works defined by Equation[§]in Section[G]of the Appendix as well as an additional configuration in
the spirit of (Lee et al.,[2019) where we define the asymmetric noise structure using the confusion
matrix of a trained shallow network defined by Equation[7]in Section [D]of the Appendix.

The asymmetric noise defined by [Patrini et al| (2016) in equation (8) does not corrupt all classes
but rather attempts to capture a noise process whereby labelers confuse specific pairs of classes
which by some is argued to be more realistic in practice (Han et al., 2018 |[Ren et al.| [2018). We
additionally consider a rich noise structure by training a shallow classifier (ResNet-10) on clean
CIFAR-10 and use the resulting confusion matrix of this model to define the noise structure in
equation (7). For example, this asymmetric noise process readily captures the phenomenon that
objects on blue backgrounds are often confused (e.g. birds, ships, and airplanes) and its natural
asymmetry where p(g; = smre|y; = awerane) = 0.2772 while p(§; = amrerane|y; = surp) = 0.4603
(locations [1,9] and [9, 1] in Eq. [7). Dataset statistics are provided for an instance of CIFAR-10 with
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Table 1: Test accuracy on CIFAR-10 and CIFAR-100 under uniform symmetric label noise. Results
in parentheses are upper bounds since they were computed using lower noise levels. The results
for Reed-Hard, S-Model (Goldberger & Ben-Reuven, 2016), Forward T and Co-Teaching are from
Nguyen et al.| (2020) and the results for MixUp and Meta-Learning are from L1 et al.| (2020). RTE
provides better robustness to label noise than all other methods. Higher is better.

Method CIFAR-10 CIFAR-100
# Params Noise Ratio Noise Ratio
40% 80% 40% 80%

(Prior Work)

Reed-Hard (Reed et al., 2014) — 69.66 — 51.34 —
S-Model - 70.64 - 49.10 -
MentorNet PD (Jiang et al.,[2018) 84M 77 33 56 14
Forward T (Patrini et al., [2016) - 83.25 54.64 31.05 8.90
Open Set (Wang et al., 2018) - 78.15 - - -
Rand Weights (Ren et al.,[2018) 36.4M 86.06 — 58.01 —
Bi-Level (Jenni & Favarol, [2018)) 11.2M 89 - 61.6 -
GCE (Zhang & Sabuncu, [2018) 21.8M (87.12) (64.07) (61.77) (29.16)
Co-Teaching (Han et al.,[2018) — 81.85 29.22 55.95 23.22
MixUp (Zhang et al.,|2018) - - (71.6) - (30.8)
SELFIE (Song et al., 2019) - 86.5 - 62.9 -
RoG (Lee et al.,2019) - 81.83 - 55.68 -
M-DYR-H (Arazo et al.,[2019) 11.2M - 86.6 - 48.2
PENCIL (Yi & Wu, 2019) 21.8M - - 69.12 “fail”
Meta-Learning (Li et al.,|2019) - - T74) - 42.4)
SELF (Nguyen et al.,2020) 25.0M 93.70 69.91 71.98 42.09
DivideMix (Li et al., [2020) 11.2M 94.9 79.8 75.2 60.2
(Our Work)

RTE (Manual) 13.1M 94.84 93.09 76.70 64.02
RTE (PBT) 13.1M 95.52 93.64 77.44 66.43

Table 2: Validation accuracy on ImageNet with 40% uniform symmetric label noise.

MentorNet SELF RTE

# Params 59M 25.0M 25.6M
Top-1 Acc  65.1 7131  74.79
Top-5 Acc  85.9 89.92  91.26

asymmetric label noise prescribed according to equation with a uniform noise ratio of 60% in
Table 0] of Appendix|[G].

Baselines. In the case of asymmetric noise as defined in [Patrini et al.| (2016)), by equation (§)), we
compare the performance of RTE against existing work. A brief description of each baseline method
can be found in Appendix [B] In the case of asymmetric noise structure as defined in equation (7), to
our knowledge, prior work does not exist, and we report RTE performance at varied noise levels.
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Table 3: Test accuracy on CIFAR-10 with asymmetric noise as defined in |Patrini et al.| (2016) by
equation (8). Higher is better.

Noise Ratio: 40%
GCE SELF PENCIL DivideMix RTE
Test Acc  64.79 89.07 91.16 93.4 94.49

Table 4: RTE test performance on CIFAR-10 for different ratios of uniform asymmetric noise de-
fined according to equation (7). Sharp declines in accuracy begin to occur at 65% noise due to more
AUTOMOBILE images labeled as TRUCK, than actual TRUCK images labeled as TRUCK, and so on.

Noise Ratio

20% 40% 60% 65% T0% 2%
1T Test Acc 9534 94.82 9399 80.55 72.12 59.70
J mCE 11.22 11.89 13.73 2544 33.61 44.87

Results. The results for asymmetric noise as presented in related works defined in [Patrini et al.
(2016) by equation (8) with a uniform noise ratio of 40% are shown in Table 3|along side the perfor-
mance of related methods. Again, RTE improves the state-of-the-art performance in this category,
with a 1.1 absolute percentage point increase over (Li et al.| [2020).

Test accuracy for different level of asymmetric noise using C' defined by are shown in Table
@ Even with 60% noise ratio, RTE achieves 93.99% test accuracy. The first significant decline
in accuracy occurs around a 65% asymmetric noise ratio, when the majority labels in a class are
corrupted labels from another class. That is, for Fj,—g ¢5 with C' defined by , there are more
AUTOMOBILE images labeled as TRUCKS, than actual TRUCK images labeled as TRUCK.

4.3 ABLATION STUDIES

We perform various ablation studies to better understand the contribution of each term in equation
(6], probe the efficacy of ECR, and compare with alternative regularization approaches. Our abla-
tion results are presented in Table[5} These ablation studies use the training configurations defined in
section 4.1 unless otherwise stated. We perform a component analysis where we remove one com-
ponent at a time from equation [] to better understand the performance contributions of each term.
Removal of any term degrades performance. We also test alternative consistency regularization ap-
proaches using label guessing as proposed in MixMatch (Berthelot et al., | 2019) and augmentation
anchoring from ReMixMatch (Berthelot et al., 2020) which both underperform by significant mar-
gins compared to ECR. Moreover, our results show significant benefits in the use of EMA whereas
performance degrades with the augmentation anchoring approach consistent with prior work (Berth-
elot et al., 2019). Additionally, we test if label sharpening could benefit ECR, but we find that the
artificial sharpening process amplifies noisy pseudo-labels early in training and learning collapses
for high noise ratios. Similarly, we find the strong linear chains of augmentations performed by
RandAugment lead to training instabilities. Figure [2| summarizes the comparison of ECR to a tra-
ditional semi-supervised approach where a larger batch size is used for unsupervised regularization
terms. This comparison indicates improved noisy learning performance with batch synchronization
and repeated augmentation over larger batch sizes with single augmentations, validating the use of
ECR for learning with noise.

5 CONCLUSION

We introduced robust temporal ensembling (RTE), which unifies semi-supervised consistency regu-
larization and noise robust task loss as an effective approach for learning with noisy labels. Rather
than discarding noisy labels and applying semi-supervised methods, we successfully demonstrated a
new approach for learning with noise which leverages all the data together without the need to filter,
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Table 5: Ablation study. Test accuracy reported from CIFAR-10 with 80% noisy labels. Label
guessing (Berthelot et al,2019) and augmentation anchoring (Berthelot et al,[2020) use a sharpen-

ing temperature of 7' = 0.5 as recommended in the associated related works.

Ablation Test Acc  Ablation Test Acc
RTE 93.09 Label Guessing, K = 2 79.09
No ECR (Agcr = 0) 6191 Aug. Anchoring, K = 2 83.59
No GCE (¢ = 0) 76.08 Aug. Anchoring, K = 4 83.24
No IJSD (Ajsp = 0) 90.37  Aug. Anchoring, K = 6 83.20
with ECR, N* = 2, no EMA 67.23 Aug. Anchoring, K = 2, EMA 77.38
with ECR, N* = 2, no batch-sync 88.46 ECR with Label Sharpening fail
with ECR, N* = 2, batch-sync 91.90 ECR with RandAugment fail
95 95

©o
o
o
o

Test accuracy
©
w

Test accuracy
[o2]
w

o]
o
@
o

75- 75

1 2 3 4 5 6 7 8 32 64 128 256 512 1024

bs=128, variable N* fixed N*=1, variable batch-size

Figure 2: RTE ablation study using CIFAR-10 with uniform symmetric noise ratio of 80%. Left: the
ECR batch entries are shared with the task loss and the batch size is fixed at 128, while the number
of ECR terms (IN*) is varied. Right: 1 ECR term is used with varying ECR batch size, using
batch entries that are distinct from the task loss (analogous to a more traditional semi-supervised
approach). The dashed red line on the right is the ECR baseline established using N* = 8.

refurbish, or abstain from noisy training examples. Through various experiments, we showed that
RTE performs quite well in practice, advancing state-of-the-art performance across the CIFAR-10,
CIFAR-100, and ImageNet datasets by 7.0, 6.2, and 3.5 absolute percentage points, respectively.
Moreover, experiments summarized in Tables ] and[7]show that despite significant label noise, RTE
trained models retain lower corruption error on unforeseen data shifts than models trained using
standard methods on clean data. Finally, the results of numerous ablations summarized in section
[4.3] validate the composition of loss terms and their combined efficacy over alternative methods.
In future work, we are interested in the application of RTE for different modalities such as natural
language processing and speech where label noise can be more pervasive and subjective.
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A APPENDIX: HYPERPARAMETERS

Table 6: Manual hyperparameter configurations for uniform symmetric noise experiments. The two
A\ values are \jsp and A\gcRr.

Wt. Decay [ Dropout BS LR A q N*  «
CIFAR-10 .001 9 .01 128 cos(f7E) 12,1 sin(32%E) 10 .99
CIFAR-100 0005 9 .01 128 0.04 53 0.3 8 .99
ImageNet 001 9 .00 256 .1,.01,.001 12,10 0.3 399

B APPENDIX: BASELINES FOR TABLE[I]

In this section we provide a brief summary of the baseline methods in the main text:

Reed et al.| (2014) introduce two methods for achieving prediction consistency, one based on re-
construction and one based on bootstrapping, and demonstrated empirically that bootstrapping leads
to better robustness to label noise. |Goldberger & Ben-Reuven| (2016) model the correct label as
latent and having gone through a parameterized corruption process. Expectation maximization is
used to estimate both the parameters of the corruption process and the underlying latent label. Jiang
et al. (2018) introduce the idea of learning a curriculum-learning strategy with a mentor model to
train a student model to be robust to label noise. |[Patrini et al.| (2016) estimate the noise transi-
tion matrix (under the assumption of feature independent noise) and show that, given the true noise
transition matrix, optimizing for the true underlying labels is possible. |Wang et al.| (2018) intro-
duce an iterative scheme that combines 1. outlier detection in feature space (acting as a proxy to
noisy-label detection), 2. a Siamese network (taking either a clean, clean pair or a clean, noisy pair)
to encourage separation, and 3. sample reweighting based on clean vs. noisy confidence levels in
order to effectively filter out noisy labels during training. They focus primarily on open-set noise,
but they also report performance of their system when used in the closed-set setting. Ren et al.
(2018) use a meta-learning approach to dynamically weight examples to minimize loss using a set
of validation examples with clean labels, however they also report a competitive baseline using a
randomized weighting scheme which requires no clean validation set. |Jenni & Favaro| (2018) for-
mulate example weighting as a bilevel-optimization problem, in which performance on a validation
set is maximized with respect to example weights, subject to the constraint that the model maximizes
performance on the training set; and they argue that this approach should lead to better generaliza-
tion when label noise is present. |Zhang & Sabuncul (2018) introduce a loss function that is a
generalization of cross-entropy loss and mean absolute error, which is beneficial since each exhibits
distinct desirable properties: cross-entropy exhibits better gradient properties for learning, while
mean absolute error exhibits better theoretically-grounded robustness to noisy labels. Han et al.
(2018) leverage co-teaching such that two networks are trained together, in which each network 1.
identifies high-confidence examples, 2. passes this information in a message to its peer, and 3. lever-
ages the incoming message to optimize using the examples selected by its peer. |Zhang et al. (2018)
train using convex combinations of both input images and their labels, arguing that this approach
makes it more difficult for the network to memorize corrupt labels. Song et al.[(2019) measure label
consistency throughout training in order to determine which samples are ‘refurbishable’, and these
samples are then ‘corrected’ by replacing their ground-truth label with the most frequently-predicted
label. Lee et al.|(2019) do not modify the training process of the underlying neural network but in-
stead form a generative model over the final (pre-softmax) features of the neural network, and this
generative distribution along with Bayes rule is then used to estimate a more robust conditional dis-
tribution over the label. |/Arazo et al.|(2019) fit a beta mixture model over the /oss using two mixture
components, representing clean and noisy labels, and each sample’s underlying component proba-
bilities are used to weight each sample’s contribution during training. They combine this approach
with MixUp (Zhang et al., |2018)). [Yi & Wu/(2019) maintain a direct estimate of a distribution over
true underlying labels during training, and train the parameters of a neural network by minimizing
reverse KL divergence (from the model’s predicted distribution to these true-label estimates). Mean-
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while a ‘compatibility loss’ is introduced to ensure that the estimated label distribution stays close
to the noisy labels provided with the training set. Li et al.[(2019) subject a student model to artificial
label noise during training and take alternating gradient steps and maintain a teacher model that is
not subjected to such noise. Here, alternating gradient steps are taken to 1. minimize classification
loss and 2. minimize the KL divergence from the student’s predicted distributions to the teacher’s
predicted distributions. Nguyen et al.[(2020) use discrepancy between an ensemble-based teacher
model and labels to identify and filter out incorrect labels, and continue to leverage these samples
without the labels. This is done in a semi-supervised fashion by maintaining consistency between
the teacher’s predictions and the student’s predictions. |Li et al.| (2020) maintain two networks and
for each network models /oss using a mixture of Gaussians with two components (clean and noisy).
Each network estimates which samples belong to each component, and the other network then uses
the clean samples in a supervised manner along with the noisy labels in a semi-supervised manner.

C APPENDIX: UNIFORM SYMMETRIC NOISE EXPERIMENTAL SETUP

For CIFAR-10, we leverage equation (2)) with C’}Q ;= % and we employ a 28-layer residual network
(He et al., [2016) with a widening factor of 6 (WNR 28x6) (Zagoruyko & Komodakis, 2016), a
dropout rate of 0.01 (Srivastava et al}[2014), o = 0.99, AugMix with a mixture width and severity
of 3, a batch size of 128, and 300 epochs of training. We optimize using SGD with Nesterov
momentum of 0.9 (Sutskever et al., 2013), a weight decay of 0.001, and a cosine learning rate
(Loshchilov & Hutter, 2017) of 0.03 - cos(7nk/16K), where k is the current training step and K is
the total number of training steps. The RTE loss function @ is configured with static Ajsp, AEcr
and N* of 12, 1, and 10, respectively, whereas ¢ is scheduled according to 0.6 - sin(137k/16K)
(which assigns small g-values in early training epochs, reaches a maximum of ¢ = 0.6 after 180
epochs, and decreases to ¢ = 0.33 over the remaining 120 epochs). For CIFAR-100, the setup is
similar, but different hyperparameters are used; details are included in the Appendix in Table [
In addition to manual configurations, we consider PBT with a population size of 35 to optimize
learning rate, weight decay, ¢, Ajsp, Agcr and N*. Fastidious readers will find the complete PBT
configuration defined in Appendix [F} For ImageNet, ResNet50 is used and trained with SGD for 300
epochs with a stepped learning rate of 0.1, 0.01 and 0.001 which begin at epochs 0, 100 and 200
respectively. ImageNet hyperparameters are also included in the Appendix in Table 6]

D APPENDIX: CONFUSION MATRIX FOR UNIFORM ASYMMETRIC NOISE

.0000 .0396 .2475 .0594 .0594 .0396 .0495 .0693 .2772 .1584
1765 .0000 .0294 .0000 .0000 .0000 .0294 .0000 .1765 .5882
1745 .0000 .0000 .1544 .1879 .1074 .2617 .0872 .0268 .0000
.0388 .0116 .1473 .0000 .1240 .3682 .1899 .0853 .0155 .0194
.0303 .0000 .2197 .1667 .0000 .0606 .2879 .2121 .0227 .0000 )
.0324 .0000 .1435 .4676 .1019 .0000 .1204 .1157 .0093 .0093

0536 .0179 .3571 .3036 .1071 .0714 .0000 .0536 .0179 .0179
.0704 .0000 .0986 .1268 .3803 .1831 .0986 .0000 .0000 .0423
4603 .0952 .0794 .0476 .0317 .0000 .0476 .0317 .0000 .2063
711 5132 .0263 .0526 .0263 .0132 .0658 .0395 .0921 .0000

E APPENDIX: PERFORMANCE DATA ON CIFAR-10-C

Table 7: RTE mean corruption error on CIFAR-10-C for models trained at various uniform sym-
metric noise ratios. Baseline reference values for ‘Standard’ and ‘AugMix’ mCE are reported from
Hendrycks et al.| (2020) using WRN 40x2 on clean data. Lower is better.

Noise Ratio
Standard AugMix | 0%  40%  80%
ImCE 269 112|115 1205 1350
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F APPENDIX: PBT EXPERIMENTS

Table 8: PBT sampling configuration for CIFAR-10 and CIFAR-100. We used a population size
of 35, and permutation interval of 2 epochs. In the case a member inherits another checkpoint,
each hyperparameter is resampled from its distribution with p = 0.25 or is multiplied with
w ~ Uniform(0.8,1.2) within its parameter range with p = 0.75. In the case of N*, the
previous/next hyperparameter from the ordered list is selected.

Parameter Sample distribution
Batch size 128

Dropout 0.01

153 0.9

« 0.99

LR Uniform(0.00001, 0.1)
weight decay  Uniform(0.00005, 0.002)
q Uniform(0.0, 1.0)
AJSD Uniform(0.0, 20.0)
)\ECR Uniform(0.0, 50)

N* Uniform{3, ..., 10}

G APPENDIX: UNIFORM ASYMMETRIC NOISE ON CIFAR-10

The matrix C defines the noise structure for uniform asymmetric noise on CIFAR-10 with following
labels: AIRPLANE, AUTOMOBILE, BIRD, CAT, DEER, DOG, FROG, HORSE, SHIP, TRUCK.

®)
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H APPENDIX: EXTENDED DATA AND ANALYSIS
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CIFAR-10 40% noise CIFAR-10 80% noise CIFAR-100 40% noise CIFAR-100 80% noise
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Figure 3: Parameter schedules for I, weight decay, JSD weight A ;sp, ECR weight Agcr, ¢ and
N* for CIFAR-10 and CIFAR-100 with 40% and 80% uniform symmetric noise rates.
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Table 9: Overview of class distribution of total and correct labels after sampling noisy CIFAR-10
training labels with asymmetric noise defined by equation (7) with a uniform 60% noise ratio.

# samples % samples # correct labels % correct labels

AIRPLANE 5578 11% 1958 35%
AUTOMOBILE 4069 8% 2003 49%
BIRD 6023 12% 2017 33%
CAT 6205 12% 2038 33%
DEER 5056 10% 1986 39%
DOG 4480 9% 1977 44%
FROG 5476 11% 2019 37%
HORSE 4130 8% 2028 49%
SHIP 3896 8% 2024 52%
TRUCK 5087 10% 1950 38%
TOTAL 50000 100% 20000 40%

Table 10: RTE test accuracy and mean corruption error (mCE) on CIFAR-10 and CIFAR-10-C,
respectively. In this experiment, fixed batch size of bs = 128 is used and the number of ECR terms,
N* is varied. Training configuration of these data is described in section .1} Test accuracy is
presented in Figure |2| (left).

CIFAR-10
Fixed batch-size: 128
Uniform Symmetric Noise: 80%
Vary the number of ECR terms: [NV*
1 2 3 4 5 6 7 8
T Test Acc  91.51 9190 92.57 92.65 92.77 93.14 93.09 93.21
J mCE 1532 14.87 13.74 1390 13.84 1348 13.67 13.66

1.0 1 1.0
0.8 0.8 -
> >
@ 0.6 1 © 0.6
3 3
2 044 2 044
0.2 0.2
0.0 - 0.0 -
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

Confidence Confidence

Figure 4: Reliability diagrams for RTE training models on CIFAR-10 with 40% uniform label noise
(left) and 80% label noise (right). Perfectly calibrated models follow the black line, whereas over-
confident models lie below and under-confident models lie above. This figure indicates our RTE
trained model is well calibrated when trained with 40% label noise, while (perhaps justifiably) con-
servative when trained with a more extreme level of 80% label noise.
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Table 11: RTE test accuracy and mean corruption error (mCE) on CIFAR-10 and CIFAR-10-C,
respectively. In this experiment a single consistency loss term is used and vary the batch size of that
term. This experiment with varying batch size is analogous to a more traditional semi-supervised
approach where large batch size is used for unsupervised loss terms. Training configuration for these
data is described in section 4.1} Test accuracy is presented in Figure 2] (right).

CIFAR-10
Fixed ECR terms: N* =1
Uniform Symmetric Noise: 80%

Vary the batch size:
32 64 128 256 512 1024
1 Test Acc  86.54 88.95 90.32 88.46 8587 78.13
J mCE 19.77 1778 1641 1820 20.42 28.57
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