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Abstract

Embodied Al agents continue to become more capable every year with the advent
of new models, environments, and benchmarks, but are still far away from being
performant and reliable enough to be deployed in real, user-facing, applications.
In this paper, we ask: can we bridge this gap by enabling agents to ask for
assistance from an expert such as a human being? To this end, we propose
the ASK4HELP policy that augments agents with the ability to request, and then
use expert assistance. ASK4HELP policies can be efficiently trained without
modifying the original agent’s parameters and learn a desirable trade-off between
task performance and the amount of requested help, thereby reducing the cost
of querying the expert. We evaluate ASK4HELP on two different tasks — object
goal navigation and room rearrangement and see substantial improvements in
performance using minimal help. On object navigation, an agent that achieves
a 52% success rate is raised to 86% with 13% help and for rearrangement, the
state-of-the-art model with a 7% success rate is dramatically improved to 90.4%
using 39% help. Human trials with ASK4HELP demonstrate the efficacy of our
approach in practical scenarios.

1 Introduction

The journey toward creating multipurpose household assistants continues to pose many challenges
despite recent progress in computer vision and robotics. Open source simulators [27, 32, 44]
and benchmarks [45, 2] have enabled advancements in diverse tasks such as navigation [4, 21],
interaction [15, 30], exploration [39, 9], instruction following [45, 2] and rearrangement [3, 52]. And
yet, the best performing models (e.g., [25, 41]) on most tasks are not capable or reliable enough to be
deployed in real-world applications.

For instance, the state-of-the-art (SoTA) in navigating towards a specified object category hovers
around 50%° in the RoboTHOR [14] environment, and around 30% in Habitat [32]. Slightly more
complex tasks prove more daunting still, with the best models on Room Rearrangement [52] still
below 10%*. In addition, these models often tend to get stuck, take repetitive actions and even collide

*correspond to kunals @allenai.org for any queries/comments
’https://leaderboard.allenai.org/robothor_objectnav/submissions/public
*https://aihabitat.org/challenge/2021/
*https://leaderboard.allenai.org/ithor_rearrangement_iphase/submissions/public
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Figure 1: Learning to ask for help (ASK4HELP). Left: An agent struggles to find a spray bottle.
Middle: The ASK4HELP policy recognizes this confusion and requests help from a human. Right:
The human provides help at time ¢ = 3, which puts the agent on the right path and it succeeds.

with furniture and walls as they move around in a scene. Deploying such agents in the real world can
be costly, slow, and frustrating for users. In safety-critical situations such as rescue or reconnaissance
operations, such failures can be even more expensive. While future modeling improvements may
alleviate these concerns somewhat, we are still a ways away from creating agents that can perform
household tasks robustly and safely.

Consider, for example, the setting of Fig. 1. A robot is deployed in a user’s home and is tasked with
locating objects, e.g. keys and remote controls, and is equipped with a SOTA navigation model such as
EmbCLIP [25]. Even if we assume that this performance would seamlessly transfer from simulation
to the real world, the agent would only be successful at its task about 50% [25] of the time. This
is not good enough for deployment: few users would be satisfied with a household assistant which
fails as frequently as it succeeds. If we want to deploy these models in practice we must improve
their reliability. To this end, in this work, we assume access to an expert that can provide actions to
our agent upon request but, additionally, we assume that querying this expert is costly and so the
number of such queries should be minimized. Hence, we ask: how can we dramatically improve
agents’ performance and reliability at tasks by using a small amount of expert assistance?

Building embodied agents that can request and use help from humans presents new challenges. Firstly,
how does an agent determine when it is most effective to ask for help? A hand-designed heuristic is
likely to be sub-optimal from the standpoint of an agent’s policy. Secondly, how can we find the right
balance between ensuring that we only request the human to intervene when it is really necessary
while maximizing the performance at the specified task? Lastly, how can we teach an agent to ask
for help, without having to retrain the embodied agent that we are trying to support? This would
avoid the need to have access to the entire model structure and weights, save a significant amount of
compute, and enable wider applicability.

To this end, we propose the Ask For Help (ASK4HELP) policy which augments E-Al agents with the
ability to request for help when necessary. Our ASK4HELP policy: (a) is minimally invasive — one
can train this module without modifying the parameters of the underlying E-Al model; (b) can be
trained efficiently, with a fraction of the training data, compute and time, compared to the original
model; and (c) learns a desirable trade-off between task performance and the amount of help, and
even presents a mechanism to the user to dynamically, at inference time without additional training,
specify the cost of asking for help and thereby increase or decrease the amount of help that will be
requested in future episodes.

We show the efficacy of our approach on the RoboTHOR object navigation [14] and AI2-THOR
visual room rearrangement [52] tasks. We learn an ASK4HELP policy to support the existing off-the-
shelf Embodied CLIP models [25] which have recently achieved SoTA performance on both of these
tasks. We demonstrate significant improvements in these tasks using limited help from the expert. In
ObjectNav, we improve 52% to 86% using 13% help, and in Rearrangement we go from 7% to 90.4%
with 39% expert help. Importantly our ASK4HELP policy is model agnostic and can be easily applied
to other E-Al models. Just as it has provided improvements over current state-of-the-art, it should
also provide enhancements to the best models in the future. We also present strong results when



using human experts (measured via human trials) and noise-corrupted versions of the algorithmic
expert and show that our policy is robust to these variations.

2 Related Work

Embodied AL Recently, various embodied tasks such as navigation [4, 24, 21, 19, 31], instruction
following [45, 2, 29, 16], manipulation [15, 55, 58], embodied question answering [13, 20], and
rearrangement [52, 3] have witnessed tremendous progress. This can be attributed to the availability
of open-source benchmarks [45, 2, 46, 51, 40, 22] and simulators [27, 32, 38, 44, 18, 55], stronger
visual backbone models [25], self-supervised auxiliary tasks [57, 56] and task-specific inductive
biases such as semantic mapping [7, 6]. Although, [54] show that the task of Point Navigation [2] in
unseen environments can be solved by training on 2 billion frames with reinforcement learning, the
success rate of the best models for most embodied tasks is still very poor [25, 52, 41].

Complementary to the modeling progress, a line of work has emerged in the past few years that
attempts to learn to request assistance in the form of language [35, 49, 37], sub-goals [34], and agent
state and goals [33]. However, [34, 35] rely on imitation to learn when the agent should request
help. This can be limiting since the human-defined criteria to label the help-requesting behavior
might not be optimal from the agent’s standpoint. [49, 37] collect human-human dialog for task
completion to learn communication between the agent and the expert. We try to make requesting
expert assistance a part of the reinforcement learning problem, and let our ASK4HELP policy infer
the trade-off between the amount of assistance and performance. Along similar lines, [33] consider
learning an “intention” policy to request varying modalities of information, such as object detections,
room types, and sub-goals, from the expert. These requested modalities may not, however, be easy or
well-suited for an actual human user to provide.

With similar motivation to our work, [10] propose two ways of asking for expert help, a heuristic
criteria based on model confidence and an augmentation of the agent’s action space. We implement the
heuristic criteria and present a comparison using the RoboTHOR [14] object navigation (ObjectNav)
task. They also propose augmenting the agent’s action space with an extra ask action. However,
this involves retraining the underlying embodied model and additional reward shaping to prevent
degenerate solutions. In contrast, we just train an extra policy without modifying the underlying
Embodied Al model. We provide assistance in the form of expert actions similar to [10].

Active Learning and Perception. Our method for learning when to provide assistance based on
the agent’s internal representation is analogous to active learning [43]. In active learning, the agent
tries to acquire labeled data to improve its model in the most sample-efficient manner [17, 42].
However, contrary to the general active learning paradigm, we do not collect additional data to train
our agent. Instead, we try to learn a policy with minimal information about the underlying Embodied
Al model to answer the question, within an episode, when is the expert intervention most useful? We
draw inspiration from active learning in the sense that the model tries to pick out points in time for
expert intervention as efficiently as possible. Prior works [47, 26, 48] use pre-defined metrics and
heuristics to define state discrepancy and ask for demonstrations. However, these heuristics fail to
generalize in unseen environments. We show the efficacy of our method in unseen, visually rich 3D
environments [14, 52].

Uncertainty estimation using the value function to provide help and improve the sample-efficiency
of RL algorithms has been explored in the literature before [12]. [50] propose a teacher-student
framework to study how an RL agent can transfer knowledge to another agent by action-advising. [11]
extend this idea to a multi-agent setting where agents learn to teach and advise simultaneously. These
works lay down some foundational ideas to involve expert in-the-loop, but they mostly focus on
improving the sample efficiency and knowledge transfer of RL algorithms. Contrarily, we propose to
learn how to utilize human intervention to improve an off-the-shelf embodied agent’s performance.

Recently, active perception has also been studied in the Embodied AI community. [8] learn a policy
to choose which frames to label for object detection. [5] use perception models learned from internet
data to learn an active exploration policy. [28] propose to fine-tune the object detection model at
test time while interacting with an environment. [36] learn an exploration policy that balances the
trade-off between semantic segmentation performance and the amount of annotation data requested.
In contrast, we do not assume access to the underlying perception or planning parameters of the agent,
we try to learn when human intervention would be effective in completing the task.
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Figure 2: Model overview. The ASK4HELP policy selects if the next action should be taken by the
E-Al agent or the expert. b; represents agents “beliefs”, i.e. the recurrent unit’s hidden state. a;*
denotes the action at time ¢, the superscript A indicates it was produced by the underlying agent’s
policy. F denotes the expert. The double red lines indicate that gradients do not flow through that
part of the model. Emb represents a simple look-up embedding layer. ;. represent different reward

configurations that we embed (see Sec. 3.3).

3 Learning to Leverage Expert’s Help

Today’s state-of-the-art E- Al models are not yet performant and reliant enough to be deployed into
real applications. We propose ASK4HELP, a policy to augment E- AT models with the ability to ping
an expert, such as a human being, and leverage their intermittent help for the desired task.

3.1 Problem Definition

Consider a typical Embodied AI (E-AI) model as shown in Figure 2. It consists of a visual encoder,
a state encoder (typically a recurrent unit), and an actor-critic head, trained using Reinforcement
Learning (RL). We wish to augment this model with the ability to query an expert for help. Asking for
too much help can be costly, or annoying if the expert is a human being. Hence, our goal is to achieve
a good trade-off between asking for a minimal amount of help and maximizing the performance of the
agent at its task. We propose a framework to learn a policy that decides when it is most effective to
ask for help. We refer to this policy as the ASK4HELP policy. Importantly, we learn this ASK4HELP
policy, without modifying the weights of the underlying E- AI model, allowing us to easily augment
any off-the-shelf model with this capability. For this work, we consider that the help is provided in
terms of the optimal action at the next time step, denoted by a” in Figure 2.

3.2 ASK4HELP Policy

The output of the ASK4HELP policy determines if the agent or the expert policy would act at
a particular time step t. The objective of this policy is to maximize the rate of successful task
completion while minimizing the amount of expert intervention. The ASK4HELP policy outputs, at
every step, one of two actions (Agent or Expert) indicating whether the agent or expert should take
control at that time step. Hence, when the ASK4HELP policy outputs the Expert action, the action on
the next time step is taken by the expert i.e. a’.

ASK4HELP model’s architecture is depicted in Figure 2. It consists of a multi-layer perceptron
and a GRU cell. It takes the underlying E-AI model’s GRU hidden state (hereafter referred to as
beliefs) b; as an input. The ASK4HELP policy is trained using reinforcement learning, specifically
DD-PPO [54]. It receives two negative penalties, a relatively large one for task failure, and a smaller
penalty for requesting expert help. The RL loss tries to balance the trade-off between these two
penalties, thereby attempting to avoid failure with minimal expert help. The gradients from this loss
are used only to update the ASK4HELP policy, recall that the agent’s policy is frozen. We describe
the reward structure and training details in Section 4.



3.3 Adapting to User Preferences at Inference Time

The methodology described in Section 3.2 is an effective way to achieve a good trade-off between
task success and the amount of help requested. The amount of help requested by the agent is governed
by the reward structure used during RL. Requiring the agent to ask for help less (or more) frequently
would require us to retrain the ASK4HELP policy. This need for retraining is limiting as we may wish
to deploy the same system in multiple settings each with very divergent costs associated with querying
the expert: for instance, some users might be happy to provide feedback during the day while others
might find such requests highly disruptive. Ideally, such users should be able to communicate their
preferences to the agent and have it query for help at a rate that respects those preferences.

A naive way of tackling this would be to train multiple ASK4HELP policies with a range of potential
user preferences and deploy all of them onto the robot. The user could then choose the agent most
aligned with their preferences. Unfortunately, the cost of this approach grows linearly in the number
of user preferences we wish to capture, fails to share information across ASK4HELP policies, and
can only ever represent a discrete collection of preferences.

Therefore, to support a wider range of user preferences while decreasing computational costs, we
propose to explicitly condition our ASK4HELP policy on user preferences during training. In
particular, as shown in Figure 2, we sample a range of reward configurations R;.n representing
potential user preferences with different penalties associated with agent failure. Then, we train our
agent by sampling rollouts with each reward configuration R; with uniform probability. We sample
R; for a particular episode and keep it fixed throughout that episode. As shown in Figure 2, we
embed the randomly sampled reward configuration R; into a 12-dimensional vector and provide that
as an additional input to the ASK4HELP policy’s GRU. This allows the ASK4HELP policy to modify
its behavior according to user preference. We show in Section 4 that this method allows us to train
a single ASK4HELP policy that can adjust the amount of help based on the reward configuration
embedding.

4 Experiments and Analysis

We present empirical results and analyses when using our ASK4HELP policy with agents trained to
complete the RoboTHOR Object Navigation (ObjectNav) and Visual Room Rearrangement (RoomR)
tasks. We describe our experimental setup and the baselines in Sections 4.1 and 4.2, respectively, and
present quantitative evaluations of ASK4HELP and competing baselines in Sections 4.3 and 4.4.

4.1 Experiment Setup

In our experiments, we wish to capture the setting in which a practitioner has access to a frozen
off-the-shelf Embodied Al model for a particular task and wants to extend this model by enabling it
to ask for help. To be able to add this ask-for-help capability, we assume the practitioner has a newly
created (or held-out) set of training data that was not used to train the off-the-shelf model and that
this new training dataset is possibly significantly smaller than the off-the-shelf model’s training set.
To this end, in what follows we will retrain existing SOTA models for ObjectNav and RoomR on
subsets of their original training datasets, freeze these models, and then use the held-out training data
to train a lightweight ASK4HELP policies that works in conjunction with the E-Al models.

Dataset Split. We train the RoboTHOR [14] ObjectNav and iTHOR 1-phase RoomR [52] models
proposed in EmbCLIP [25], currently the published SoTA models for these two tasks, on 75% of
the training scenes for their respective tasks (45 scenes for ObjectNav and 60 for RoomR). We use
the publicly available codebase’ provided by [25]. With these models fixed and frozen, we use the
remaining 25% training scenes to train the the ASK4HELP policy. We evaluate our models on the
unseen validation scenes that the agent has not seen before in training.

4.2 Baseline Definitions

We present a comparison of our ASK4HELP framework with various baselines, which are defined as:

e Naive Helper (NH) : The agent receives expert help at a step with probability p. In particular, at

Shttps://github.com/allenai/embodied-clip
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every step, the NH samples from a Bernoulli(p) distribution and takes the agent’s action if it samples
a 0 and, otherwise, takes the expert action. We control the amount of help by varying p and produce
different variants of this baseline. We denote each variant using NH-p.

o Model Confusion (MC) : This baseline is based on a heuristic criteria proposed in [10] for requesting
expert assistance. Intuitively, MC will request help when the agent is not sufficiently confident that
there is a single correct action to take. More specifically, MC will mark an agent as confused (thus
requiring expert assistance) at a time step ¢ when

pim'ted[m - pz‘o’r'ted[l] <€, (1)

where p’ ., are the action probabilities at time ¢ sorted in descending order. We vary the € parameter
to produce different variants of this baseline and refer to them as MC-e.

These baselines do not assume access to the underlying E-AI model parameters. As mentioned in
Section 3.1, our ASK4HELP policy follows the same constraint. However, note that for the Naive
Helper and Model Confusion the underlying E-AI model is the SOTA model from [25] trained on
100% of the training scenes. Whereas, for our ASK4HELP policy, as mentioned previously, we use
the same model architecture trained on 75% training scenes as the underlying E-AI agent. We use the
remaining 25% training data for the ASK4HELP policy.

4.3 RoboTHOR Object Navigation
4.3.1 Task Description and Metrics

Task. ObjectNav requires an agent to navigate through an environment and find an object of the
specified category. The open-source RoboTHOR [14] environment supports this task with a robotic
agent placed into a visually rich home environment. The agent starts at a random location and is given
a target object category (e.g., apple) to find. Its action space consists of MoveAhead, RotateRight,
RotateLeft, LookUp, LookDown and End. An episode is considered successful if an instance of the
target object category is visible and within 1m of the agent.

Metrics. We report the success rate (SR) and SPL [1] for our navigation agents. We also quantify the
amount of help with an Expert Proportion (EP) metric, which is defined as

EP = Ne;cpert/Ntotal; (2)

where Negpert 1s the number of expert steps, and Ny, is the total number of steps in an episode.

4.3.2 Training Details

ASK4HELP policy. We train the ASK4HELP policy using DD-PPO [54] for 15 million steps. We
use the NavMesh algorithm in RoboTHOR [14] environment as the expert to request help from. It
provides the optimal action from the shortest path to the agent’s current location to the target. In
practice, one does not have access to such an expert during testing/inference. Hence, we not only
provide test results with this NavMesh expert but also provide results with a noisy version of the
NavMesh expert as well as a human expert.

We use the AllenAct [53] framework to implement our model and training pipeline. The reward at
any time step ¢ is defined as:

Tt = Tfail + Lok - Tinit_ask + Tstep_ask>

where 77,4 is a negative penalty for failure, 1, qsx 1S @ one-time penalty given to the agent
when it requests expert help for the first time with 1, the indicator function controlling this one-
time negative reward, and ¢, sk is @ smaller penalty given for every step the expert takes. For
ObjectNav, we set 77451 = —10, Tinst_ask = —1, and 7step_ask = —0.01.

The 7init_ask penalty encourages autonomous operation when possible by discouraging the
ASK4HELP policy from requesting help during an episode where the agent may be able to complete
the entire episode without any assistance. Additionally, once expert help has been requested during
an episode, 1's¢ep_ask €ncourages the policy to minimize the number of requests made to the expert.
Here 7step_ask Which is made significantly smaller in magnitude than 7,5 _asx to reflect the intuitive
assumption that the marginal cost of assistance decreases with repeated queries (e.g., if a human has
been contacted for assistance, then the cost of giving two expert actions is very similar to just giving
one).
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Figure 3: ASK4HELP policies utilize expert queries efficiently for ObjectNav. By varying the €
parameter of Model Confusion and Naive Helper baselines as well as the reward embedding input to
the ASK4HELP policy (recall Sec. 3.3), we obtain a collection of different trade-offs between the
proportion of steps spent querying the expert (EP) and the performance of these models as measured
by the success rate and SPL metrics. As these plots show, our proposed ASK4HELP policies dominate
the other methods, achieving better success and SPL values for all EP values. These results shown
here are an average of 5 evaluations of each model on the ObjectNav validation set; while very small,
we also show error bars corresponding to 1 standard deviation computed across the 5 evaluations.

It is also worth noting that we can vary 774, to generate multiple reward configurations R;. to train
a single policy as described in Section 3.3. Specifically, if we set 7,4 = —1, which would imply that
the cost of failure is not very high for the user, we get a reward configuration R_; with 774, = —1,
Tinit_ask = —1, and Tgzep qsk = —0.01. Following the same trend, we vary, 77,4 from -1 to -30 to
cover a broad range of user preferences and generate rewards configuration namely R_; to R_3¢.

As discussed in Section 3.3, to train an agent with all reward configurations {R_1, ..., R_30}, we
uniformly sample a reward configuration R; for each episode in the environment. The reward the
agent receives during that episode is based on R;.

During validation, we do not have access to these rewards, therefore we need to learn a correspon-
dence between user preference and agent behavior. To accomplish that, we associate each reward
configuration with an index (e.g. —1 — R_1 — 7745 = —1), and embed these configuration indices
using a standard lookup in a learnable embedding matrix. We provide this embedding as an input to
the agent. This allows the agent to learn a correspondence between this embedding input and the cost
of failure.

4.3.3 Quantitative Analysis

ASK4HELP results. We present a comparison of our ASK4HELP framework with the baselines
defined in Section 4.2. For these results, we train our ASK4HELP policy just once with multiple
reward configurations as described in Section 3.3. This allows us to produce different variants of
our method by simply varying the reward embedding input during inference. Figure 3 shows the
performance (as measured by the success rate and SPL metrics) of our model against competing
baselines when restricted to various EP values. As shown in the figure, our proposed ASK4HELP
policy efficiently uses a limited number of expert queries to achieve high success (4% EP results
in a 16% absolute gain in success and with just 17% EP the agent achieves >92% success) and
strictly dominates the other baselines by obtaining higher performance at every EP level. In fact, to
achieve greater than 90% success with the Naive Helper strategy, one must increase the EP to 41%,
more than double what is required when using our ASK4HELP policy. Interestingly, the gains in
SPL are somewhat less dramatic than for success rate. This is, however, intuitive: a high-quality
ASK4HELP policy should only query the expert if it has already searched the scene exhaustively
(thus attaining low SPL) and is certain it cannot find the object without assistance. Note that, due to
environment noise the NavMesh [23] expert, denoted by the dark blue dashed line, does not achieve a
100% success rate. We provide qualitative results in the supplementary materials.



Algorithmic vs. Human Expert. In the above evaluations and when training our ASK4HELP policy
we have used a NavMesh [23] expert which computes expert actions using ground-truth shortest
paths from the environment. While such an expert may be available during training, no such expert is
likely to be available at inference time as, otherwise, we may as well use such an agent rather than a
learned model. This raises an important question: if the expert available at inference time may be
different than the expert used at training, is our ASK4HELP policy robust to changes in the expert?
To answer this question we conducted a human trial. Table 1: Human Trial Results. SR, SPL

In this trial we selected a set of 131 episodes from the and EL represent the Success Rate, Success
RoboTHOR ObjectNav validation set and, for each of by path weighted length and episode length
these episodes, evaluated our ASK4HELP policy when metrics respectively. Expert column indi-
using as an expert: (a) a set of 11 humans (each human cates the expert used. EP corresponds to
expert was asked to provide assistance for between 10- the Expert Proportion metric.

15 episodes, details in supplement), (b) the standard

NavMesh agent described above, and (c) a collection of Expert EP (%) SR (%) SPL (%) EL
“corrupted experts” CE-¢ where, on being queried, a CE- Human 1227 816 243 211
¢ agent returns either the correct action with probability ~NavMesh [23] 11.09  87.7 ~ 21.9 239
(1-€) or a randomly selected navigation action with CE-0.1 10.18 824 22.7 235
probability e. The results of our ASK4HELP policy CE-02 177840 230 234
p . . . CE-0.4 12.01 80.2 21.5 252
in these trials are summarized in Table 1. Note that g g 1988 618 182 293

the performance of the ASK4HELP model when using e 0 557 923 184
the human and NavMesh experts is very similar, for
approximately the same EP (12.27 v.s. 11.09) the humans appear to result in lower overall success
rates (81.6% v.s. 87.7) but appear to guide the agent to using more efficient paths (SPL of 24.3
v.s. 21.9). Upon examining the failure cases of our model when using human experts we found
many cases where humans would incorrectly end episodes when in sight of the target object but
too far from the object to satisfy the RoboTHOR requirement that agents end their episodes within
1m of the target. The results with the CE-€ experts are somewhat surprising: even with significant
expert corruption our ASK4HELP policy can still make use of the expert’s feedback and obtains high
performance with relatively small EP values. Even when € = 0.8, so that 80% of the expert’s actions
are randomly chosen, the ASK4HELP policy trained without any such noise is able to obtain success
rates above the baseline model without help. We present CE-¢ expert results on the full validation set
in the supplement.

Data efficiency of ASK4HELP. As discussed in Section 4.1, we train the ASK4HELP policy on
25% of the training scenes. However, in some situations where training data is scarce, sacrificing
this fraction might be unfeasible. To ablate the data efficiency of ASK4HELP policy, can we train
ASK4HELP with 25% and 10% training scenes, with the exact same reward configuration and same
underlying pre-trained task agent. We observe only a 2% drop in success rate and 1% in SPL for
the same expert proportion (EP%). As the results indicate, ASK4HELP converges to a reasonable
expert help-performance trade-off despite using just 10% training scenes, which in case of [14] object
navigation is just 6 scenes.

Replacing pre-trained agent with a random agent. Having a pre-trained agent is important to
ensure that we’re not overusing the expert, and the underlying E-AI model is doing a major portion
of the task. We train an ASK4HELP policy with a random object navigation policy, and compare it
with an ASK4HELP policy that works with a pre-trained agent. Both the policies are trained with the
same reward configuration and training regime. As shown in Table 2, a random agent takes far more
expert help than a pre-trained agent, since it lacks to ability to perform object navigation hence is
completely reliant on the expert.

Model setting SR SPL EP (%) EA
ASK4HELP (pre-trained) 86.3 33.2 12.31 17
ASK4HELP (random) 76.44 67.65 98.99 27

Table 2: Random vs Pre-trained task agent. SR denotes success rate, SPL denotes Success by path
weighted length. EP denotes the expert proportion metric. EA denotes the number of actions taken
by the expert.

Comparing ASK4HELP and ‘Model Confusion’ baselines under constrained amount of help.
We performed an experiment where we make the expert available only for 20 steps in an episode



(both during training and evaluation) and train an Ask4Help policy and present a comparison with
the model confusion baseline. On the unseen validation scenes, Ask4Help achieves a success rate of
70%, whereas the model confusion baseline (Section 4.2) achieves 61% success on object navigation.

4.4 Room Rearrangement in iTHOR
4.4.1 Task Description and Metrics

Task. We show results on the recently proposed 1-phase Visual Room Rearrangement (RoomR) [52]
task. In RoomR, an agent is placed into a household environment, and given two egocentric images
at every time step. One image shows the environment’s current state, and the other image shows
the target state that the agent must rearrange it to. The agent must then navigate around the room
and interact with the objects to restore them to the goal state. The agent can take navigation actions
MoveAhead, RotateRight etc. and high level interaction actions like PickUpX, where X is object
category to be interacted with.

Metrics. We report the Fixed Strict (FS) and Success Rate (SR) metrics on the room rearrangement
task. Please refer to the original work [52] for more details on these metrics. We also report the
Expert Proportion (EP) metric described in Section 4.3.1.

4.4.2 Training Details

The ASK4HELP policy is trained using DD-PPO [54] for 15 million steps. The reward at any time
step t is defined as:

Tt = ]]-ask * Tinit_ask + Tstep_ask + Trearrange -

The 7init_ask and Tsep_ask rewards serve the same purpose as they did in Object Navigation results
presented before. We set 74,,51_qsk = —0.9, and 7g4ep_ask = —0.02. Unlike as for ObjectNav which
used a sparse 7744 penalty, we found that this sparse reward was insufficient to train our ASK4HELP
policy (note that SOTA models fail at RoomR in ~93% of cases). To this end, we replace the 77,
penalty with the reward 7;.cqrrange Which simply equals the rearrangement specific reward employed
in [52]. We use the Heuristic Expert from [52] as the expert to request help from.

4.4.3 Rearrangement Results

Table 3: Room Rearrangement Results.
FS and SR represent the Fixed Strict (%)
and Success Rate (%) metrics for rearrange-
ment respectively. MC-e and NH-p denote
the Model Confusion and Naive Helper
baseline variants.

We present the performance for our ASK4HELP policy
and other baselines in Table 3. We show that using our
ASK4HELP Policy, we can boost the performance dra-
matically in the Fixed Strict (from 18.13% to 95.32%)
and Success Rate (from 6.9% to 90.4%) metrics, with
an Expert Proportion of 39%.

Note that the Expert Proportion (EP) metric for rear- ~ Model EP () FS(1) SR(T)
rangement is higher than what we observe for Object ~ Ask4HELP (ours) 39 9532 90.4
Navigation. This can be attributed to both the task com-  MC-0.2 [10] 48 88.96 81.4
plexity, and the relatively poor performance of the SOoTA ~ MC-0.3 [10] 63 94.64 89.9
EmbCLIP [25] model. However, since our ASK4HELP  NH-0.4 40 85.97 T7.5
policy operates independent of the underlying E-AI ~ NH-0.5 50 90.24 83.6
model’s parameters, our method would still be compat- ~ NH-0.6 60  92.77 87.6
ible with future models. If more performant models NH-0.7 70 94.85 89.6
EmbCLIP [25] 0 18.13 6.90

are proposed for the task, the ASK4HELP policy will
accordingly adjust the amount of expert help requested  Expert 100  96.53 928
to support that model effectively.

We also present a comparison against the Naive Helper (NH) and Model Confusion (MC) baselines
described in Section 4.1. As shown in Table 3, we outperform all variants of these baselines with
the same or higher Expert Proportion than our method. This highlights the ability of our method to
effectively utilize minimal help to boost task performance. Notably, it takes a Naive Helper variant
70% Expert Proportion to perform on-par with our ASK4HELP policy that requires only 39% EP.
Similarly, the Model Confusion baseline requires 63% EP to do the same.



5 Conclusion

We propose ASK4HELP policies, a model-agnostic approach to augment a given, pre-trained, E-Al
model with the ability to query an expert for help. The goal of ASK4HELP policies is to leverage
expert assistance to dramatically improve the reliability of existing embodied Al agents while also
minimizing the number of requests made to these experts. Our approach is agnostic about the
parameters of the underlying Embodied Al and shows that a relatively small amount of help results in
massive performance improvements in object navigation and room rearrangement, two popular tasks
in Embodied Al. By evaluating our ASK4HELP policies using different types of experts (shortest
path planner, a noisy variation of the planner, and humans), we find that our trained ASK4HELP
policies are robust to expert variation, desirable as it reduces the burden of having to use precisely the
same expert during training and inference. In summary, ASK4HELP policies provide a generic and
robust mechanism for improving the performance of E-AI models with minimal expert assistance.

Limitations. We highlight two limitations of our approach. First, while it is a great advantage that
our ASK4HELP policies are model agnostic and do not require retraining the underlying agent, this
has the disadvantage that our agent cannot learn from the expert’s feedback. This means that the
agent may query the expert multiple times from the same state, a frustrating user experience. Second,
we have trained our policies using non-human experts available on-policy. While it is convenient that
these experts exist for ObjectNav and RoomR, some E-Al tasks may only have offline datasets of
expert trajectories collected from humans. Extending to this setting is exciting future work.
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