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Abstract

Photo-acid generators (PAGs) are compounds that release acids (H+ ions) when
exposed to light. These compounds are critical components of the photolithography
processes that are used in the manufacture of semiconductor logic and memory
chips. The exponential increase in the demand for semiconductors has highlighted
the need for discovering novel photo-acid generators. While de novo molecule
design using deep generative models has been widely employed for drug discovery
and material design, its application to the creation of novel photo-acid generators
poses several unique challenges, such as lack of property labels. In this paper, we
highlight these challenges and propose a generative modeling approach that utilizes
conditional generation from a pre-trained deep autoencoder and expert-in-the-loop
techniques. The validity of the proposed approach was evaluated with the help of
subject matter experts, indicating the promise of such an approach for applications
beyond the creation of novel photo-acid generators.

1 Introduction

De novo molecule design, the process of automatically generating molecules that satisfy multiple
desirable characteristics, has been widely used in material design and drug discovery. One area where
new materials are urgently needed is semiconducting devices, which are in ever increasing demand.
The recent shortage of microchips has demonstrated appreciable fragility of this critical technology
under external perturbations. For several decades, performance of semiconductor photolithography
has been enabled by technology of chemical amplification [1, 2]. The level of regulatory scrutiny of
key components of chemical amplification, photo-acid generators, has been steadily increasing [3–5].
The consensus across the industry is that accelerated discovery of novel PAGs is the core strategy
in meeting growing market demands while further advancing photolithography performance and
achieving a high level of sustainability of semiconductor manufacturing.

Discovery of PAGs should take advantage of inexpensive yet informative metrics of photochemical
performance along with established metrics of environmental impact and toxicity (ENV/TOX).
Chemistry of photo-acid generation under photolithography conditions is rich and complex [6]. Some
of the most important PAGs for industrial use are salts and comprise a photo-reactive cation from
the family of sulfoniums, which is paired up with an anion to form a superacid. Here, we focus
on designing novel sulfoniums that can exhibit favorable photo-reactive properties, such as a low
energy of the lowest occupied molecular orbital (LUMO) of the molecule, which can be estimated
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by quantum chemical calculations. LUMO energy provides a good first approximate of the electron
attachment (EA) energy of the photoactive component of a PAG. Other desired properties of interest
are high environmental sustainability and low toxicity.

The chemical space of molecules is large (1060) [7]. De novo design of molecules requires traversing
the space of molecules to efficiently search for the small number of molecules that might satisfy the
desired criteria (in this case PAG cations with low LUMO energy). For many years, metaheuristic or
gradient free methods like evolutionary algorithms and particle swarm optimization have been widely
used for for this purpose [8–11]. However, recently, deep learning (gradient based) approaches like
Generative Adversarial Networks (GAN), Variational Autoencoders (VAE) have gained prominence.

In this paper, we propose an attribute-controlled generation approach that leverages a deep generative
model to tackle the design of novel PAG cations for semiconductor industry application. Deep learning
based approaches typically require a large amount of training data to learn a good representation of
the underlying domain. However, we only have a few thousand known photoactive components of
PAGs that are publicly available. To tackle this problem, we use a pre-training strategy that trains
a deep generative autoencoder model on the large number of cationic molecules that are reported
in chemical databases. Next, we employ conditional latent sampling to generate novel PAG cations,
which leverages a latent classifier trained on a small number of photo-acid generators. Generated
molecules are evaluated and compared with the training data by using a number of established metrics.
We further evaluate the generated molecules with the help of subject matter experts and report the
successes and avenues for further improvement.

2 Related Work

Reported studies dedicated to the design of PAGs for photochemical applications primarily followed
ad hoc approaches based on chemical intuition and design rules (cf. [2, 5]) coupled with pre-existing
empirical knowledge of environmentally friendly molecular building blocks. Generative modeling
of sulfoniums in the sense of contemporary deep learning approaches to small molecule discovery
in drug design is yet to become a standard technique among practitioners of the art. Sulfonium
cations comprise a relatively small set (approximately 1200 compounds in PubChem database if
searched by "sulfonium" keyword). This suggests an enormous potential for their expansion and also
hints at the potential challenges to the generative modeling. One challenge is relative scarcity of the
constraints on sulfonium generation compared to the available constraints on the small molecule drug
design. Access to the performance characteristics and ENV/TOX metrics is limited, as the application
domain is siloed due to its niche nature and high requirements for intellectual property protection.
Finally, the economy of this field of chemical research is not conducive to large-scale expensive
experimentation and characterization, further limiting volumes and quality of the knowledge driving
generative modeling. One practical strategy to resolve these challenges is to pair up generative
modeling with expert-in-the-loop approaches [12]. Along that line, we introduced adjudication stage
where a subject matter expert (SME) experienced in photolithograpy reviewed and labeled generated
candidates.

Several generative modeling approaches that utilize deep learning models have been proposed for de
novo generation of molecules. These include, but not limited to, Recurrent Neural Networks [13, 14],
Generative Adversarial Networks (GAN) [15, 16] and Variational Autoencoders (VAE) [17–20].
Reinforcement Learning, Bayesian Optimization and semi-supervised learning based methods have
been used for goal-directed generation of molecules [19–25, 17, 26–28].

3 Model and Methods

Our approach builds on prior work in conditional generation using attribute-guided rejection sampling
from a continuous latent space, namely Conditional Latent (attribute) Space Sampling (CLaSS)
[29, 30]. CLaSS works by first training a generative framework based on a deep latent variable model,
such as a VAE, on a large set of unlabeled data. Then, a density model of the learned latent variables
is constructed. Attribute-conditioned generation is then performed by sampling from a desired
conditional distribution, resulting in molecules with desired properties (in this case, cations with low
LUMO energies). The conditional sampling leverages a rejection sampling scheme from the models
in the latent z-space appealing to Bayes rule, and attribute classifiers trained on the latent variables
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Table 1: Description of ZINC dataset after filtering to match the minimum and maximum property
values from PAG dataset. The final size of this ZINC-filtered dataset is around 163 000 cations.

minimum maximum

Vocab. {Br, C, Cl, F, I, N, O, S, Si}
Num. atoms 4 79
logP −5.68 23.73
SA 1.82 7.91
Mol. weight 58.10 984.18
Num. rings 0 12
Max. ring size 0 6

Table 2: Distance/similarity metrics with respect to known sulfonium PAG reference set with low
LUMO energies, as well as generation quality metrics. GEN is a set of 10 000 molecules generated by
our model and ZINC is the ZINC-filtered data described in Table 1. Refer to MOSES for description
of metrics [33]. Better values are bolded.

Distance/similarity Quality

Comp. set FCD SNN Frag. Scaf. MW logP SA IntDiv Uniq. Nov.

GEN 10.57 0.336 0.693 0.432 7102 3.04 0.122 0.843 0.969 0.993
ZINC 21.53 0.225 0.538 0.035 13980 0.475 0.088 0.844 – –

[29]. See Appendix A.1 for further details on conditional sampling. We also draw inspiration from
CogMol that utilizes CLaSS in conjunction with additional in silico screening procedures [30] to
reduce the pool of designs for further evaluation.

3.1 Data

We start with a set of onium salt PAG compounds compiled from patent data and split the compounds
into the respective cations and anions. In this work, we focus on the cations only. We then compute
the molecular orbitals with B3LYPV3/3-21G density functional theory (DFT) using GAMESS [31]
and save the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energies
for each molecule. We end up with 1353 cations: this forms the basis of our PAG training data.

We also needed data on which to train the VAE model. For this, we used the ZINC15 dataset [32]
as it is large (over 700 000 molecules) and similar in length and element type to the PAG training
set. We further restrict to the samples from ZINC to those that are positive ions and are within the
minimum and maximum of the observed PAG samples in the following attribute values: number of
atoms, hydrophobicity (logP), synthetic accessibility (SA), molecular weight (MW), number of rings,
and maximum ring size. We also limit the ZINC molecules to only contain atoms seen in the PAG set.
A summary of this process can be seen in Table 1. Roughly 163 000 cations from ZINC remain after
the filtering process, refered as the ZINC-filtered dataset.

3.2 Variational Autoencoder Training

We use a bidirectional Gated Recurrent Unit (GRU) architecture for the encoder and decoder of the
VAE with a latent dimension of 128. This is the same model architecture used in CogMol [30]. We
add additional loss terms for predicting logP, SA, and Morgan fingerprints (FP) from the latent vectors
in order to better regularize the latent space. These prediction models are simple 4-layer MLPs with
hidden dimensions 50 and dropout probability 0.2 and are trained end-to-end with the VAE. SA and
logP use L1 loss while FP uses cross entropy and logP is weighted at 0.1 times compared to SA and
FP.

Following the approach of CLaSS, we fit a Gaussian mixture model to approximate the density of the
latent features of all the PAG cations. We use 100 components and diagonal covariance matrices as
well.
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Figure 1: Distributions of various metrics for generated molecules (GEN) compared to low-LUMO,
< −5 eV, known sulfonium PAGs and the filtered ZINC cations described in Table 1.

3.3 Attribute Predictors

As mentioned previously, we are interested in molecules with low LUMO energy. Specifically, we
chose a threshold of −5 eV and lower. In order to perform rejection sampling on the VAE samples,
we trained a binary classifier to predict high/low LUMO energy according to this threshold using the
PAG data from Section 3.1 using a simple 1 layer MLP with hidden dimension 100. This classifier
achieves 79.4% balanced accuracy using 5-fold cross-validation. Figure 4 shows the confusion matrix
for this classifier.

We also incorporated additional filtering criteria based on feedback from expert chemists. This allows
the outputs to be tuned for explicit, directly-computable properties that augment our definition of
“good” PAGs. These included limiting generated molecules to only sulfonium ions and discarding
amines and fluorine-rich molecules. The acidic properties of amines can interfere with photo-acid
generation while fluorines have negative environmental impacts that we wish to avoid in de novo
compounds.

4 Results

We evaluated the performance of our generation pipeline by comparing the distribution of generated
molecules (after the additional filtering steps described in Section 3.3) to various reference sets. In
Table 2, we compute metrics from the MOSES benchmark [33]. For the distance/similarity metrics,
generated molecules and ZINC-filtered molecules from the filtered ZINC training set are compared to
the reference set which is the same as the PAG training data but limited to LUMO < −5 eV sulfonium
cations. Internal diversity is also calculated for both comparison sets and uniqueness and novelty are
calculated for the generated molecules to assess the quality of the generator. Overall, our generation
pipeline succeeds in shifting the generated distribution of molecules from the pretrained distribution,
closer to the desired PAG-like distribution while producing novel, unique, and diverse molecules,
as indicated by lower Fréchet ChemNet Distance (FCD) and higher Nearest neighbor similarity
(SNN), fragment similarity (Frag.) and scaffold similarity (Scaf.). In contrast, the generated PAGs
are subtantially different in terms of physical properties such as lipophilicity (logP) and synthetic
accessibility (SA).
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Table 3: Summary of generated data evaluated by expert chemist. Reference is the data collected
from patents while Generated is the samples from our model.

Reference Generated

Sulfonium cations 4619 812
All scaffolds 471 134
Sulfonium scaffolds 255 69
Novel sulfonium scaffolds – 61

The kernel density estimation plots in Figure 1 help further illustrating this point. Interestingly,
while the generated PAGs do show a significant overlap with the logP, SA, and molecular weight
(MW) distributions of the training PAG molecules , there appears PAG generations that are physico-
chemically distinct from the known PAGs. For example, generated PAGs do show a characteristic
ring count distribution that is closer to the ZINC-filtered cations, when compared to known PAGs.

Further evaluation of the “goodness” of generated PAGs poses a problem since this is a complex topic
which cannot be distilled into a single, or even multiple, numerical property. In this work, we ask a
subject matter expert (SME) chemist to evaluate the potential of generated scaffolds for photo-acid
generation. Scaffolds were chosen for evaluation because they distill key traits of the molecule but
remain easy to modify by chemists.

We first sampled a large number of sulfonium cations using the pipeline described above. Then,
we calculated the maximum fingerprint similarity with any of the samples from the known PAG
cations set for each of the samples and selected at most 100 at random from each bin of 0.1 similarity
increments. Generally patent-worthy sulfonium cations are dissimilar from each other (see Appendix
A.3) so it makes sense to choose such molecules for analysis. On the other hand, more familiar
molecules are easier to analyze and build confidence in the model. This left us with 812 molecules
(none were found to be between 0 and 0.1 similarity and few were between 0.9 and 1; exact matches
were discarded). From there, the generated cations were split into BRICS decomposition fragments
[34] and Bemis-Murcko scaffolds were extracted from the fragments [35]. Finally, non-sulfonium
scaffolds were removed from consideration. The results of this processing is summarized in Table 3.
The 61 resulting novel sulfonium scaffolds were evaluated by the SME and 13 promising candidates
were identified. These can be seen in Figure 2. Notably, we observe approximately 2 orders of
magnitude improvement in terms of viable candidates compared to a meta-heuristic based algorithm
(unpublished results).

4.1 Characterization of Designed PAGs based on SME feedback

The primary adjudication task of the SME is to reject non-viable candidates. The adjudication
was carried out over scaffolds derived from the output of the generative model. The candidates

Figure 2: Generated scaffolds evaluated as promising by SME.
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Figure 3: Network representation of the set of the adjudicated scaffolds (large nodes) and their parent
molecules (small nodes). Color encodes SME decision about the scaffolds and is propagated to the
parent molecules for visualization purposes: pink - rejection, light blue - uncertain, and deep blue -
acceptance. Two scaffolds are linked if Dice distance between their Morgan fingerprints is less than
0.65. A molecule and a scaffold are linked if the scaffold is derived from the molecule.

were rejected if some of the aspects of their structure raised strong concerns about general stability
under lithographic conditions, ability to release a proton as a result of photo-rearrangement, risk of
quenching released protons due to the presence of basic functional groups, risk of side reactions
due to the presence of reactive groups, presence of moieties that are highly toxic, environmentally
harmful, or avoided by industrial vendors. Systematic enumeration of specific criteria that contributed
to the SME’s decisions is an ongoing effort that involves construction of a specialized ontology
and remains outside the scope of the presented study. The scope and results of the adjudication are
expressed as a network in Figure 3.

The set of candidates that were not rejected was refined by asking the SME about the level of their
confidence about viability of the candidates expressed as "accept" and "uncertain" labels. Further
validation can then be performed on the adjudicated candidates. Of the candidates identified by our
model, 8 were assessed to have meaningful synthetic routes and at least 1 satisfied stricter criteria of
viability, function, ENV/TOX properties, and IP potential.

5 Conclusions

The presented approach successfully addresses the issue of a fundamentally small volume of preex-
isting structural data accessible to a generative model. The overall strategy pairs up the attribute-
conditional sampling from a pre-trained deep generative model trained on a large amount of unlabeled
data with SME adjudication. This is particularly attractive under the constraints of the discovery
tasks, where appreciable design constraints, i.e. the definition of “goodness”, is not available in
explicit form, due to the combination of the siloed nature of the domain, lack of practices codifying
the constraints, and varying priorities and preferences of different experts. In summary, we show that
a deep generative modeling approach to de novo molecule design can be applied to great effect for
generating novel photo-acid generator cations that are safe, effective, and sustainable and we hope
that this work can serve as a blueprint for future works with similar challenges.
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A Appendix

A.1 Additional background on conditional sampling

Algorithm 1 Conditional Latent (attribute) Space Sampling (CLaSS)

Require: Trained latent variable model (e.g. VAE), samples zj drawn from domain of interest,
labeled samples for each attribute ai.

1: Encode training data xj in latent space: zj ∼ qφ(z|xj)
2: Use zj to fit explicit density model Qε(z) to approximate marginal posterior qφ(z)
3: Train classifier models qε(ai|z) using labeled samples for each attribute ai to approximate

probability p(ai|x)
4: Assuming attributes ai are conditionally independent given z, then

p̂ε(z|a) =
Qε(z)

∏
i qε(ai|z)

qε(z)

via Bayes’ rule.
5: Let g(z) = Qε(z) and M = 1

qε(a)

6: repeat
7: Sample from Qε(z)

8: Accept with probability f(z)
Mg(z) =

∏
i qε(ai|z) ≤ 1

9: if Accepted then
10: Decode sample from latent and save: x ∼ pθ(x|z)
11: end if
12: until Desired number of samples attained
13: return Accepted samples

We briefly describe Conditional Latent (attribute) Space Sampling (CLaSS) as proposed in [29].
CLaSS uses attribute predictors trained on the latent embeddings of a Variational Autoencoder
along with a density model to generate molecules through rejection sampling. Let a ∈ Rn =
[a1, a2, . . . , an], be a set of attributes of interest, which are assumed to be independent. CLaSS
performs conditional sampling as p(x|a) = Ez[p(z|a)p(x|z)] ≈ Ez[p̂ξ(z|a)pθ(x|z)]. The term
p̂ξ(z|a) is approximated using a Gaussian Mixture Model Qξ(z) and per-attribute classifier model
qξ(ai|z) through Bayes rule. Rejection sampling is performed through the proposal distribution:
g(z) = Qξ(z).

A.2 Attribute predictor details

The confusion matrix for our attribute (LUMO) classifier is given below in Figure 4. The attribute
classifier is trained on the latent embeddings of the Variational Autoencoder (VAE).

A.3 Analysis of patent-worthiness of sulfonium cations

For a sulfonium cation to be a viable candidate for the development of intellectual property and have
high patent-worthiness, it has to be both novel and structurally non-obvious at the time of the patent
filing. Generation of sulfonium candidates with significantly different structures should be prioritized
over incrementally changing structures. This strategy is substantiated by the analysis of the histogram
of pair-wise Dice distances on the Morgan fingerprints of the sulfonium cations present in the patents
shown in Figure 5. The mode of the histogram corresponds to the Dice distance 0.8, indicating that
the data set of patent-worthy sulfoniums comprises predominantly dissimilar structures and offering
a simple operational measure of patent-worthiness that can be used to inform molecular generation
process.
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Figure 4: Confusion matrix for LUMO classifier.

Figure 5: Histogram of pair-wise Dice distances over the set of sulfonium cations from patents. Mode
at 0.8 suggests an empirical bound on how similar patent-worthy sulfoniums can be.
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