
PHASE: PHysically-grounded Abstract Social Events
for Machine Social Perception

Aviv Netanyahu∗ Tianmin Shu∗ Boris Katz Andrei Barbu Joshua B. Tenenbaum

{avivn, tshu, boris, abarbu, jbt}@mit.edu
Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

The ability to perceive and reason about social interactions in the context of
physical environments is core to human social intelligence and human-machine
cooperation. However, no prior dataset or benchmark has systematically evaluated
physically grounded perception of complex social interactions that go beyond
short actions, such as high-fiving, or simple group activities, such as gathering.
In this work, we create a dataset of physically-grounded abstract social events,
PHASE, that resemble a wide range of real-life social interactions by including
social concepts such as helping another agent. PHASE consists of 2D animations
of pairs of agents moving in a continuous space generated procedurally using a
physics engine and a hierarchical planner. Agents have a limited field of view, and
can interact with multiple objects, in an environment that has multiple landmarks
and obstacles. Using PHASE, we design a social recognition task and a social
prediction task. PHASE is validated with human experiments demonstrating that
humans perceive rich interactions in the social events, and that the simulated agents
behave similarly to humans. As a baseline model, we introduce a Bayesian inverse
planning approach, SIMPLE (SIMulation, Planning and Local Estimation), which
outperforms state-of-the-art feed-forward neural networks. We hope that PHASE
can serve as a difficult new challenge for developing new models that can recognize
complex social interactions.1

1 Introduction

Humans make spontaneous and robust judgments of others’ mental states (e.g., goals, beliefs, and
desires), characteristics (e.g., physical strength), and relationships (e.g., friend, opponent) by watching
how other agents interact with the physical world and with each other. These judgements are critical
to engaging socially with other agents. AI and robots that cooperate with humans will similarly
need to engage with us socially, and by extension make these same judgements about both physical
notions, like strength, and social notions, like mental states.

Prior work has looked at recognizing social interactions, but evaluations and benchmarks have been
limited to the artifacts of social interactions, like high-fives and hand shakes [18, 14, 17, 24, 7, 22, 19,
12, 6, 15, 25]. Here, we create the first benchmark for reasoning about the underlying mechanisms
and beliefs of social interactions, instead of these overt actions that are correlated with certain types
of interactions. We propose a novel dataset, PHASE (PHysically-grounded Abstract Social Events),
that expresses complex social concepts in a physical setting, such as helping and hindering.

∗These two authors contributed equally.
1Project website: https://www.tshu.io/PHASE.

2nd Workshop on Shared Visual Representations in Human and Machine Intelligence (SVRHM), NeurIPS 2020.

https://www.tshu.io/PHASE

Agents

Objects
Landmarks

Walls
Field of View

A B C

Figure 1: Demonstrating the PHASE physical-social simulation. (A) The elements of the simulation:
agents (with a limited conical field of view), objects with different colors and sizes, landmarks with
different colors, and immovable walls. (B) Frames from a video depicting an abstract social event
sampled in the PHASE simulator. The green agent is weak, therefore has difficulty moving the pink
object, which the red agent eventually helps with. (C) Frames from a video depicting the opposite
situation, where a green agent is moving an object when the red agent steps in and steals it away.

Collecting datasets of social interactions is very difficult, as it involves playing out complex scenarios
while recording the intent and mental states of agents. Heider and Simmel [8] demonstrated that
one can understand social events depicted in animations of simple geometric shapes moving in a
physical environment. We draw inspiration from this to propose a joint physical-social simulation
for generating PHASE, as shown in Figure 1, where agents and objects are physical bodies moving
in a 2D physics simulation. Grounded social interactions are generated using a hierarchical planner
and a physics engine (Figure 2). Manipulating the parameters of this simulation enables us (i) to
procedurally generate complex social events that resemble a wide range of real-life social interactions
as training data for models, and (ii) to control social and physical variables to create training data with
balanced ground-truth labels as well as to carefully design evaluation for generalization in unseen
environments and social behaviors.

We propose two machine social perception tasks on PHASE that require recognizing goals and
relationships of agents, and predicting the future trajectories of agents. We test state-of-the-art
methods based on feed-forward neural networks and show that they fail to understand or predict
many of these social interactions. To further augment machine perception of social interactions, we
introduce a Bayesian inverse planning-based approach, SIMPLE (SIMulation, Planning and Local
Estimation), that significantly outperforms prior work.

In summary, our contributions include: (i) a joint physical-social simulation for procedurally gener-
ating abstract social events grounded in physical environments, (ii) using this engine to generate a
first-of-its-kind abstract social events dataset, and (iii) proposing two social perception tasks and a
benchmark including state-of-the-art methods and a Bayesian inverse planning-based approach.

Figure 2: Overview of the simulation and the hierarchical planner. (A) Key components of the
simulation. (B) The hierarchical planner in our simulation. At each step the planner searches for an
action based on the agent’s belief represented by a set of particles.

2 Joint Physical-Social Simulation

The simulation objective is to synthesize motion trajectories of multiple entities (agents and objects)
that follow physical dynamics, and also elicit strong impression of social behaviors. As shown in
Figure 2A, the simulation has three main components — a structured physical and social scene
configuration, a hierarchical planner, and a physics engine. To synthesize an abstract social event, we
specify the physical and social configurations. Each agent has an independent hierarchical planner

2

A B C

D E F

Figure 3: Example abstract social events in the PHASE dataset. (A) Helping a large-sized agent get
an object it could not reach. (B) Two weak agents carrying an object together (collaboration). (C)
Green chasing red. (D) Two agents trying to put the same object to different landmarks. (E) Red
blocking green (hindering). (F) Neutral agents pursing independent goals.

that has access only to its own mental state and partial view of the environment. At each step, each
agent replans based on its beliefs and observations of the scene. The physics engine, then steps the
environment forward based on these plans. This process repeats to generate a video. We give an
overview of the simulation in this section and provide more details in Appendix B.

2.1 Formulation

We formally define the social behaviors of agents by a decentralized partially observable Markov
decision process (Dec-POMDP) [16]. There are N agents sharing the same state space S and action
space A. In our simulation, the action space consists of applying a force in one of 8 directions,
turning right or left, stopping, grabbing an object (attaching it to the agent’s body) or letting go of
an object, and no force. The physical dynamics of the environment is defined by state transition
probabilities T : S ×AN ×RN → S , i.e., P (s′|s, {ai}Ni=1, {fi}Ni=1), where fi ∈ R is the maximum
magnitude of the force agent i can exert at one step, defining the agent’s physical strength.

At each step t, agent i observes part of the world state st through vision (which is lim-
ited to a conical field of view obstructed by walls and entities) and a touch sensor, i.e.,
oti ∼ Oi(o|st). The agent updates its belief, b(st), based on the observation by b(st+1) ∝
Oi(o|st+1)

∑
st∈S P (st+1|st, {ai}Ni=1, {fi}Ni=1)b(st). Agents know the underlying map of the envi-

ronment and the number of entities, but not where other entities are unless they are seen or felt.

Each agent has a physical goal gi ∈ G or a social goal, i.e., helping or hindering. Social goals
are indicated by a social utility weight αij ∈ {−1, 0, 1}. When αij = 1, agent i will help agent j
achieve its goal; when αij = −1, agent i will hinder agent j; when αij = 0, agent i will pursue its
own physical goal. According to this, we can write an agent’s reward in the context of a 2-agent
interaction: Ri(s, a) = (1− |αij |)R(s, gi) + αijR(s, gj) + C(a), where C(a) is the cost of taking
action a. Given this reward function, each agent plans its actions to maximize accumulated reward
over a limited horizon T , i.e.,

∑T
t=1Ri(s

t, ati). We assume agents know each other’s goals, which is
shown to be sufficient for generating rich social behaviors in our experiments.

2.2 Hierarchical Planner

It is challenging to synthesize complex social behaviors at scale. Prior work attempted to do this with
manually designed motion [4]. In this work, we propose a hierarchical planner as shown in Figure 2B
for deriving agent behaviors with bounded rationality, which is inspired by task and motion planning
(TAMP) [11]. The planner maintains a set of particles to approximate the belief of each agent at
each step. At each step, we first update particles by simulating one step in the physics engine and
then resample the particles that violate the new observation. Given the current particles, we use a
high-level planner to generate subgoals that are represented by predicates indicating which immediate
states an agent should reach in order to achieve the final goal. The high-level planner will select the
most valuable subgoal at the current step, favoring a subgoal that frequently appears in the subgoal
plans among the particles, and has a lower cost. Finally, we feed the subset of the particles that yield
the best subgoal to the low-level planner, which will search for the best action to reach that subgoal.

3

3 PHASE Dataset

3.1 Procedural Generation

To synthesize the PHASE dataset, we sample a rich set of scene configurations variables, each of
which is fed to the simulation to render a video depicting an abstract social event. Physical Variables:
There are 90 different environment layouts, comprised of wall positions and sizes. There are four
possible sizes for entities and four agent strength levels. There two agents, and up to two objects.
Social Variables: We sample either a physical goal or a social goal for each agent. The physical
goals are: going to one of the four landmarks, moving a specific object to one of the four landmarks,
approaching another agent, and getting away from another agent. As there could be two different
objects, we have 14 physical goals in total. There are two social goals — helping and hindering.

By sampling the environment layout, entity sizes, agent strengths, agent goals, αij and αji, and
the initial states of all entities, we can create a large set of physical and social scene configurations.
In general, there are five types of social events: (i) helping, (ii) collaborating on a joint goal, (iii)
hindering, (iv) two agents having conflicting goals such as chasing or fighting over the same object,
and (v) two neutral agents pursing independent goals. We show examples of these social events in
Figure 3 and in the supplementary video. Finally, we define three types of relationships between
agents based on these five types of social events: (i) and (ii) correspond to friendly relations, (iii) and
(iv) correspond to adversarial relations, and (v) corresponds to neutral relations.

Dataset Statistics. PHASE contains 500 videos of abstract social events. Each lasts from 10 seconds
to 25 seconds. Each goal has 37 to 65 examples. For the friendly, adversarial, and neutral relations,
there are 181, 195, and 124 examples respectively. With these 500 videos, we create a training
set of 320 videos, a validation set of 80 videos, and a testing set of 100 videos. To evaluate the
generalization of a trained model, 80% of the testing videos are synthesized with novel environment
layouts that are unseen in the training and validation sets. Moreover, there are 10 videos showing
unique types of social interactions that are only seen in the test set.

3.2 Human Experiments

To evaluate whether PHASE depicts social interactions, we conduct two human experiments on
Mechanical Turk.

Figure 4: Consistent human responses in
Experiment 2 showing how many videos
(percentages) were assigned with an in-
teraction category by at least 50% of par-
ticipants who watched the videos.

Experiment 1: Multi-label descriptions. We compiled
a set of 23 social interaction types from (i) common so-
cial interactions studied in prior literature [4, 5], and (ii)
free responses collected from a preliminary experiment
where participants described videos in PHASE in their
own words. We found that the abstract social events in
PHASE resemble 18 diverse real-life interaction categories
(Figure 4), participants could recognize unintentional inter-
actions (e.g., agents with independent goals accidentally
crossed paths), and all friendly and adversarial interactions
were meaningful and intentional to participants.

Experiment 2: Comparing the synthesized trajecto-
ries with human-controlled trajectories. This experi-
ment consists of two parts. In the first part, we designed
a 2-player game based on PHASE, where humans can
control agents by pressing keys. In the second part, we
recruited additional participants and divided them into two
groups. One group watched the human-controlled videos,
and the other watched matching videos from PHASE. For
each video, participants were asked to judge the goals and
relations of the agents, and rate how likely humans were to behave similarly to these agents under the
same goals and relations. We found that there was no significant difference between the two groups
(t(15) = −0.96, p = 0.34 for goal judgments, t(7) = −1.5, p = 0.17 for relation judgments, and
t(7) = −0.21, p = 0.83 for human-likelihood).

4

Method Goal Relation
Human 0.975 0.97
2-Level LSTM 0.370 0.73
ARG 0.420 0.75
SIMPLE 0.870 0.88

Table 1: Goal and relation recognition
accuracy in the first task.

Method ADE FDE
25% 50% 75% 25% 50% 75%

S-LSTM 6.19 6.58 6.75 6.27 6.58 6.74
STGAT 6.01 6.40 6.51 6.06 6.30 6.44
SIMPLE 2.78 1.93 1.72 2.63 2.28 1.75

Table 2: Trajectory prediction error for different portions
of the videos in the second task.

3.3 Social Perception Tasks

We design two social perception tasks that evaluate a model’s abilities to recognize the goals and
relations of agents, and to predict the future social behaviors based on partial observation.

Task 1: Joint inference of goals and relations. This task focuses on understanding social interac-
tions, i.e., jointly inferring agents’ goals and relationships to other agents to explain their behavior.
Unlike typical activity recognition, this task focuses on why the agents exhibit certain behaviors,
rather than giving a literal description of what the agents are doing.

Task 2: Multi-entity trajectory prediction. Since robots and intelligent machines must not only
understand social interactions, but also engage with us socially, we design a second task to predict
the behavior of a social agent. This requires both social and physical reasoning, as all agents and
objects are constrained by physics. A model must predict the trajectories in the next 10 steps (2.5
seconds) of all entities after watching the first 25%, 50%, or 75% of the video.

4 Results

To address the proposed tasks, we develop a Bayesian inverse planning approach, SIMPLE , that inte-
grates computational theory of mind [2] with simulation for physical reasoning [3] (see Appendix D
for the details of this approach). For the first task, joint goal and relation inference, we compare
SIMPLE with two state-of-the-art approaches for recognizing group activities, 2-Level LSTM [10]
and ARG [23], as well as with human performance. For the second task, trajectory prediction, we
compare SIMPLE with two feed-forward models: Social-LSTM [1] and STGAT [9]. We use ADE
and FDE [1] as evaluation metrics. We present more details of the baselines in Appendix F.

Table 1 and Table 2 summarize the performance of all methods in the two tasks. For the first task,
humans achieve almost perfect accuracy. SIMPLE performs significantly better than the other two
baselines. This suggests that the underlying meaning of different social interactions could not be
captured by motion patterns alone. Similarly, trajectories prediction based on SIMPLE also outper-
forms Social-LSTM and STGAT that have been demonstrated to be effective in predicting human
pedestrian trajectories. Crucially, the predicted trajectories from these two models deviate further
from the ground-truth as the observations accumulate, whereas predictions based on inferences from
SIMPLE are increasingly accurate due to better goal inference when observing longer trajectories.

Although SIMPLE demonstrates superior results compared to strong baselines, it requires simulation
in a physics engine and expensive search with a planner, which poses challenges for future work on
machine social perception. E.g., how to achieve success in theory-based inference and social behavior
prediction for complex physically grounded social interactions? How can models generalize social
and physical dynamics learned from training environments to novel environments?

5 Conclusion

We propose a joint physical-social simulation to procedurally generate a large set of social interactions
grounded in physical environments. We use this simulator to create the first physically-grounded
abstract social event dataset, PHASE. Our human experiments show that the synthesized videos are
recognized as depicting a large variety of real-life social interactions. The two social perception tasks
for machines demonstrate that much remains to be done with existing models, even with the Bayesian
inverse-planning approach, SIMPLE, we introduce for solving these tasks. Having a systematic
benchmark for understanding social interactions will hopefully spur new research and models.

5

Acknowledgments

We would like to thank David Mayo and Yen-Ling Kuo for their help with the experiments. This
work was supported by NSF STC award CCF-1231216 (the Center for Brains, Minds and Machines),
ONR MURI N00014-13-1-0333, the MIT-Air Force AI Accelerator, Toyota Research Institute, the
DARPA GAILA program, and the ONR Science of Artificial Intelligence program.

References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and

Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 961–971, 2016.

[2] Chris L Baker, Julian Jara-Ettinger, Rebecca Saxe, and Joshua B Tenenbaum. Rational quantita-
tive attribution of beliefs, desires and percepts in human mentalizing. Nature Human Behaviour,
1(4):1–10, 2017.

[3] Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of
physical scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327–
18332, 2013.

[4] Tao Gao and Brian J Scholl. Chasing vs. stalking: interrupting the perception of animacy.
Journal of experimental psychology: Human perception and performance, 37(3):669, 2011.

[5] Andrew S Gordon and Melissa Roemmele. An authoring tool for movies in the style of heider
and simmel. In International Conference on Interactive Digital Storytelling, pages 49–60.
Springer, 2014.

[6] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sud-
heendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, et al. Ava: A
video dataset of spatio-temporally localized atomic visual actions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6047–6056, 2018.

[7] Simon Hadfield and Richard Bowden. Hollywood 3d: Recognizing actions in 3d natural scenes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3398–3405, 2013.

[8] Fritz Heider and Marianne Simmel. An experimental study of apparent behavior. The American
journal of psychology, 57(2):243–259, 1944.

[9] Yingfan Huang, Huikun Bi, Zhaoxin Li, Tianlu Mao, and Zhaoqi Wang. Stgat: Modeling
spatial-temporal interactions for human trajectory prediction. In Proceedings of the IEEE
International Conference on Computer Vision, pages 6272–6281, 2019.

[10] Mostafa S Ibrahim, Srikanth Muralidharan, Zhiwei Deng, Arash Vahdat, and Greg Mori. A
hierarchical deep temporal model for group activity recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1971–1980, 2016.

[11] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning in the
now. In 2011 IEEE International Conference on Robotics and Automation, pages 1470–1477.
IEEE, 2011.

[12] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human
action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[14] Marcin Marszalek, Ivan Laptev, and Cordelia Schmid. Actions in context. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 2929–2936. IEEE, 2009.

6

[15] Mathew Monfort, Alex Andonian, Bolei Zhou, Kandan Ramakrishnan, Sarah Adel Bargal, Tom
Yan, Lisa Brown, Quanfu Fan, Dan Gutfreund, Carl Vondrick, et al. Moments in time dataset:
one million videos for event understanding. IEEE transactions on pattern analysis and machine
intelligence, 42(2):502–508, 2019.

[16] Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy Marsella. Taming
decentralized pomdps: Towards efficient policy computation for multiagent settings. In IJCAI,
volume 3, pages 705–711, 2003.

[17] Alonso Patron-Perez, Marcin Marszalek, Ian Reid, and Andrew Zisserman. Structured learning
of human interactions in tv shows. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(12):2441–2453, 2012.

[18] M. S. Ryoo and J. K. Aggarwal. Spatio-temporal relationship match: Video structure comparison
for recognition of complex human activities. In IEEE International Conference on Computer
Vision (ICCV), 2009.

[19] Tianmin Shu, M. S. Ryoo, and Song-Chun Zhu. Learning social affordance for human-robot
interaction. In International Joint Conference on Aritifical Inteliigence (IJCAI), 2016.

[20] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[21] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances in neural
information processing systems, pages 2164–2172, 2010.

[22] Coert Van Gemeren, Ronald Poppe, and Remco C Veltkamp. Spatio-temporal detection
of fine-grained dyadic human interactions. In International Workshop on Human Behavior
Understanding, pages 116–133. Springer, 2016.

[23] Jianchao Wu, Limin Wang, Li Wang, Jie Guo, and Gangshan Wu. Learning actor relation
graphs for group activity recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9964–9974, 2019.

[24] Kiwon Yun, Jean Honorio, Debaleena Chattopadhyay, Tamara L. Berg, and Dimitris Samaras.
Two-person interaction detection using body-pose features and multiple instance learning. In
Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society
Conference on. IEEE, 2012.

[25] Hang Zhao, Antonio Torralba, Lorenzo Torresani, and Zhicheng Yan. Hacs: Human action clips
and segments dataset for recognition and temporal localization. In Proceedings of the IEEE
International Conference on Computer Vision, pages 8668–8678, 2019.

7

Method Goal Relation
Human 1.0 1.0
2-Level LSTM 0.063 0.38
ARG 0.25 0.25
SIMPLE 0.875 1.0

Table 3: Goal and relation recognition accuracy evaluated on human-controlled trajectories.

Method ADE FDE
25% 50% 75% 25% 50% 75%

S-LSTM 6.13 6.10 6.12 6.17 6.13 6.23
STGAT 6.07 6.04 6.97 6.09 6.05 6.13
SIMPLE 3.60 3.01 1.97 3.32 2.64 1.17

Table 4: Trajectory prediction accuracy after watching different portions of the videos evaluated on
human-controlled trajectories.

Method Goal Relation
SIMPLE (Initial) 0.795 0.82
SIMPLE (Global) 0.835 0.84
SIMPLE (Full) 0.870 0.88

Table 5: Ablation study on the effect of proposal updates based on local estimation for Task 1. The
evaluation is using the test set of PHASE. Initial, Global, and Full represent SIMPLE with only
the initial proposals, SIMPLE using global estimation for updating the proposals, and SIMPLE as
proposed in Algorithm 2.

A Additional Experimental Results

A.1 Evaluation on Human-controlled Trajectories

We evaluate the baseline approaches on the two tasks using the human-controlled trajectories (8
videos) collected in the second human experiment (comparing the synthesized trajectories with
human-controlled trajectories) as summarized in Table 3 and Table 4. The results show that the
approaches based on feed-forward neural nets suffer a high degradation in the recognition accuracy
for goals and relations for Task 1, whereas the performance of SIMPLE is consistent with the results
on synthesized trajectories in PHASE. For Task 2, the prediction error by SIMPLE is initially higher
than the error when using PHASE; but it gradually decreases as SIMPLE observes a larger portion of
the trajectories, and eventually becomes comparable to the error on PHASE.

A.2 Ablation Study (Evaluation on PHASE)

To evaluate the effect of the proposal update based on location estimation in SIMPLE, we compare
the full approach with (i) a variant without proposal update, and (ii) a variant with update based
on the complete trajectories instead of location estimation (also with 6 iterations). We report the
performance for Task 1 on the test set of PHASE in Table 5. The results demonstrate that local
estimation indeed can help find better proposals through a handful of iterations.

B Details of Joint Physical-Social Simulation

Our joint physical-social simulation is described in Algorithm 1, which includes a physical simulation
T , and a hierarchical planner which consists of a high-level planner (HP) and a low-level planner (LP).
Given the scene configuration, the simulation updates the belief particles based on new observations,
uses the hierarchical planner to sample actions for all agents based on the updated particles, feeds
the actions to the physics engine to simulate one step, and renders 5 frames of video based on the
simulated physical states. The final video has a frame rate of 20 FPS. We discuss more implementation
details as follows.

8

Algorithm 1: Joint Physical-Social Simulation

Input: g1, g2, α12, α21, f1, f2, and initial state s1

Output: Abstract social event s1:T

for agent i = 1, · · · , 2 do
Initialize belief particles {b0i,k}Kk=1 ;

end
for time steps t = 1, · · · , T do

for agent i = 1, · · · , 2 do
Update observation oti;
Update belief particles {bti,k}Kk=1 based on oti;
Set the other agent j ← {1, 2} \ {i};
for each particle k = 1, · · · ,K do

Get subgoal hti,k ← HP(gi, gj , αij , bti,k);
end
for subgoal h ∈ H do

Esitmate value V (Bti , h, gi, gj , αij) =
1
K

∑K
k=1 1(h = hti,k)− λ∑K

k=1 1(h=hti,k)

∑K
k=1 1(h = hti,k)Ĉ(bti,k, sg);

end
Select subgoal hti,∗ = arg maxh V (Bti , h, gi, gj , αij);
Get belief particles B̃ti that correspond to hti,∗;
Get action ati ← LP(B̃ti , hti,∗);

end
Update state st+1 ← T (st, {ati}2i=1, {fi}2i=1);

end

Predicate Definition
ON(agent/object, landmark) An entity is on a landmark
TOUCH(agent, agent/object) An agent touches another entity

ATTACH(agent, object) An object is attached to an agent’s body
CLOSE(agent/object, agent/object/landmark) An entity is within a certain distance away from

another entity or a landmark

Table 6: Predicates and their definitions. Note that we also consider their negations, which are not
shown in the table for brevity.

B.1 Predicates, Symbolic States, Goals, and Subgoals

In our simulation, we define a set of predicates as summarized in Table 6. These predicates and their
negations are used to (i) convert a physical state into a symbolic state, and also (ii) become a subgoal
space that our hierarchical planner considers for the high-level plans.

Furthermore, the final goal states for physical goals and social goals of agents are also represented
by a subset of these predicates, i.e., ON(agent/object, landmark), TOUCH(agent, agent), and their
negations.

B.2 Hierarchical Planner

The planner maintains a set of particles to approximate the belief of each agent at each step, i.e.,
Bti = {bti,k}Kk=1, where each particle bti,k represents a possible world state. All particles are initially
sampled from a uniform distribution of possible states of entities. At each step, we first update
particles by simulating one step in the physics engine assuming that other agents will maintain a
constant motion and then resample the particles that violate the new observation.

Given the current particle set, we use a high-level planner to generate subgoals. The high-level
planner first converts the physical state in each particle into symbolic states represented by predi-
cates, and then searches for the best symbolic plan based on the reward of each agent. Subgoals

9

A

B

1 2 3 4 5 6 7

8 9 10 11 12 13 14

1 2 3 4 5 6 7

Figure 5: Illustration of the effect of estimated value function for the high-level planner. The numbers
indicate temporal order of the frames. In both sequences, the green agent’s goal is to move the blue
object to the red landmark in the bottom-right corner. Since it does not see the blue object initially,
it needs to first find the object. (A) The sequence when λ = 0. since there is more unseen space in
the left part of the environment, it is more likely that the blue object is in the left part. So the green
agent first searches the left part when not considering the cost of doing so. (B) The sequence when
λ = 0.05. When considering the cost, it is worthwhile for the green agent to search the nearby region
first. The chance of finding the blue object there is slightly lower than the left region, but the resulting
cost is considerably lower. In particular, it first looks around (frame #2) and then proceeds to search
the upper-right part (frame #3 and #4). This comparison demonstrates that an appropriate λ could
give us more natural agent behaviors under partial observability.

are represented by predicates indicating which immediate states an agent should reach in order to
achieve the final goal. This produces a subgoal space H consisting of all possible predicates. For
computational efficiency, we only consider the most immediate subgoal in the plan for the next
move. Let hti,k ∈ H be the best subgoal for agent i at step t based on its belief state in particle
bti,k. We estimate the value of each subgoal by V (Bti , h, gi, gj , αij) = 1/K

∑K
k=1 1(h = hti,k) −

λ/(
∑K
k=1 1(h = hti,k))

∑K
k=1 1(h = hti,k)Ĉ(bti,k, sg), where Ĉ(bti,k, sg)) is a heuristics-based es-

timation of cost to reach goal state sg based on belief state bti,k defined as the estimated distance
that the agent needs to travel before reaching the final goal state, and λ ∈ (0, 1) is a scaling
factor. The high-level planner will select the most valuable subgoal at the current step, i.e.,
hti,∗ = arg maxh V (Bti , h, gi, gj , αij). Finally, we feed the subset of the particles that yield hti,∗ as
the best subgoal (B̃ti ⊂ Bti) to the low-level planner, which will search for the best action to reach
that subgoal.

For the high-level planner we use A∗ to search for a plan of subgoals for N = 2 agents based on
K = 50 belief particles.

To ensure a subgoal selection for simulating natural agent behavior without expensive computation,
we design a heuristics-based value estimation V (Bti , h, gi, gj , αij) for each subgoal as shown in
Algorithm 1. This value function favors subgoals that are more likely to be the best subgoal in the
true state (i.e., high frequency subgoals generated by all belief particles) and have lower cost (i.e.,
Ĉ estimated by the distance from the current state to the final goal state according to a given belief
particle). By changing the weight λ, we are able to alter the agent’s behavior. Figure 5 demonstrates
an example of how λ affects the agent’s behavior. In practice, we find λ = 0.05 offers a good balance
and can consistently generate natural behaviors.

For the low-level action planner, we use POMCP [21] with 1000 simulations and 10 rollout steps.
For exploration in POMCP, we adopt a variant of PUCT algorithm introduced in [20], where we use
cinit = 1.25 and cbase = 1000.

10

Figure 6: Illustration of how the red agent updates its belief using K = 10 particles. (A) True states
st (top) and st+1 (bottom). The bright pixels indicate the red agent’s field of view. (B) {btred,k}Kk=1

(top) and {bt+1
red,k}Kk=1 (bottom). The states in the all particles are visualized together. At step t+ 1 the

red agent observes the blue object via its field of view. All particles are then updated accordingly with
the ground truth properties of the blue object, and the inconsistent belief states are also resampled.
(C) The state in one of the belief particles, btred,k (top) and bt+1

red,k (bottom). The particle is updated
with ground truth properties blue object at step t+ 1. The properties of the pink object are resampled
at step t+ 1 since its believed position in step t conflicts with the observation at step t+ 1.

B.3 Belief Representation and Update

Each agent’s belief is represented by K = 50 particles in the simulation. Each particle represents
a possible world state that is consistent with the observations. The state in a particle includes the
environment layout, and physical properties of each entity — shape, size, center position, orientation
of the body, linear and angular velocity, and attached entities.

Each particle is updated with the ground truth properties of observed entities: the agent itself, other
entities in its field of view (approximated by 1× 1 grid cells on the map) or entities in contact with
the agent. Entities that are in contact with observed entities are also defined as observed.2 Contact
occurs when entities are attached or collide, and is signaled by agents’ touch sensory.

Unobserved entity properties differ between particles. We start by randomly sampling possible initial
positions from the 2D environment and setting other properties (orientation and velocity) to 0. To
update a belief particle from t to t+ 1, we first apply the physics engine to simulate one step, where
we assume constant motion for entities. Then we check the consistency between the simulated state
at t+ 1 and the actual observation at t+ 1. For entities that contradict the observation, we resample
their positions and orientations. We then repeat the consistency check and resampling until there is
no conflict.

Figure 6 depicts an example of how an agent updates its belief from step t to step t+ 1 based on its
observation at step t+ 1.

C More Example Events in PHASE

We show more example events in PHASE in the supplementary video.

D Details of SIMPLE

To address the proposed tasks, we develop a Bayesian inverse planning approach, SIMPLE (SIMula-
tion, Planning and Local Estimation), that integrates computational theory of mind [2] with simulation
for physical reasoning [3].

2This is to ensure that the agent knows (i) whether there is any other agent grabbing the same object it is
currently grabbing, and (ii) whether an observed agent is grabbing any object.

11

Figure 7: Diagram of how the proposal in a single particle is updated in SIMPLE. For brevity, we
drop the subscript m. M-H represents Metropolis–Hastings algorithm for determining whether to
accept the new proposal. The red lines indicate bottom-up proposals and the blue lines represent
top-down generative processes.

Inverse planning relies on the notion that if one correctly infers hidden variables, like goals, relations,
strengths, and beliefs, the generated rational plans for agents will be a good match for the observed
plans. We instantiate this idea in the following way: let Y = 〈gi, gj , αij , αji, fi, fj〉 be the hypothesis,
s1:T be the observed state sequence (in particular, trajectories of all entities) of the event, and
ŝ1:T = G(gi, gj , αij , αji, fi, fj) be the simulation given the hypothesis, where the generative model
G(·) includes both the hierarchical planner and the physics engine. Then we have the following
posterior probability for inference

P (Y = 〈gi, gj , αij , αji, fi, fj〉|s1:T)
∝ P (s1:T |Y)P (gi)P (gj)P (αij , αji)P (fi)P (fj),

(1)

where P (s1:T |Y) = e−β
∑T
t=1 ||s

t−ŝt||2 is the likelihood based on the distance between the observed
trajectories and the simulated trajectories w.r.t. the hypothesis, and β > 0 is a constant coefficient.

To efficiently explore the large hypothesis space, we perform probabilistic inference based on data-
driven Markov Chain Monte Carlo (MCMC) that utilizes both cue-based bottom up proposals and
top-down generative processes, as shown by Figure 7. We outline inference in two main steps as
follows and discuss additional implementation details below.

Initial Proposals. Even though visual cues of trajectories alone may not give us the most accurate
inference, they can provide reasonable guesses which may shrink the search space, thereby increasing
the chance of making good proposals. Thus we use a bottom-up proposal approach that estimates the
likelihood of pursuing a goal by the distance between the final state and the goal state as well as the
change in that distance compared to the start of the video. For the social utility weights, α, we adopt
a uniform distribution. For strengths, we train a regression model based on a 2-layer MLP which
takes in the average, maximum, and minimum velocities as well as accelerations of each agent. We
describe the proposal approach in details in Appendix D.1 We sample M particles to approximate the
true posterior probability (Eq. 1), each of which contains an initial proposal Y0,m sampled from a
cue-based proposal distribution, Q(Y |s1:T).

Proposal Update based on Local Estimation. We run multiple iterations to update the proposals.
Given the proposals at iteration l, we simulate the trajectories, i.e., ŝ1:T

l,m, ∀m = 1, · · · ,M , and
compare them with the observed trajectories, s1:T . For each proposal, we sample a time interval
with a fixed length, ∆T , based on the errors between the simulation and the observations, i.e.,

tl,m ∝ e
η
∑tl,m+∆T

τ=tl,m
||ŝτl,m−s

τ ||2 , where η = 0.1. The intuition behind this is that local deviation is
often more informative in terms of how the proposal should be updated compared to the overall
deviation.3 After selecting a local time interval, we use the same bottom-up mechanism to again
propose a new hypothesis for each particle, Y ′m, based only on S′ = stl,m:tl,m+∆T . We then use the
Metropolis–Hastings algorithm to decide whether to accept this new proposal for the particle, where
the acceptance rate is α = min{1, Q(Y ′|S′)P (s1:T |Y ′)

Q(Yl,m|S′)P (s1:T |Yl,m)
}.

3E.g., in hindering interactions, it is often not clear which physical goal was being hindered once two agents
made contact; however, the first part of the video may reveal more information about what an agent’s physical
goal was since the agent was pursing that goal without interference from the other agent who was far away.

12

When planning the actions at step t, the planner utilizes the belief inferred from agents’ past
observation upon t. We achieve this by estimating the observations of agents at each step using the
simulator, and then sample belief particles for each agent that are consistent with what that agent has
seen. This purely bottom-up belief estimation can adequately approximate the true beliefs of agents
while being computationally efficient. In contrast, proposing beliefs top-down would be intractable
due to the large state space.

To approximate the posterior probability, we compute the weight for each particle m at iteration l as
wl,m = P (s1:T |Yl,m)/

∑M
k=1 P (s1:T |Yl,k). Then an agent’s goal can be inferred by

P (gi|s1:T) =

M∑
m=1

1(gi ∈ Yl,m)wl,m, (2)

where 1(gi ∈ Yl,m) indicates whether gi appears in the hypothesis Yl,m. Similarly, we can compute
P (αij |s1:T) and P (αji|s1:T).

Based on the final proposals and their weights, we can define posterior probability of the relationship
between two agents as follows (F, A, N indicates friendly, adversarial, and neutral respectively):

P (F|s1:T) = P (αij > 0 or αji > 0|s1:T)
+P (gi = gj |s1:T)
·P (αij = 0, αji = 0|s1:T),

(3)

P (A|s1:T) = P (αij < 0 or αji < 0|s1:T)
+P (conflicting gi&gj |s1:T)
·P (αij = 0, αji|s1:T),

(4)

and
P (N|s1:T) = 1− P (F|s1:T)− P (A|s1:T), (5)

where conflicting gi and gj include two types of scenarios: (i) two agents have the goal of putting the
same object on different landmarks, and (ii) agent i has the goal of approaching agent j while agent j
has the goal of avoiding agent i.

This same model can be used to simulate future trajectories based on the goal and relation inference.
Specifically, we simulate future trajectories for the most likely hypothesized goals and relationships
inferred from the prior observation.

We provide a sketch of SIMPLE in Algorithm 2, whereG(·) is our simulation, P (tl,m|ŝ1:T
l,m, s

1:T , η) ∝

e
η
∑tl,m+∆T

τ=tl,m
||ŝτl,m−s

τ ||2 . For all experiments, we set L = 6, M = 15, η = 0.1, β = 0.05, and
∆T = 10.

D.1 Bottom-up Proposals

We devise a bottom-up proposal based on heuristics extracted from observed trajectories within a
time interval St1:t2 , i.e., Y ∼ Q(Y |St1:t2). In this work, the proposal distribution is decomposed
into separate terms for proposing goals (gi, gj), social utility weights (αij , αji), and strengths (fi,
fj) respectively, i.e.,

Q(Y |St1:t2) = Q(gi|St1:t2)Q(gj |St1:t2)
·Q(αij , αji|St1:t2)
·Q(fi|St1:t2)Q(fj |St1:t2).

(6)

We define the goal proposal distribution for an agent by

Q(g|St1:t2) ∝ eγ||s
t2
i −sg||2eγ(||st2i −sg||2−|s

t1
i −sg||2)

∝ eγ(2||st2i −sg||2−|s
t1
i −sg||2),

(7)

where γ = 10 is a constant weight. Intuitively, if the trajectories have demonstrated either achievement
at the end of the period (t2) or progress towards a goal during the period (from t1 to t2), then that goal
is likely to be the true goal. For the social utility weights, we first randomly select u ∈ {−1, 0, 1}. If
u = 0, we set both αij and αji to be zero; if u ∈ {−1, 1}, we randomly select either αij or αji, and
set it to be u while setting the other one to be zero. This is essentially assuming that there will be at
most one agent pursuing a social goal in a social event. For the strengths, we train a 2-layer MLP
(64-dim for each layer) using training data in PHASE to estimate the maximum forces that agents
can exert.

13

Algorithm 2: Sketch of SIMPLE

Input: s1:T , L, M , η, β, ∆T
Output: {YL,m}Mm=1 and their weights {wL,m}Mm=1
for m = 1, · · · ,M do

Initial proposal Y0,m ∼ Q(Y0,m|S1”T);
Synthesize trajectories ŝ1:T

l,m ← G(Y0,m);

w0,m =
P (s1:T |Y0,m)∑M
k=1 P (s1:T |Y0,k)

;

end
for l = 0, · · · , L− 1 do

for m = 1, · · · ,M do
Sample a step tl,m ∼ P (tl,m|ŝ1:T

l,m, s
1:T , η);

Set S′ = stl,m:tl,m+∆T ;
Sample a new proposal Y ′ ∼ Q(Yl+1,m|S′);
Synthesize trajectories ŝ1:T

l+1,m ← G(Y ′);

α = min{1, Q(Y ′|S′)P (s1:T |Y ′)
Q(Yl,m|S′)P (s1:T |Yl,m)

};
Sample u ∼ Uniform(0, 1);
If u < α, Yl+1,m ← Y ′, otherwise Yl+1,m ← Yl,m;

wl+1,m =
P (s1:T |Yl+1,m)∑M
k=1 P (s1:T |Yl+1,k)

;

end
end

E Additional Details of Human Experiments

E.1 Experiment 1

We recruited 130 participants to label 20% of the videos in PHASE. Each participant was asked to
watch a video and select which of the 23 types of interactions was depicted in the video. In total,
each video was judged by 10 participants. We found that all 23 types of interactions were selected
to describe at least one video. The 23 labels used in this experiment are: not interacting, inter-
acting unintentionally, chasing, running away, stalking, approaching, avoiding, meeting, gathering
together, guiding, following the lead (of another agent), playing a game of tag, blocking, fighting,
competing, stealing, protecting an object, attacking, hindering, bullying, playing tug of war, helping,
collaborating.

E.2 Experiment 2

Using interface, we collected 8 videos by asking three pairs of human controllers to play with
each other in 8 scenarios (covering all three types of relations) that were matched with the scene
configurations of 8 videos in PHASE. For the second part, we recruited 15 additional participants.

The online game procedure is similar to the setup in PHASE, except that actions are obtained from
user input. In each game, there are two players, one for controlling each agent. The players view
the environment from separate screens (via different URLs), updated with each agent’s observations.
Players can use the following actions by pressing keys on their keyboards: 4 directions (forward,
backward, right, left), turning right or left , and grabbing or letting go of an object. We reset the
velocity of each agent to 0 after each step to make it easier for players to control the agents. Before
each session, the players were shown a tutorial on how the agents work (partial observerability and
the controls). They were given an opportunity to play freely in the game environment to get familiar
with the controls. At the beginning of a session, they were told the goals assigned to both players (so
they knew each others’ goals) and asked to start playing the game to achieve the assigned goals. Each
session ended either until the goals of both players were achieved or until the time limit was reached.

14

F Baseline Implementation

For all neural nets, we construct the inputs as a sequence of states of multiple nodes. In particular,
a node could be an entity, a landmark, or a wall. For a node, the input at a step includes a 4-dim
one-hot vector for type (agent, object, landmark, or wall), color (which also indicates the identity
of each entity), size, position, orientation, and velocity. We provide implementation details of each
baseline as follows.

F.1 Task 1

Human: We collected human judgments of goals and relations on the testing videos from Mechanical
Turk. We recruited 130 participants with each being shown 8 videos. After a training phase,
participants were instructed to watch videos and choose which of 16 goals each agent had as well as
rate the relationship between agents as friendly, neutral, and adversarial.

2-Level LSTM: A hierarchical LSTM-based model for recognizing individual actions and the overall
group activity. We replace the CNN-based visual features in [10] by node embeddings. Specifically,
we encode each node using a 64-dim fully-connected layer followed by an LSTM (64-dim) to get its
embedding. For agent nodes, their node embeddings are fed to a 3-layer MLP (64-dim for each layer)
and then a softmax layout for goal recognition. After a max pooling over all nodes’ embeddings, we
get a context feature, which is fed to another LSTM (64-dim) followed by a fully-connect layer and a
softmax layer for relation recognition.

ARG: Actor Relation Graph, a graph neural net modeling human relations and interactions. We use
the same node embedding approach introduced above. Following the best performing architecture in
[23], we construct the graph using (i) dot-product for the appearance relation, and (ii) distance mask
for position relation (the distance threshold is 8). The individual action classifier for each agent node
(3-layer MLP with 64-dim for each layer) and the group activity classier (3-layer MLP with 64-dim
for each layer) are redefined to recognize agents’ goals and relation respectively.

Both 2-Level LSTM and ARG are trained using a cross-entropy loss on goal and relation labels. We
use Adam [13] with a learning rate of 0.001 and a batch size of 8.

F.2 Task 2

Social-LSTM: LSTM-based trajectory prediction with a social pooling mechanism. We adopt the
same architecture as in [1] except that for every step, it outputs a 10-step prediction for each entity
node. This is to solve our online prediction task.

STSAT: Spatial-Temporal Graph Attention network, a state-of-the-art multi-person trajectory predic-
tion approach. We use the same architecture as in [9] for the encoder components. Similarly to the
adaption of Social-LSTM, the decoder LSTM outputs a 10-step prediction for each entity at each
step as well.

We adopt L2 distance between the prediction and the ground-truth as loss to train the two trajectory
prediction baselines. For network optimization, we use Adam with a learning rate of 0.01 and a batch
size of 8.

We use two evaluation metrics common in prior work on trajectory prediction [1]: Average Dis-
placement Error (ADE), i.e., average L2 distance between ground truth and the prediction over all
steps, and Final Displacement Error (FDE), i.e., the distance between the predicted position and the
ground-truth position at the last step. Note that we compute the distance only based on the positions
of the entities and do not consider their velocities and angles.

15

	Introduction
	Joint Physical-Social Simulation
	Formulation
	Hierarchical Planner

	PHASE Dataset
	Procedural Generation
	Human Experiments
	Social Perception Tasks

	Results
	Conclusion
	Additional Experimental Results
	Evaluation on Human-controlled Trajectories
	Ablation Study (Evaluation on PHASE)

	Details of Joint Physical-Social Simulation
	Predicates, Symbolic States, Goals, and Subgoals
	Hierarchical Planner
	Belief Representation and Update

	More Example Events in PHASE
	Details of SIMPLE
	Bottom-up Proposals

	Additional Details of Human Experiments
	Experiment 1
	Experiment 2

	Baseline Implementation
	Task 1
	Task 2

