
Under review as a conference paper at ICLR 2023

ADDRESSING VARIABLE DEPENDENCY IN GNN-
BASED SAT SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Boolean satisfiability problem (SAT) is fundamental to many applications. Ex-
isting works have used graph neural networks (GNNs) for (approximate) SAT
solving. Typical GNN-based end-to-end SAT solvers predict SAT solutions con-
currently. We show that for a group of symmetric SAT problems, the concurrent
prediction is guaranteed to produce a wrong answer because it neglects the de-
pendency among Boolean variables in SAT problems. We propose AsymSAT, a
GNN-based architecture which integrates recurrent neural networks to generate
dependent predictions for variable assignments. The experiment results show that
dependent variable prediction extends the solving capability of the GNN-based
method as it improves the number of solved SAT instances on large test sets.

1 INTRODUCTION

Boolean satisfiability problem (or the SAT problem) is to decide if there exists a set of 0-1 (false/true)
assignments to the Boolean variables in a given Boolean formula such that the formula evaluates to
1 (true). Solving the SAT problem is at the core of many applications, for example, the electronic
design automation (EDA), where the growing complexity of hardware demands for more intelligent
design and verification tools (Brand, 1993). One of the classic applications of SAT solving in EDA is
the combinational logic equivalence checking, where two circuits for comparison are composed into
one miter circuit (Gupta et al., 2006). This miter circuit can be further converted into a conjunctive
norm form (CNF) formula. If the formula is satisfiable, then the two circuits are not equivalent. In
this paper, we refer to solving the Boolean formula in CNF as the SAT problem. If the problem input
is directly in the circuit form, then we call it the Circuit-SAT problem.

Traditionally, SAT and Circuit-SAT problems are solved by heuristic searching algorithms, for ex-
ample, the Conflict-Driven Clause Learning (CDCL) algorithm (Marques-Silva & Sakallah, 1999),
implemented in solvers like MiniSAT (Sorensson & Een, 2005) and Glucose (Audemard & Simon,
2014). While SAT problems are NP-complete, heuristics play an important role in speeding up the
algorithms. Many effective heuristics have been proposed so far. For example, the Variable State-
Independent Decaying Sum (VSIDS) method was brought up to aid variable selection in the search
process (Moskewicz et al., 2001). Those heuristic algorithms have led to a huge improvement in
computational efficiency. However, they are also limited by the greedy nature of their strategy and
therefore, could be sub-optimal in certain cases (Shi et al., 2021).

Recently, there has been a growing interest in applying machine learning methods to solve com-
binatorial problems, including the SAT problem (Duan et al., 2022). With the help of deep neural
networks (DNN), end-to-end models can learn the expected outcome from the problem description.
For example, Selsam et al. (2018) proposed the NeuroSAT architecture to approach SAT solving
as a binary classification problem. NeuroSAT treats the input CNF as a bipartite graph and uses
the graph neural network (GNN) to predict whether the set of CNF clauses is satisfiable or not.
Compared to the existing heuristic searching method, NeuroSAT requires no pre-defined heuristics.
Amizadeh et al. (2018) considered the scenario when the problem formulation is in the form of
a circuit (namely the Circuit-SAT problem). As the circuit is by nature a graph, the GNN-based
architecture also applies here. Unlike NeuroSAT which requires extra steps to decode a satisfying
assignment from a SAT prediction, the neural Circuit-SAT method in Amizadeh et al. (2018) directly
predicts the satisfying assignment as the target. These existing GNN-based end-to-end methods have
demonstrated the potential of using machine-learning techniques in SAT solving.

1

Under review as a conference paper at ICLR 2023

Although prior works showed that it is possible to predict SAT solutions from the graph structure
of the problem formulation, we identify an important flaw in the existing GNN-based end-to-end
SAT solving methods: there exists a set of satisfiable CNF formulas (correspondingly, a set of
satisfiable circuits for the Circuit-SAT problem) whose satisfying assignments cannot be learned
by the existing methods in Selsam et al. (2018) or Amizadeh et al. (2018). These CNF formulas
(or circuits) are special because their problem formulations are symmetric, but the solutions are
asymmetric. Here, symmetry means swapping a pair of variables resulting in exactly the same CNF
formula (or circuit). However, a satisfying assignment requires that the two symmetric variables
must take different values. A simple example is the formula (or the circuit) that encodes “a ⊕ b”,
where a and b are two Boolean variables and “⊕” is the XOR operation. Due to the commutativity
of XOR, “b⊕ a” is equivalent to “a⊕ b”. However, a satisfying assignment requires a and b to take
different values because only “0 ⊕ 1” or “1 ⊕ 0” results in 1. Existing methods predict Boolean
assignments for a and b concurrently. The concurrent prediction on each variable solely depends on
the graph embedding of the variable node. Meanwhile, a and b share the same embedding because
they are symmetric in CNF or circuit form. Therefore, the predictions for a and b inevitably become
the same, which is clearly not a satisfying variable assignment for the formula.

We attribute this problem to the concurrent prediction in existing model that does factor in variable
dependency in SAT problems. Variable dependency refers to the fact that the prediction of one
variable will affect other variable predictions. Let’s take the “a⊕ b” example again: if a is assigned
to be 0, then b must be 1, despite that a and b are symmetric. To address this problem, we introduce
a recurrent neural network (RNN) in the SAT assignment decoding layer. With the help of RNN,
later predictions will be able to “remember” prior variable assignments. We call our new model
AsymSAT, because it can produce asymmetric SAT solutions given symmetric SAT problems. We
show by experiments that this small change can significantly improve GNN-based SAT solving.

Overall, our main contributions in this paper are:

• We identify the need of addressing variable dependency in the existing GNN-based end-to-
end SAT solving methods.

• We propose an improvement to the neural network architecture to take dependency among
variables into consideration. Our AsymSAT model uses RNN to make sequential predic-
tions of SAT solutions.

• We demonstrate that with this small change, AsymSAT achieves a higher accuracy in
SAT and Circuit-SAT solving compared to prior works. In addition to the end-to-end
machine-learning-based SAT solving, the idea of sequential predictions proposed in this
paper could potentially also benefit hybrid SAT solvers that take machine-learning as one
searching heuristic.

The paper is organized as follows: the next section provides a background on SAT problems and the
existing GNN-based end-to-end SAT solving methods. Section 3 highlights the variable dependency
in SAT solving. Section 4 introduces our improvement to the GNN architecture for SAT solving,
followed by experiments in Section 5 and the related works in Section 6. Finally, Section 7 concludes
the paper.

2 BACKGROUND

2.1 BOOLEAN SATISFIABILITY PROBLEM

The Boolean satisfiability problem talks about propositional logic with Boolean variables and
Boolean operators like “and”(∧), “or”(∨), “not” (¬). The problem is to decide whether there ex-
ist assignments to the Boolean variables so that a given propositional logic formula evaluates to true
under such assignment. The expected answer is either satisfiable (SAT) or unsatisfiable (UNSAT).
In case the formula is satisfiable, we also expect to know the satisfying variable assignment.

In Boolean satisfiability problem, the input is usually a Boolean formula in the conjunctive norm
form (CNF). In CNF, the variables and their negations are called the literals, which are first con-
nected with disjunctions (∨) to form the clauses. The clauses are then connected with conjunctions
(∧). An arbitrary Boolean formula can always be converted into an equi-satisfiable CNF formula
without an exponential blow-up using the Tseitin transformation (Tseitin, 1983).

2

Under review as a conference paper at ICLR 2023

Alternatively, the problem input could be in the circuit form, which is essentially a directed acyclic
graph (DAG) with each node representing either a circuit input, a logic gate or the circuit output.
The goal is to find an input combination that causes the circuit output to become 1. The circuit form
is more natural in some applications (for example, EDA). Note that the circuit form can be converted
into a CNF formula by introducing new variables, and the number of clauses and variables in the
converted CNF is proportional to the number of graph nodes in the circuit DAG (Prestwich, 2009).
On the other hand, a CNF formula can be converted into a circuit form as well, as presented in
Amizadeh et al. (2018, Appendix C).

2.2 SOLVING SAT PROBLEMS BY GRAPH NEURAL NETWORKS

Selsam et al. (2018) proposed using a graph neural network to decide whether a Boolean formula in
CNF is satisfiable or not. This is an end-to-end method, where the problem input is a bipartite graph
with nodes representing either a literal or a clause in CNF. The only output of the neural network
is a single bit representing the satisfiability of the formula. An edge between a literal node and a
clause node in the bipartite graph indicates that the literal is contained in the clause. Each node
has an initial embedding, which is updated by iterations of message-passing between literals and
clauses. Finally, the literal embeddings are sent to a multi-layer perceptron (MLP) to generate a
vote. The averaged vote from all literals is used to decide satisfiability. The paper also demonstrated
it is possible to decode satisfying assignments from the literal embeddings via k-means clustering.

2.3 SOLVING CIRCUIT-SAT PROBLEMS BY GRAPH NEURAL NETWORKS

When the problem is formulated in the circuit form, we automatically have a graph structure. Graph
neural network can be similarly applied in Circuit-SAT problems. Note that any logic function can
be implemented with only AND gates and NOT gates. A circuit graph made up of only these two
types of gates forms an And-Inverter-Graph (AIG), which is commonly used in the EDA community.
Amizadeh et al. (2018) developed a GNN-based model, named DG-DAGRNN to solve Circuit-SAT
problems by machine learning. The types of graph nodes (whether a node is a logic gate or a circuit
input) are encoded as one-hot vectors, which are the inputs to the GNN model. Similar to NeuroSAT,
message-passing generates node embeddings which are used to predict variable assignments. A
message-passing iteration consists of one forward pass from circuit input nodes to the only circuit
output node and one backward pass in the reversed order. Compared to NeuroSAT, message-passing
in DG-DAGRNN follows the topological order and sequentially update node embeddings, whereas
NeuroSAT updates all node embeddings concurrently.

Both NeuroSAT and DG-DAGRNN predict SAT solutions concurrently without considering depen-
dency among variables. This results in a fundamental weakness: they are unable to predict the
correct solutions for certain symmetric graphs, as explained in the next section.

3 VARIABLE DEPENDENCY IN SAT SOLVING

Generally speaking, SAT and Circuit-SAT solving must consider variable dependency. In other
words, they must “remember” what predictions have been made so far. A simple example is the
2-input XOR (x ⊕ y). Here, x and y are symmetric — if we swap them, we will get exactly the
same formula because XOR is commutative. However, we must assign different values to x and y in
order to get a 1 as the result. If x has been assigned as 1, then y must be 0. This is the dependency
between these two variables.

When converted to AIG or CNF, a symmetric formula like x ⊕ y will result in a symmetric AIG
or CNF, as shown by Figure 1. It is not hard to see, symmetric nodes have symmetric predecessors
and successors. Therefore, when GNN-based SAT solvers use message-passing to encode the graph
structure, symmetric nodes will have the same node embeddings, unless they are distinguished by
initialization. However, pure random initialization for all nodes provides no extra information for the
neural network to distinguish the symmetric ones. On the other hand, a bias in initialization would
introduce artefact that does not generalize. Therefore, prior works (Selsam et al., 2018; Amizadeh
et al., 2018; Zhang et al., 2020) all used equal initial embeddings and therefore, they would not
be able to distinguish symmetric nodes when predicting SAT assignments. We accompany our
argument on random initialization with experimental results in Appendix B.

3

Under review as a conference paper at ICLR 2023

x

y

(a) (b)

(c)

Figure 1: (a) XOR implemented by AIG; (b) the DAG representation of (a); (c) the equi-satisfiable
CNF with additional variable a and b, and the corresponding bipartite graph of XOR (here dotted
line means the variable is negated in the clause).

When individual node embeddings are directly used to predict variable assignments without con-
sidering the dependency among them, the inferred assignments will always be the same for the
pair of symmetric nodes. As we have shown by the 2-input XOR example, some symmetric for-
mulas reject equal variable assignments as their satisfying solutions. Therefore, NeuroSAT and
DG-DAGRNN in Selsam et al. (2018) and Amizadeh et al. (2018) are unable to deal with these
symmetric SAT/Circuit-SAT problems. We argue that a GNN-based SAT solver should sequen-
tially predict variable assignments in order to take variable dependency into consideration. This is
achieved by a recurrent neural network added in our model, explained in the next section.

4 OUR METHODS

In this section, we explain our approach where RNN is used for dependent predictions. Specifically,
we focus on the Circuit-SAT problem because a CNF formula for SAT problems can be converted
into a circuit structure. We formulate solving Circuit-SAT problems as a supervised learning process
as the following.

4.1 PROBLEM FORMULATION

Problem input. We expect the problem input to be a DAG representing the structure of the circuit.
As discussed in Section 2, we only need to consider circuits made from AND gates and NOT gates.
Each node in the DAG has an one-hot input feature vector that indicates the type of the node. There
are in total three types: the primary inputs, AND gates and NOT gates. Formally, we expect the
problem input to be the form of G =< VG , NG , EG >, where VG is a set of circuit nodes, NG is
a function that maps each node to its type, and EG is the set of directed edges of the circuit graph.
An edge between two nodes means that there is a wire connection from a logic gate (or a circuit
input) to another gate.

Problem output. AsymSAT predicts a 0-1 assignment for each circuit input node. We denote the
assignments as L ∈ {0, 1}i and i is the number of circuit input nodes. Each instance in the dataset is
in the form of (G, L), where the 0-1 assignments are generated by an external SAT solver that works
as the oracle.

4

Under review as a conference paper at ICLR 2023

4.2 THE PROPOSED GNN ARCHITECTURE

In the high-level, we would like to build a machine-learning model that learns the mapping from
a circuit graph to the 0-1 assignment on input nodes: f : G → L. There are plenty of existing
GNN models that are designed to handle input data organized as a graph (Yolcu & Póczos, 2019;
Selsam et al., 2018; Selsam & Bjørner, 2019). There, each graph node is associated with a vector
(the hidden state vector) which eventually represents some structural information around the node.
Nodes exchange their knowledge of the graph structure by sending messages to their neighbors, and
the hidden states will be gradually updated. The propagation of information is referred to as the
message-passing mechanism, which essentially embeds the information about the graph structure
into the hidden states.

Graph embedding layers. When it comes to the implementation of message passing, there are
various choices, for example, towards which direction the message flows, how to aggregate mes-
sages from several nodes, what is the order of hidden state updates. Therefore, different variants of
message-passing can be implemented. In this work, we build upon the DAG-RNN framework (Shuai
et al., 2016) to create a GNN architecture for sequential variable assignment prediction.

To better explain our GNN architecture, we introduce the following notations. Each graph node
v ∈ VG is associated with a d-dimensional hidden state vector xv , which is iteratively updated
based on the messages from neighboring nodes. During message-passing, we distinguish the nodes
that reach v following a directed edge (in other words, the predecessors) from those that leaves v
(the successors). We only use the messages from predecessors in the forward pass, and likewise, the
successors in the backward pass. The incoming messages are aggregated by an aggregator function
A, which is invariant to permutation of the elements in the input set. Finally, the aggregated message
is used to update the hidden state of v by a standard GRU function GRU (·) (Cho et al., 2014).

In AsymSAT, message passing follows the topological order. In the forward pass, messages flow
from circuit input nodes (which have no predecessors) to the only circuit output node (which has
no successors). The hidden state vectors are updated sequentially. In the backward pass, messages
flow from the circuit output node to the circuit input nodes. In each pass, the hidden state vectors
are updated according to the following rule:

x(k+1)
v := GRU

(
pv,A

({
m(k)

n |n ∈ N (v)
}))

(1)

Initially, pv = NG (v), which is the node type vector of node v. So in the first forward pass,

the type of a node is encoded into the hidden state vector. In all remaining passes, pv = x
(k)
v ,

which is the hidden state vector resulted from the previous pass. We use three separate GRUs:
GRUinit (·), GRUf (·), GRUb (·). Among the three, GRUinit (·) is only used in the first forward
pass. GRUf (·) is used for all remaining forward passes. GRUb (·) is used in the backward passes.
We call one forward pass followed by one backward pass as an iteration. In Equation 1, N (v) is
either the predecessors or the successors of v. Their hidden state vectors are encoded into messages
m

(k)
n by a learnable function M : x

(k)
n → m

(k)
n .

Our graph embedding layers share some similarities with Amizadeh et al. (2018) as both are built
upon DAG-RNN. The difference here is mainly in the computation between two iterations. We use
two GRUs for forward passes, because the size of a hidden state vector is different from that of
the node type vector, whereas Amizadeh et al. (2018) introduced a function to project hidden state
vectors into the space of node type vectors after each iteration to keep the same dimensionality and
use the same GRU. We argue that the projection could potentially introduce a loss of information
and therefore, we employ separate GRUs in the forward pass: GRUinit (·), GRUf (·) to handle
either the node type vector or a hidden state vector from the previous pass.

SAT assignment decoding layers. As discussed earlier, we would like to predict the Boolean
assignments on the circuit input nodes sequentially. In this node-level prediction, we map a sequence
of hidden state vectors of the circuit input nodes X = (xi1 ,xi2 ,xi3 , ...) to a sequence of input
assignment L. After iterations of message passing, these hidden state vectors encode the information
related to the structure of the graph. If two input nodes are symmetric with respect to each other,
we expect that their hidden state vectors will be the same. If we individually use each of these
vectors to decode a 0-1 assignment (namely, the concurrent prediction), the symmetric nodes will
certainly map to the same variable assignment. As we have discussed in Section 3, SAT solutions

5

Under review as a conference paper at ICLR 2023

R

R

R

R

(a) (b) (c)

MLP

Iteration=1

Iteration>1

Forward pass Backward pass

1
0
0

0
1
0

…

𝑥భ
்

𝑥మ
்

𝑥య
்

𝑥
்

𝑦ଵ

RNN
Hidden state vectors

of input nodes

𝑦ଶ

𝑦ଷ

𝑦

Figure 2: (a) An example of an AIG circuit, (b) the graph embedding layers (for simplicity, we only
draw the connections for two nodes.) (c) the SAT assignment decoding layers

must take variable dependency into consideration, therefore, in our model, we need to associate
variable assignments of the same SAT problem.

In our AsymSAT, we use a bi-directional recurrent neural network (RNN) to generate sequential
predictions on variable assignments, so that the model output on a certain circuit input node depends
on the predictions of other nodes. Sequential prediction mimics classic (non-machine-learning-
based) SAT solvers. These classic SAT solvers like GRASP (Marques-Silva & Sakallah, 1999)
or MiniSAT (Sorensson & Een, 2005) pick decision variables one after another. Regarding the
specific XOR example, we expect this RNN layer will be able to learn to predict different variable
assignments for the two symmetric variables after training with such examples.

As a summary, we show the overall architecture of our AsymSAT model in Figure 2.

4.3 TRAINING

For AsymSAT, we apply the supervised learning method. We consider SAT solution prediction as a
labeling problem — giving 0-1 labels to each of the circuit input nodes. We use Cross-Entropy for
the loss function, denoted as:

Loss = −Σn
i=1 [g (vi) log (P (vi = 1)) + (1− g (vi)) log (P (vi = 0))] (2)

where g(vi) is the ground truth of the SAT assignment on vi generated by an oracle SAT solver,
P (vi = 1) and P (vi = 0) are the predicted probability of vi to be 1 or 0.

5 EXPERIMENTAL EVALUATION

5.1 DATA PREPARATION

We prepare three datasets in total: the small-scale symmetric circuit examples, CNFs of moderate
size and large random circuits with more than 1K logic gates.

Small-scale symmetric AIG with asymmetric solutions. We manually construct 10 circuits with
no more than 3 inputs. Within each circuit, there are at least two input nodes that are symmetric but
require distinct assignments. We intentionally keep this training set small. If NeuroSAT and DG-
DAGRNN are capable of handling symmetric circuits with asymmetric SAT solutions, they should
easily reach a high training accuracy on this small dataset. However, our experiment result later will
show that they are unable to predict any SAT solutions for this dataset.

Medium-size randomly generated CNFs. We generate random CNFs in the same way as described
by Selsam et al. (2018). We refer to this dataset as the SR(n) problem, where n is the number of
variables. CNFs for SR(n) problems can be converted into the circuit form using the principle of
Shannon’s Decomposition, the way suggested by Amizadeh et al. (2018, Appendix C).

Large randomly generated AIGs. We generate random AIGs using the AIGEN tool (Jacobs &
Sakr, 2021), which was designed to create random test circuits to check and profile the EDA tools.

6

Under review as a conference paper at ICLR 2023

By default, AIGEN generates sequential logic circuits (those with storage elements). We extract the
combinational logic circuits from the sequential logic circuits. We refer to this dataset as the V (n)
problem, where n stands for the number of circuit input nodes. V (n) problems can be converted
into CNFs using Tseitin transformation. Compare to SR(n) problems, V (n) is a nontrivial dataset
even when n is relatively small. For example, each V (10) problem has more than 1K logic gates on
average. When converted to CNFs, it corresponds to more than 1K variables, which is much larger
than the largest dataset SR(40) used in the prior work (Selsam et al., 2018).

5.2 EXPERIMENTAL SETUP AND RESULT

For our AsymSAT model, we set the dimension of hidden state vectors to be 100 and use summation
as the aggregation function A. The dimension on the outcome of the R layer is 10 and we use
the Adam optimizer during training process. For NeuroSAT, and DG-DAGRNN, we follow the
same configurations as described in Selsam et al. (2018) and Amizadeh et al. (2018). To our best
knowledge, the source code for the original DG-DAGRNN model is not publicly available. We build
this model following the instructions in Amizadeh et al. (2018). We train and test all three models
on a server with two NVIDIA GeForce RTX 3090 GPUs.

5.2.1 EXPERIMENTS FOR ASYMSAT CONFIGURATIONS

Effectiveness of the RNN decoding layer. In this experiment, we train our AsymSAT model, the
NeuroSAT model and the DG-DAGRNN model on the same 10 symmetric circuits and measure the
training accuracy. We use two configurations for our AsymSAT model: one uses LSTM and the
other uses GRU in the bi-directional RNN layer (the R layer). We also add one case of removing
the R layer in AsymSAT as comparison. In this experiment, we set the learning rate of AsymSAT
models as 10−3 and the number of iterations is 5. Table 1 illustrates the result for the symmetric
circuits on five different models. Just as we discussed in Section 3, DG-DAGRNN and NeuroSAT
cannot break the tie in symmetric circuits or symmetric CNFs. And there is no way to train these
two models on this dataset. Thanks to the R layer that we introduced, our AsymSAT model can
reach a solution rate of 100.00% with LSTM and GRU. This shows the effectiveness of the R layer
for symmetric circuits.

We also test the effectiveness of the R layer in general SAT solving. We compare AsymSAT with
LSTM as the R layer and AsymSAT without the R layer on SR(10) with 5k training samples
and 800 test samples. The test result is shown in Table 2. This result illustrates that our proposed
modification can also improve the predicting accuracy on general SAT solving.

Setting the number of iterations. In this experiment, we study the effect of changing the number
of iterations on our network. We set the iteration to be 5, 10, 15, and 20, respectively, and test
on a mixed dataset with instances from SR(3) to SR(10). We can see for AsymSAT with GRU,
increasing the number of iteration from 5 to 10 will greatly improve the accuracy, then the solving
rate barely increases for more iterations. AsymSAT with LSTM shows a similar result, while it
peaks at around 15 iterations. It seems that AsymSAT with LSTM may have a higher potential to
achieve a better accuracy. Therefore, in the following experiments on SAT solving, we mainly use
AsymSAT with LSTM for comparison.

5.2.2 EXPERIMENTS FOR SAT SOLVING

In the following experiments, we compare the three models: our AsymSAT model with bi-
directional LSTM in the R layer, the NeuroSAT model, and the DG-DAGRNN model. We measure
the performance using solution rate rather than the accuracy of predicting satisfiability on the whole

Table 1: Percentage of the symmetric circuit problem solved

AsymSAT w. LSTM AsymSAT w. GRU AsymSAT w.o. R layer NeuroSAT DG-DAGRNN

100.00% 100.00% 0.00% 0.00% 0.00%

7

Under review as a conference paper at ICLR 2023

Table 2: Comparison on SR(10) with or without RNN in decoding layer.

Models AsymSAT w. LSTM AsymSAT w.o. R layer

Test accuracy 72.75% 60.50%

formula. We define solution rate as the percentage of problems on which the network is able to
predict one satisfying assignment.

Comparison on the SR(n) problems. We use 8K SR(n) problems to train the three models.
The test set is 1.5K SR(n) problems. n ranges from 3 to 10. We convert the CNF into circuits to
train and test AsymSAT and DG-DAGRNN. Table 4 summarizes the performance measured on the
SR(n) problem. The result shows that our AsymSAT model has a better performance compared
to NeuroSAT and DG-DAGRNN on this dataset. Overall, AsymSAT can reach more than 90%
solution rate (averaged across SR(3) to SR(10)), while NeuroSAT can only reach 60%. In our
experiment, the performance of DG-DAGRNN is non-competitive to the other two. We conjecture
that the unsupervised learning method in DG-DAGRNN suffers from the vanishing gradient problem
if trained on circuits converted from CNF. We provide a detailed analysis in Appendix A.

Comparison on the V (n) problems. The training data is a mixture of 8K SR(n) problems, (n
ranges from 3 to 10), and 1.2K V (n) problems (n ranges from 3 to 8). The test set is 320 V (n)
problems (n ranges from 3 to 10). We argue that V (n) is a nontrivial dataset. For example, each
V (10) problem on average has around 1K AND gates, more than those in circuits converted from
the SR(10) problem (which contains about 200 AND gates). Even for the SR(40) problem, there
are only approximately 600 - 800 AND gates. Therefore, V (n) problems can better demonstrate
the generalization capability of the tested models. Although the number of inputs is relatively small
in V (n) problems, there are plenty of logic gates in each circuit. These logic gates will add up to
the number of variables and clauses after Tseitin transformation. Therefore, the converted CNFs are
challenging for NeuroSAT. This explains the poor performance of NeuroSAT in Table 5.

In summary, our AsymSAT model is capable of breaking the tie in symmetric circuits and it achieves
a higher solution rate in comparison with NeuroSAT and DG-DAGRNN on both medium-size CNF
problems and large-size Circuit-SAT problems. This shows the effectiveness of using RNN to ac-
count for variable dependency in GNN-based SAT solving.

6 RELATED WORKS

6.1 SAT SOLVERS

There are two main categories of machine-learning-based SAT solvers: the end-to-end SAT solvers
and the solvers using machine-learning as just the heuristics. NeuroSAT (Selsam et al., 2018), DG-
DAGRNN (Amizadeh et al., 2018) and our AsymSAT all belong to the first category, where machine
learning methods are used to directly predict the SAT outcome. In the second category, machine
learning methods only serve as a heuristic guide in the classic algorithms. For example, Neuro-
Core Selsam & Bjørner (2019) used GNN to compute scores for variable selection in SAT solving
and NLocal-SAT (Zhang et al., 2020) used GNN to predict one potential solution as the starting point
of the stochastic local search (SLS) process. There are also other techniques to support SAT solving.
For example, QuerySAT proposed to use multiple SAT queries to increase accuracy (Ozolins et al.,

Table 3: Solution rate under different iterations
of iterations 5 10 15 20

AsymSAT w. GRU 80.63% 90.32% 90.25% 89.11%
AsymSAT w. LSTM 79.76% 90.45% 93.07% 91.80%

8

Under review as a conference paper at ICLR 2023

Table 4: Solution rate for the SR(n) problems

SR(3) SR(4) SR(5) SR(6) SR(7) SR(8) SR(9) SR(10)

AsymSAT 98.30% 100.00% 93.23% 94.51% 81.56% 82.90% 88.95% 85.45%
NeuroSAT 87.70% 74.47% 63.10% 59.57% 52.94% 48.40% 49.73% 43.82%
DG-DAGRNN 10.21% 15.23% 5.21% 1.83% 8.38% 5.70% 4.07% 4.24%

Table 5: Solution rate for the V (n) problems

V (3) V (4) V (5) V (6) V (7) V (8) V (9) V (10)

AsymSAT 81.58% 67.50% 72.50% 55.50% 52.50% 60.00% 45.00% 47.50%
NeuroSAT 0.025% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DG-DAGRNN 35.00% 47.50% 47.50% 45.00% 30.00% 37.50% 37.50% 32.50%

2021), and Li et al. (2022) suggested it is helpful to transfer SAT problems from different application
domains to a unified underlying distribution.

Although in this paper we mainly investigate the importance of addressing variable dependency in
the end-to-end ML SAT solvers (the first category), we argue that our technique is general and may
benefit neural SAT solvers in the second category as well. For example, in NLocal-SAT, if we can
provide a more accurate initial guess with the help of a tie breaker proposed in this paper, the later
stochastic local search process may be able to reach a satisfying solution with less searching effort.

6.2 SYMMETRIC BREAKING IN GNN-BASED SAT SOLVING

Preferential Labeling (Sun et al., 2022) is another method that can potentially break the tie between
two symmetric variables in GNN-based SAT solving. It assigns distinct initial embeddings to
variables, so symmetric nodes can therefore be distinguished. However, this initialization also
introduces artefact for GNN. In order to smooth out the artefact, each round of training or inference
must evaluate the network under multiple random permutations of the initial embeddings. In
the training phase, Preferential Labeling picks the permutation that produces the lowest loss and
only optimizes the network parameters under this permutation. Meanwhile, the inference process
takes the averaged output among all attempted permutations as the final prediction. Compared
to Preferential Labeling, we regard our method as a lower-cost solution break symmetry in SAT
solving. Appendix C details this comparison.

7 CONCLUSION

This paper addresses the need of considering variable dependency when designing a machine-
learning model for SAT solving. Specifically, the satisfying assignment to one variable is closely
related to those made to other variables within the same SAT problem. This paper proposes
using RNNs to make sequential predictions for SAT solving. Our experiments show that this
improvement extends the solving capability on symmetric circuits and achieves a higher solution
rate on randomly generated SAT and Circuit-SAT instances compared to concurrent GNN-based
SAT solving methods. Although this paper focuses on the end-to-end machine-learning-based SAT
solvers, using RNNs to account for variable dependency may also benefit other hybrid SAT solvers
that use machine learning as a guiding heuristic.

8 REPRODUCIBILITY STATEMENT

We anonymously supply the source code and the dataset used in this paper via https:
//zenodo.org/record/7115510, where readers should be able to find the scripts to train

9

https://zenodo.org/record/7115510
https://zenodo.org/record/7115510

Under review as a conference paper at ICLR 2023

and test AsymSAT and our implementation of DG-DAGRNN. The names of authors have been
removed in the code.

REFERENCES

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-SAT: An
unsupervised differentiable approach. In International Conference on Learning Representations,
2018.

Gilles Audemard and Laurent Simon. Glucose in the SAT 2014 competition. Proceedings of SAT
Competition, 2014:31, 2014.

Daniel Brand. Verification of large synthesized designs. In Proceedings of 1993 International
Conference on Computer Aided Design (ICCAD), pp. 534–537. IEEE, 1993.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Haonan Duan, Pashootan Vaezipoor, Max B. Paulus, Yangjun Ruan, and Chris J Maddison. Aug-
ment with care: Contrastive learning for the Boolean satisfiability problem. arXiv preprint
arXiv:2202.08396, 2022.

Aarti Gupta, Malay K. Ganai, and Chao Wang. SAT-based verification methods and applications in
hardware verification. In International School on Formal Methods for the Design of Computer,
Communication and Software Systems, pp. 108–143. Springer, 2006.

Swen Jacobs and Mouhammad Sakr. AIGEN: Random generation of symbolic transition systems.
In International Conference on Computer Aided Verification, pp. 435–446. Springer, 2021.

Min Li, Zhengyuan Shi, Qiuxia Lai, Sadaf Khan, and Qiang Xu. DeepSAT: An EDA-driven learning
framework for SAT. arXiv preprint arXiv:2205.13745, 2022.

Joao P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satis-
fiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th annual Design Automation Con-
ference, pp. 530–535, 2001.

Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs Ko-
zlovics. Goal-aware neural SAT solver. arXiv preprint arXiv:2106.07162, 2021.

Steven David Prestwich. CNF encodings. Handbook of satisfiability, 185:75–97, 2009.

Daniel Selsam and Nikolaj Bjørner. NeuroCore: Guiding high-performance SAT solvers with unsat-
core predictions. 2019.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

Claude E. Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical
Journal, 28(1):59–98, 1949.

Feng Shi, Chonghan Lee, Mohammad Khairul Bashar, Nikhil Shukla, Song-Chun Zhu, and Vijaykr-
ishnan Narayanan. Transformer-based machine learning for fast SAT solvers and logic synthesis.
arXiv preprint arXiv:2107.07116, 2021.

Bing Shuai, Zhen Zuo, Bing Wang, and Gang Wang. DAG-recurrent neural networks for scene
labeling. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
3620–3629, 2016.

Niklas Sorensson and Niklas Een. Minisat v1. 13-a SAT solver with conflict-clause minimization.
SAT, 2005(53):1–2, 2005.

10

Under review as a conference paper at ICLR 2023

Zeyu Sun, Wenjie Zhang, Lili Mou, Qihao Zhu, Yingfei Xiong, and Lu Zhang. Generalized equiv-
ariance and preferential labeling for GNN node classification. 2022.

Grigori S. Tseitin. On the complexity of derivation in propositional calculus. In Automation of
reasoning, pp. 466–483. Springer, 1983.

Emre Yolcu and Barnabás Póczos. Learning local search heuristics for Boolean satisfiability. Ad-
vances in Neural Information Processing Systems, 32, 2019.

Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang. NLocal-
SAT: Boosting local search with solution prediction. arXiv preprint arXiv:2001.09398, 2020.

A APPENDIX: UNSUPERVISED LEARNING IN DG-DAGRNN

In our experiment, DG-DAGRNN performs the worst on the circuits converted from CNF. We argue
that (a) an unsupervised learning approach in the prior work (Amizadeh et al., 2018) suffers from
the absence of a tie breaker among symmetric nodes, and (b) the smooth-min and smooth-max
functions used to replace AND gates and OR gates bring in the vanishing gradient problem for some
circuits. We justify these two arguments below.

For the first argument, it is not hard to see, if we convert a symmetric circuit into its differentiable
counterpart by replacing AND-gates and NOT-gates with smooth-min and 1 − z functions, we
will end up with a symmetric function. Therefore, the gradient on the two symmetric input variables
will be the same. A gradient descent procedure will keep the same variable assignment if the two
input nodes initially have the same assignment.

For the second argument, we know that the smooth-min and smooth-max functions are defined
as Equation 3. They are referred to as the Smin and Smax functions in the following text. They have
a tunable parameter τ (the temperature). As can be seen from Equation 3, when τ = +∞, both
Smin and Smax functions become the arithmetic mean function. As τ → 0, Smax(·) → max(·),
and Smin(·) → min(·).

Smin (x1, ..., xn) =
Σn

i=1xie
−xi/τ

Σn
i=1e

−xi/τ
, Smax (x1, ..., xn) =

Σn
i=1xie

xi/τ

Σn
i=1e

xi/τ
(3)

In the training phase, τ gradually decreases so that Smax and Smin allow the gradients to flow back
through all paths in the beginning, while approximating the max and min functions in the end.
The problem lies in the fact that Smax and Smin functions are very similar to the arithmetic mean
functions when τ is large in the beginning. The gradients from different back propagation paths can
easily cancel each other. Let’s consider a circuit graph generated by converting problems in CNF
format to circuit forms. The conversion method was suggested in Amizadeh et al. (2018, Appendix
C), which is based on Shannon’s Decomposition (Shannon, 1949). The structure of the circuit is
shown in Figure 3, where for every input variable (e.g., v in the figure), there are an even number
of paths to the output node and one half of the paths will go through an additional NOT-gate. If we

𝑜
𝑥1,1

𝑥1,2

𝑥2,1

𝑥3,2

𝑣

𝑣

𝐹𝑣
+

𝐹𝑣
−

1

2

3

Figure 3: Circuit structure when converting CNFs into circuit forms

11

Under review as a conference paper at ICLR 2023

Table 6: The performance of random initialization vs. having an additional R layer

Symmetric Circuit SR(10)

AsymSAT w. LSTM 100.00% 72.75%
AsymSAT w.o. R (Random Initialization) 00.00% 62.12%
AsymSAT w.o. R 00.00% 60.50%

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

AsymSAT w. GRU
AsymSAT w. LSTM
Preferential Labeling

Figure 4: Comparison of accuracy in training the three models

consider the gradient on the loss function with respect to a circuit input variable v, we have:

∂loss

∂v
=

∂loss

∂o
· ∂Smax,1

∂x1,1
· ∂Smin,2

∂x2,1
+

∂loss

∂o
· ∂Smax,1

∂x1,2
· ∂Smin,3

∂x3,2
· (−1) (4)

When τ → +∞, all of ∂Smax,1

∂x1,1
, ∂Smax,1

∂x1,2
, ∂Smin,2

∂x2,1
, and ∂Smin,3

∂x3,2
are very close to 1

2 , because the
Smax and Smin functions are similar to the arithmetic mean function. Note that there is a sign on the
second term introduced by the NOT-gate. So the two terms can easily cancel each other, resulting in
a near-0 gradient on variable v. In a circuit generated according to Shannon’s Decomposition, almost
all circuit inputs will go through such even number of paths to reach the output and therefore, there
is almost no gradient in the back propagation when τ is large, and it is harder to train the network
in the early training iterations. If this is used with learning rate decay, the later training iterations
may not be able to fully optimize the circuit input assignments as the learning rate decreases. This
possibly explains the experiment result of DG-DAGRNN in Table 4.

12

Under review as a conference paper at ICLR 2023

Table 7: Solution rate for the larger SR(n) problems

SR(20) SR(40)

AsymSAT 55.40% 27.20%
NeuroSAT 33.90% 19.60%

Table 8: Solution rate for the larger V (n) problems

V (11) V (12) V (13) V (14) V (15)

AsymSAT trained on SR(3..10) 45.00% 60.00% 45.00% 45.00% 52.50%
AsymSAT trained on SR(3..10) + V(3..8) 47.50% 47.50% 45.00% 60.00% 57.50%

B APPENDIX: RANDOM INITIAL NODE EMBEDDINGS IN GNN-BASED SAT
SOLVING

Random initialization seems to be a workaround that can break the tie between two symmetric
nodes. However, our experiment shows it is not as effective as directly addressing variable depen-
dency through RNN. We use random initialization in AsymSAT (without R layer) to illustrate this.
Table 6 summarizes the performance on symmetric circuits and the SR(10) problem. Accuracy on
symmetry circuits can hardly get to 100% and it is not as good as AsymSAT with LSTM on the
medium-size SR(10) problem.

C APPENDIX: COST AND EFFECT OF PREFERENTIAL LABELING

Preferential Labeling (Sun et al., 2022) is one technique to address the problem of random initial-
ization in node classification tasks that have the equivariance property. Finding SAT solutions for
each variable can be regarded as node classification and a permutation of the variables results in the
same permutation of the labels. Therefore, it follows the definition of the equivariance property in
the prior work. However, Preferential Labeling is usually more costly in computation. We illustrate
this on the symmetric circuit dataset. Although Preferential Labeling and the AsymSAT model can
both fit SAT solutions with 100% accuracy eventually, it only takes about 50 epochs for AsymSAT
to stably predict the right answer. Meanwhile, Preferential Labeling lingers around 90% before 200
epochs. Its prediction is not totally stable due to its inherent randomness. Moreover, in this ex-
periment, each training epoch of Preferential Labeling takes more than 20x the time of AsymSAT,
because Preferential Labeling needs to run with multiple initial embeddings in one epoch, therefore,
it could be more difficult for Preferential Labeling to scale to an even larger dataset.

D APPENDIX: DISCUSSION ON GENERALIZABILITY

In this appendix, we supply more experimental results regarding the generalizability of AsymSAT.
When training from SR(3) to SR(10), our model outperforms NeuroSAT in testing both SR(20)
and SR(40), which is shown in Table 7. On larger V (n) problems, for example, V (15) which is
about 128x the size of V (8), AsymSAT still maintains a solution rate around 50%, and it is not
significantly affected by reducing the training set to only the SR(n) problems as shown by Table 8.

13

	Introduction
	Background
	Boolean Satisfiability Problem
	Solving SAT Problems by Graph Neural Networks
	Solving Circuit-SAT Problems by Graph Neural Networks

	Variable Dependency in SAT Solving
	Our Methods
	Problem formulation
	The Proposed GNN Architecture
	Training

	Experimental Evaluation
	Data preparation
	Experimental setup and result
	Experiments for AsymSAT Configurations
	Experiments for SAT solving

	Related Works
	SAT Solvers
	Symmetric Breaking in GNN-based SAT Solving

	Conclusion
	Reproducibility Statement
	Appendix: Unsupervised Learning in DG-DAGRNN
	Appendix: Random Initial Node Embeddings in GNN-based SAT Solving
	Appendix: Cost and Effect of Preferential Labeling
	Appendix: Discussion on Generalizability

