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Abstract

We study few-shot reranking for multi-hop QA001
(MQA) with open-domain questions. To alle-002
viate the need for a large number of labeled003
question-document pairs for retriever training,004
we propose PROMPTRANK, which relies on005
large language models prompting for multi-hop006
path reranking. PROMPTRANK first constructs007
an instruction-based prompt that includes a can-008
didate document path and then computes the009
relevance score between a given question and010
the path based on the conditional likelihood011
of the question given the path prompt accord-012
ing to a language model. PROMPTRANK yields013
strong retrieval performance on HotpotQA with014
only 128 training examples compared to state-015
of-the-art methods trained on thousands of ex-016
amples (73.6 recall@10 by PROMPTRANK vs.017
77.8 by PathRetriever (Asai et al., 2020) and018
77.5 by multi-hop dense retrieval (Xiong et al.,019
2021)).020

1 Introduction021

Many information-seeking queries are in the form022

of multi-hop questions. For instance, to answer023

the question “What 1988 Christmas comedy film024

did Brian-Doyle Murray star in?”, we need to (i)025

search for movies starring Brian Murray, then (ii)026

identify which of them were released in 1988 dur-027

ing Christmas. Evidence required to answer such028

questions is often dispersed in different documents,029

requiring sequential, multi-step reasoning to reach030

the answer (Perez et al., 2020), typically referred031

to as multi-hop question answering (MQA).032

Given a multi-hop question and a large docu-033

ment corpus, existing MQA systems largely fol-034

low a retrieve-then-read pipeline, where a retriever035

module first identifies relevant documents from036

the corpus, and a reader module produces the an-037

swer based on the retrieved output (Asai et al.,038

2020; Li et al., 2021; Singh et al., 2021; Qi et al.,039

2021). The retriever module is trained to predict the040
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Figure 1: Multi-hop retrieval recall@k on HotpotQA.
PROMPTRANK, using only 128 examples, outperforms
DrKit (Dhingra et al., 2020) and performs closely to
Multi-hop Dense Retrieval (Xiong et al., 2021). Both
fully supervised models are trained on ~90K examples.

ground-truth evidence document(s) given the ques- 041

tion (Karpukhin et al., 2020; Qi et al., 2021; ). How- 042

ever, curating large datasets of question-document 043

pairs is expensive, especially for low-resource lan- 044

guages or domains that require unique expertise 045

(e.g., medical or legal documents), thus creating a 046

bottleneck for building QA pipelines (Ram et al., 047

2022). Moreover, resorting to heuristics for data la- 048

beling can lead to incorrect annotation (Izacard and 049

Grave, 2021). This difficulty is further exacerbated 050

in the case of multi-hop questions, as they need to 051

be annotated with multiple support documents. 052

The majority of existing data-efficient retrieval 053

and reranking methods are restricted to single- 054

hop QA, and it is unclear how to extend them 055

to the multi-hop setting. For instance, Ram et al. 056

(2022) proposed “recurrent span retrieval” to obtain 057

psuedo question-document pairs in an unsupervised 058

way for single-hop QA. However, in the multi-hop 059

case, it is less likely that we can retrieve recur- 060

rent spans from multiple documents that follow a 061

valid reasoning trajectory. Moreover, their method 062

requires intensive pretraining on the obtained cor- 063

pus. Seonwoo et al. (2021) focus on weakly super- 064

vised multi-hop QA retrieval, yet their method uses 065
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Figure 2: An overview of the full retrieval system. (a): Initial documents from TF-IDF are retrieved and expanded based on
hyperlinks for H times. PROMPTRANK converts each path into a prompt τc and scores through PLM(q|τc) for a given question q
using a language model. For simplicity, we omit intermediate scoring steps where paths of length h < H are scored using the
same fashion and only the top-scored ones are expanded. (b): A sample of what a 2-hop path prompt looks like. Prompts are
constructed in terms of an instruction and the document path.

corpus-specific (e.g., Wikipedia) heuristics and also066

requires pretraining. This motivates the need for067

data-efficient multi-hop retrieval methods that (i)068

work out-of-the-box without requiring additional069

(pre)training, and (ii) do not rely on hand-designed070

heuristics for data collection and annotation.071

To this end, we present PROMPTRANK, which072

leverages the power of large language mod-073

els (LLMs) for few-shot multi-hop retrieval.074

PROMPTRANK combines a simple unsupervised075

retrieval method i.e., TF-IDF similarity, with an076

LLM reranker that scores the relevance of docu-077

ment paths to a question based on the conditional078

likelihood of generating the question given the079

path. Our approach makes use of instruction-based080

prompting (Sanh et al., 2021; Ouyang et al., 2022)081

to steer the LLM towards assigning higher scores082

to more relevant support document chains. To cal-083

ibrate the model’s reranking scores and alleviate084

prompt sensitivity (Zhao et al., 2021), we borrow085

techniques from the literature such as temperature086

scaling (Kull et al., 2019) and instruction ensem-087

bling (Schick and Schütze, 2021a). We also uti-088

lize demonstration ensembling to leverage more089

examples than what can fit into the context of trans-090

former LLMs by combining reranking probabilities091

computed with different demonstrations.092

We evaluate few-shot PROMPTRANK on Hot-093

potQA (Yang et al., 2018), a standard MQA bench-094

mark, and show that it compares favorably against095

state-of-the-art models while using orders of mag-096

nitude fewer examples. More precisely, with only097

128 training examples, PROMPTRANK outperforms098

DrKit (Dhingra et al., 2020) and is only 4.2 Re-099

call@10 points lower than multi-hop dense re-100

trieval (MDR) (Xiong et al., 2021) (see Figure 1). 101

We also showcase PROMPTRANK as part of a QA 102

pipeline, again, displaying close QA performance 103

to fully-supervised retrievers—only 4.1 F1 points 104

lower than MDR. 105

In summary, our contributions in this paper are: 106

1. We propose PROMPTRANK, a few-shot rerank- 107

ing approach for multi-hop QA that reranks a 108

given document path based on the likelihood of 109

generating the question given a path prompt. 110

2. PROMPTRANK exhibits strong few-shot re- 111

trieval performance with as few as 128 exam- 112

ples and compares favorably to fully supervised 113

methods (§3.1). 114

3. PROMPTRANK leads to strong QA performance 115

when combined with a pretrained reader module, 116

performing close to fully-supervised retrievers 117

(§3.2). 118

2 Method 119

An overview of the full retrieval system is displayed 120

in Figure 2: Given a question q, the system expands 121

sequences of supporting documents into paths of 122

length H , which are used to answer the question. 123

At each step, we first use TF-IDF similarity to ob- 124

tain an initial set of supporting document paths.1 125

We then use PROMPTRANK to rerank the current 126

document chains based on their relevance to the 127

question (§2.1). 128

Concretely, we start with retrieving F candidate 129

documents using TF-IDF for the ‘first hop’. These 130

‘1-hop’ candidates are scored by PROMPTRANK 131

and K1 top-ranked documents are kept and further 132

1PROMPTRANK is agnostic to the retrieval approach and
can be combined with other retrieval techniques.
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expanded based on their hyperlinks to obtain 2-hop133

reasoning paths.2 These 2-hop reasoning chains134

are again reranked and the most promising K2 can-135

didates are further expanded. The process repeats136

until we obtain paths of length H , where H can137

be a hyperparameter.3 As the document graph can138

have a high branching factor, we only keep the139

top-L hyperlinks as reranking candidates based on140

TF-IDF similarity between the hyperlink document141

and the question. We have found this pruning step142

to improve efficiency without much performance143

drop. This process is shown in Figure 2(a).144

2.1 Path Reranking with PROMPTRANK145

Given a question q and a reasoning path or chain c,146

we use an LM to score c according to its relevance147

to q. Concretely, we measure the likelihood of the148

question given the path as follows:149

Scoreq(c) = PLM(q|τc) (1)150

where PLM(q|τc) is the conditional probability of151

generating the question given a prompt τc contain-152

ing path τc using an LM. Our initial experiments153

show that using PLM(q|τc) works substantially154

better than PLM(c|τq) for a question-containing155

prompt τq, which agrees with the findings in dos156

Santos et al. (2020).4 We argue that two factors157

contribute to this gap. First, LMs can be sensi-158

tive to the surface form (Holtzman et al., 2021) of159

reasoning paths, making it difficult to reliably com-160

pare the probabilities of different reasoning paths161

using PLM(c|τq). For instance, PLM(c|τq) tends162

to be higher for shorter paths. On the other hand,163

PLM(q|τc) does not suffer from this issue since164

we compare the probabilities of the same string165

(i.e., the question) by conditioning on different166

reasoning paths. Second, the prompt format us-167

ing PLM(q|τc)—the question follows a document—168

agrees more with the web data used for LM pre-169

training, where documents are usually followed by170

FAQs, questionnaires, and surveys, rather than the171

other way around. We further add a temperature172

parameter to scale the model output logits before173

computing P (q|τc). This can be seen as an instance174

of model calibration (Guo et al., 2017; Desai and175

Durrett, 2020; Jiang et al., 2021) with the goal of176

2We assume the presence of hyperlinks following pre-
vious work (Asai et al., 2020; Qi et al., 2021) although
PROMPTRANK is agnostic to how a candidate path is ob-
tained.

3This process can be viewed as a variation of beam search.
4Earlier experiments showed that the recall of PLM(q|τc)

was at least 60% better than that of PLM(c|τq).

improving the reranking scores. We show that tem- 177

perature scaling boosts reranking performance in 178

§3.1. 179

Constructing Prompt τc As shown in Figure 2 180

(b), the prompt consists of an instruction along 181

with the document path. The instruction’s goal 182

is to encourage higher scores for more relevant 183

paths by eliciting the LM reasoning ability (Ouyang 184

et al., 2022). We note that the instruction part is 185

fixed across all prompts constructed for different 186

candidate paths. 187

The path is expressed in the prompt by concate- 188

nating all documents in the chain and prepending 189

each document with a fixed prefix, such as “Docu- 190

ment:” or “Passage:”. The concatenation of path 191

documents significantly improves reranking by si- 192

multaneously considering all hops, which allows 193

the LM to do a context-aware evaluation of path 194

relevance. 195

2.2 Instruction Search and Ensembling 196

Although instructions can be manually engineered 197

to trigger the LM to accomplish the task (e.g., 198

“Read the following documents and generate a ques- 199

tion”), this requires human expertise and can be 200

sub-optimal. Therefore, we leverage automated in- 201

struction search Gao et al. (2021), where we use an 202

encoder-decoder LM, e.g., a T5-Base model (Raf- 203

fel et al., 2020), that is trained to fill masked text 204

spans to generate instructions. 205

Specifically, we fill in the template “Task: <X> 206

documents and <Y> question. Question:”, where 207

<X> and <Y> are the masked spans expected to be 208

filled in by the model (e.g., for a human-written 209

instruction example, <X> = “Read the following” 210

and <Y> = “answer the”). We consider two vari- 211

ations of this template corresponding to the cases 212

where the document path appears before/after the 213

template. We constrained the template to contain 214

the words ‘documents’ and ‘question’ to ensure 215

that the model generates relevant prompts. That 216

is because when we use a less specific template 217

without such tokens, the resultant instructions are 218

more diverse but less relevant. The exact templates 219

used are in Appendix A.2. 220

Previous work has shown that mixing multiple 221

prompts can improve few-shot performance (Gao 222

et al., 2021; Schick and Schütze, 2021b). Similarly, 223

such ensembling could produce more regularized 224

path scores by alleviating prompt sensitivity (Zhao 225

et al., 2021). Given a path, we combine the scores 226
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of obtained through different instructions. We ex-227

periment with both mean and max ensembling.228

2.3 Demonstration Ensembling229

We employ in-context learning (ICL) (Brown et al.,230

2020) to teach the LLM to do reranking by showing231

the model examples i.e., demonstrations of ques-232

tions and their gold paths. A major obstacle to this233

approach is the input length limit in standard trans-234

former LMs. Since paths are comprised of multiple235

documents, in most cases we cannot feed more than236

two demonstrations without exceeding the limit of237

1024 tokens, a standard setup for pretrained LMs.238

To workaround that, we utilize demonstration en-239

sembling, where different in-context demonstra-240

tions are used to compute scores for a given path,241

and the scores are combined by a mean or max242

operation.243

3 Experiments244

Data We evaluate our method on HotpotQA245

(Yang et al., 2018), which consists of two-hop ques-246

tions over diverse topics. We focus on the fullwiki247

setting in which two Wikipedia passages are re-248

quired to answer the questions. Since the gold249

passages for the test set are not available, we fol-250

low prior work and evaluate PROMPTRANK on the251

development set, which has 7,405 questions. There252

are two main question types in HotpotQA: (1) com-253

parison questions usually require contrasting two254

entities and (2) bridge question can be answered255

by following a connecting entity that links one doc-256

ument to another.257

Compute Infrastructure All our reranking ex-258

periments are run on a single Nvidia A40 GPU259

with 256GB of RAM. Our QA experiments in §3.2260

are run on two Nvidia Quadro RTX 8000 GPUs261

with 128GB of RAM.262

Models We use HuggingFace implementations263

(Wolf et al., 2020) of GPT2-XL (1.5B) (Brown264

et al., 2020), T5-Base (220M), T5-Large (770M)265

and T5-XL (3B) (Raffel et al., 2020) in our exper-266

iments. We use the ‘LM adapted’ version of T5267

models since they have been shown to work better268

for prompt-based learning (Lester et al., 2021). We269

report additional results with the OPT-30B model270

(Zhang et al., 2022) in §4.4.271

Hyperparameters For PROMPTRANK, we use a272

path length of H = 2 for all experiments. For prun-273

ing the search space we use K1 = 5 and L = 3.274

We use the TF-IDF index implemented by Asai275

et al. (2020) and initially retrieved F = 100 docu- 276

ments from TF-IDF. We truncate path documents 277

to 230 tokens before constructing the prompt and 278

limit the prompt length to 600 tokens. When using 279

in-context demos, we use the maximum length of 280

1024 tokens. 281

Metrics Retrieval performance is measured using 282

both Recall (R@k) and Answer Recall (AR@k), 283

with k ∈ {2, 10, 20}. R@k measures whether the 284

two gold documents are present in the top-k re- 285

trieved documents and AR@k is the recall of the 286

answer string in the top-k retrieved documents. For 287

HotpotQA, we only compute AR over questions 288

with span answers (we ignore yes/no and compari- 289

son questions). Since we do not have access to the 290

HotpotQA test set, we report results on the original 291

development set provided by Yang et al. (2018). 292

Document Scores We compute document scores 293

from path scores as follows. Similar to Das et al. 294

(2019), we take a document score to be the max- 295

imum of all its path scores. We find this change 296

to yield better recall than using path scores, with 297

details elaborated in Appendix B. 298

Instruction Search For instruction search, we 299

generate 200 different instructions as described in 300

§2.2 using top-k sampling with k = 10 to obtain 301

diverse instructions, and evaluate each prefix based 302

on R@2 on our development set of 128 examples. 303

Table A1 shows the best 10 instructions identified. 304

Baselines We compare our reranker to the follow- 305

ing baselines. TF-IDF retrieves top similar docu- 306

ments to the question using TF-IDF similarity and 307

TF-IDF + BM25 adds an extra step where retrieved 308

documents and their hyperlinks are reranked using 309

BM25 (Robertson et al., 1995). PathRetriever 310

(Asai et al., 2020) is a graph-based retriever trained 311

to expand an initial pool of documents based on 312

Wikipedia links and searches for the best reasoning 313

using beam search.5 DrKIT (Dhingra et al., 2020) 314

is an end-to-end trained dense retrieval approach 315

that starts from question entities and traverses a 316

virtual knowledge base to find the relevant entities. 317

Multi-hop Dense Retrieval (MDR) (Xiong et al., 318

2021) encodes the question and the documents re- 319

trieved by each step into a dense vector and uses 320

maximum inner-product search (MIPS) to find the 321

next hop. 322

5We run PathRetriever on HotpotQA with original hyper-
parameters except for an initial TF-IDF pool size=100 to allow
for fair comparison to our approach.
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# Ex. R@2 R@10 R@20 AR@2 AR@10 AR@20

Unsupervised Baselines
TF-IDF – 9.9 27.6 35.0 37.6 53.8 60.2
TF-IDF + BM25 – 19.1 54.7 61.8 49.5 74.7 79.9

Fully-supervised Baselines
DrKit ~90K 38.3 67.2 71.0 – – –
MDR ~90K 65.9 77.5 80.2 – – –
PathRetriever ~90K 66.4 77.8 78.7 82.2 90.5 90.5

PROMPTRANK, no ICL
GPT2-XL† – 36.6 60.5 65.9 63.0 83.9 87.4
T5-XL† – 42.8 68.9 74.1 69.3 86.8 89.0

+ best inst. 128 47.8 71.4 76.0 74.0 87.9 89.7
+ temp. scaling 128 49.7 71.9 76.2 76.2 88.4 89.9
+ inst. ensemble 128 51.3 72.0 76.4 77.6 88.5 90.3

PROMPTRANK, with ICL
T5-XL, Ndemos = 2 128 52.3 (.7) 73.1 (.2) 77.1 (.2) 78.6 (.7) 88.7 (.0) 90.3 (.1)

T5-XL, Ndemos = 8 128 54.5 (.7) 73.6 (.3) 76.9 (.1) 79.1 (.6) 89.0 (.1) 90.5 (.0)

T5-XL, Ndemos = 10 128 54.4 (.5) 73.5 (.3) 76.9 (.1) 78.9 (.4) 88.9 (.1) 90.5 (.0)

Table 1: Retrieval performance on HotpotQA comparing PROMPTRANK to baselines. †: No instruction used. PROMPTRANK
results except those marked with † use a labeled set of 128 examples for tuning the instruction and the temperature parameter.
Few-shot experiments use the best instruction found on a held-out set of 128 examples (See Table A1 in Appendix) and
temperature (T = 1.4). In-context learning (ICL) experiments are run 5 times with demos sampled from the same 128-example
set and we report mean and (std). Our best results are highlighted in bold.

Below, we start with the evaluation of the zero-323

and few-shot reranking of PROMPTRANK (§3.1).324

Then, we move to evaluate downstream MQA per-325

formance in the few-shot setting (§3.2).326

3.1 Retrieval Performance327

Table 1 shows the performance of PROMPTRANK328

and other comparisons in zero- and few-shot set-329

tings.330

Zero-shot Performance We start with dis-331

cussing the retrieval performance of zero-shot332

PROMPTRANK on HotpotQA. First, we observe333

that simple TF-IDF performs poorly in terms of334

different recall metrics, while TF-IDF + BM25335

performs much better, yet still worse than fully-336

supervised approaches. Next, we look at the per-337

formance of the zero-shot PROMPTRANK (T5-XL)338

which uses no instructions, i.e., the prompt con-339

sists of only the document path. These models ob-340

tain better recalls than TF-IDF + BM25 and even341

outperform the fully-supervised DrKit. Although342

this approach does not use any labeled data, it is343

only 3.7 AR@10 points worse than PathRetriever,344

which is trained on ~90K examples. These find-345

ings demonstrate PROMPTRANK’s effectiveness at346

reranking paths of documents.347

Few-shot Performance The zero-shot perfor-348

mance of PROMPTRANK can be further improved349

with access to a small set of labeled examples (in350

our case, we only used 128 examples from Hot-351

0 2 4 6 8 10
# demos

49.2

50.2

51.2

52.2

53.2

54.2

55.2

56.2

R@
2

R@2

75.5

76.5

77.5

78.5

79.5

AR
@

2

AR@2

Figure 3: Demonstration ensembling (§2.3) is able to lever-
age more examples (N > 2) than what is allowed by the
T5-XL context window size. We show R@2 and AR@2 on
HotpotQA with different numbers of demonstrations. Metrics
are averaged over 5 runs with different demos sampled from a
128-example set.

potQA) for instruction search and finding tempera- 352

ture value. We observe a substantial boost of 11.6% 353

(42.8 → 47.8) in R@2 of PROMPTRANK when us- 354

ing the best instruction found by instruction search. 355

Furthermore, temperature scaling with T = 1.4 356

also provides a boost of 3.9% (47.8 → 49.7) points 357

in R@2. 358

We also observe that instruction ensembling 359

gives a further performance boost, reaching 51.3 360

R@2 with PROMPTRANK. We show the perfor- 361

mance of max ensembling, which we have found 362

to perform better than mean ensembling in terms 363

of R@2. We hypothesize that max ensembling 364

computes an upper bound on the path scores, com- 365

pensating for any underestimation of path scores 366

that can happen when using a single instruction. 367
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In-context learning We experiment with an N -368

shot setting while making sure that the two demon-369

strations cover both question types in HotpotQA370

(bridge and comparison). Figure 3 shows that both371

R@2 and AR@2 improve as we use more demon-372

strations. With only 2 examples, we observe a373

large boost of 6.3% (49.2 → 52.3) in R@2. Since374

we cannot fit more than 2 demonstrations in the375

1024 context window, we use demonstration en-376

sembling (§2.3). For instance, 6-shot ensembling377

scores a path by combining 3 different contexts,378

each obtained using 2 demonstrations. We use max379

ensembling as it is found to work best. Figure 3380

shows the in-context learning performance with a381

different number of demonstrations. We observe382

a steady increase in R@2 until N = 8. AR@2383

also improves with more demonstrations but drops384

slightly with N = 10. Interestingly, demonstration385

ensembling has enabled us to leverage more ex-386

amples than permitted by the context window size387

of T5-XL. We leave it to future work to study the388

applicability of this technique to other tasks.389

3.2 Full QA Performance390

Here, we analyze the performance of391

PROMPTRANK when used as the retriever392

in a QA pipeline. We adopt an extractive reader393

model based on ELECTRA Large (Clark et al.,394

2020) with two heads to predict the start and end of395

the answer span. We use the checkpoint provided396

by Xiong et al. (2021)6, which is fully trained on397

HotpotQA. We use the same inference setting as in398

(Xiong et al., 2021), where the top-100 retrieved399

paths are fed to the reader to obtain an answer400

from each path. Answers are then sorted based401

on a linear combination of path score and answer402

confidence, and the top answer is returned. Details403

on the inference hyperparameters for the reader are404

in Appendix C.1.405

In Table 2, we compare the QA performance406

with PROMPTRANK as the retriever against popular407

a fully-supervised baseline retriever, namely MDR408

(Xiong et al., 2021) as well as unsupervised TF-409

IDF. PROMPTRANK with Ndemos = 10 is only 4.6410

F1 points worse than MDR, which is using the411

same reader module. Again, this result is obtained412

few-shot on the retrieval side, while baselines are413

all trained on thousands of examples.414

6https://github.com/facebookresearch/
multihop_dense_retrieval.git

Retriever EM F1

Fully-supervised
MDR (Xiong et al., 2021) 62.3 75.1

Zero-shot
TF-IDF 39.6 49.4
PROMPTRANK, no inst 55.7 67.7

Few-shot
PROMPTRANK, (Ndemos = 2) 57.8 (.1) 70.0 (.1)

PROMPTRANK, (Ndemos = 10) 58.3 (.0) 70.5 (.1)

Table 2: Answer EM and F1 score on HotpotQA development
set. PROMPTRANK results are aggregated over 3 runs with
different demonstrations. We show metrics mean and (std). To
allow for a fair comparison, only the retriever is varied over
these systems while the reader module is the same.

Re-ranking R@2 R@10 AR@2 AR@10

Single-hop 22.8 52.0 54.9 73.8
Multi-hop 46.9 67.6 75.4 87.9

Table 3: Recall measured on 4K questions from HotpotQA
in two settings: reranking each document separately with the
LM (single-hop) and reranking the full path at once (multi-
hop). Multi-hop reranking performs substantially better than
single-hop.

4 Further Analysis 415

4.1 Comparison to Single-hop Reranking 416

The key idea behind our approach is to conduct 417

joint reasoning with documents in the path using 418

the LM, as opposed to reranking each document in 419

the path separately (single-hop reranking). More 420

specifically, in single-hop reranking, we expand 421

paths using the same setup of PROMPTRANK but 422

rerank each document d separately using p(q|τd), 423

for a given document prompt τd. 424

To assess whether our multi-hop reranking ap- 425

proach offers the advantage of global reasoning, 426

we compare both approaches by running two exper- 427

iments with identical settings except for how docu- 428

ments are reranked. For evaluation, we use a set of 429

4K questions from HotpotQA and T5-Large, and 430

no instruction is used, i.e., the prompt only contains 431

the document(s). Table 3 shows the retrieval per- 432

formance of both approaches. Interestingly, a large 433

gap in recall scores is observed between single-hop 434

and multi-hop reranking. This supports our hypoth- 435

esis that jointly considering multiple documents 436

in the path helps the LM better model documents’ 437

relevance to the question. 438

4.2 Role of Instruction 439

Our goal here is to investigate (i) how useful is the 440

presence of the instruction in the prompt, (ii) how 441

much benefit (if any) automated instruction search 442
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Figure 4: R@2 and AR@2 with different kinds of instruc-
tions for three different T5 sizes: XL, Large, and Base. The
recall is measured over 1K questions from HotpotQA train
set using 200 different instructions obtained using automated
search §2.2.

provides over manual instructions, and (iii) whether443

the instruction’s location in the prompt matters.444

To answer these questions, we analyze the recall445

over 200 different instructions generated using the446

method described in §2.2 and using 1K examples447

from HotpotQA with different LM sizes: T5-XL,448

T5-Large, and T5-Base, with results displayed in449

Figure 4. This analysis uses an initial set of TFIDF450

documents of size F = 30.451

Usefulness of Instruction We can see that us-452

ing no instruction consistently yields poorer perfor-453

mance than using an instruction of any sort, across454

all variants of T5. Interestingly, without the instruc-455

tion, the three model sizes have almost the same456

R@2. The difference in their performances be-457

comes apparent when an instruction is added. Strik-458

ingly, in the no instruction case, T5-Large performs459

worse than T5-Base in terms of AR@2, showing460

that scaling does not consistently help recall when461

no instructions are used. This hints at the fact that462

instructions play a major role in harnessing the full463

power of LLMs, at least for our task.464

Benefit of Automated Instruction Search Next,465

we compare a human-written instruction against466

an instruction found through automated instruc-467

tion search on a labeled set of 128 examples. The468

manual instruction we use is “Please write a ques-469

tion based on these passages.”, which is used by470

(Sachan et al., 2022).7 In Figure 4, we compare the471

recall when using these instructions. Interestingly,472

the search-based instruction outperforms the man-473

ual one in almost all cases. We also observe that474

the manual instruction performs poorly for AR@2475

7We average recall of the two cases where the instruction
falls before and after the path. See the next paragraph for more
context.

Model R@2 R@10 AR@2 AR@10

OPT-30B 36.9 65.4 61.0 82.0
GPT2-XL 47.2 70.3 57.1 85.7

Table 4: Document and answer recall of GPT2 and OPT
models based on 1000 questions from HotpotQA.

on T5-base, even worse than no instruction. These 476

observations hint at the utility of automated instruc- 477

tion search for path reranking. However, it is worth 478

noting that the best instruction on a relatively small 479

held-out set will not necessarily generalize during 480

test time: The search-based instruction produces 481

AR@2 and R@2 that are almost the same or worse 482

than the median instruction, respectively with T5- 483

Large. 484

Location of Instruction We study the perfor- 485

mance of two different kinds of prompts, where 486

the instruction appears before and after the path. 487

Figure 5 shows the R@2 and AR@2 in both cases 488

for T5 models of different sizes. We observe that 489

placing the instruction after the path performs con- 490

sistently better than placing before it, across all 491

model variants. We hypothesize this to be an in- 492

stance of the recency bias exhibited by LMs (Zhao 493

et al., 2021), i.e., placing the instruction right be- 494

fore where the model is asked to generate the ques- 495

tion better primes the LM for the task and produces 496

better calibrated path scores. We expect such find- 497

ing to generalize to other tasks where instruction- 498

based prompting is used. 499

4.3 Sensitivity to Document Order 500

We also study PROMPTRANK’s recall sensitivity 501

to document order in the prompt τc. By comparing 502

performance using two different document order- 503

ing schemes, we found that PROMPTRANK’s recall 504

is hardly affected by the document order in the path. 505

More details on this analysis are in Appendix D. 506

4.4 Choice of Language Model 507

Table 4 compares the reranking performance of 508

GPT2-XL and OPT-30B (Zhang et al., 2022) mod- 509

els. Despite having an order of magnitude more 510

parameters, we observe that the OPT model is gen- 511

erally worse compared to the smaller GPT2-XL 512

model. We suspect this is due to domain mismatch 513

between pre-training data and task relevant data. 514

Pre-training data of GPT2 models is potentially 515

more biased towards Wikipedia data compared to 516

the OPT models which are trained on more diverse 517

data. Importantly, this shows that scaling up the 518
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Figure 5: Retrieval performance when placing the instruction
before and after the document path in the prompt. The recall
is measured over 1K questions from HotpotQA train set using
200 different instructions. Having the instruction after the path
performs consistently better which is likely due to recency
bias (Zhao et al., 2021).

language model doesn’t necessarily guarantee bet-519

ter reranking performance and domain gap is an520

important consideration.521

5 Related Work522

Multi-hop Question Answering The majority523

of approaches for multi-hop question answering524

rely on two main components: a retriever and a525

reader. The retriever component can be a sparse526

index or heuristic-based such as TF-IDF or BM25527

(Chen et al., 2017; Nie et al., 2019) or dense in-528

dex (Karpukhin et al., 2020; Xiong et al., 2021).529

Other approaches aimed to improve the retriever530

with an additional reranking step on top of a sim-531

ple retriever (Wang et al., 2018; Lee et al., 2018;532

Htut et al., 2018). Asai et al. (2020) combined TF-533

IDF retriever with a recurrent graph retriever and534

used the reader module to rerank paths based on535

answer confidence. Qi et al. (2021) used a single536

transformer model to perform retrieval, reranking537

and reading in an iterative fashion. However, the538

good performance of previous work comes mainly539

from training on a large number of examples and540

is likely to fail in low-data settings. To treat this541

issue, Seonwoo et al. (2021) proposed to pretrain542

MDR (Xiong et al., 2021) on a large number of543

weakly-supervised examples of questions and the544

corresponding document paths. Although promis-545

ing in low-data settings, their pretraining is com-546

putationally expensive as it is done on millions of547

examples. On the other hand, our approach requires548

no task-specific pretraining.549

Language Models Prompting Prompt-based550

learning aims to construct better inputs, i.e.,551

prompts to language models to elicit better zero-552

or few-shot performance (Brown et al., 2020; Liu553

et al., 2021). Recently, instruction tuning, where 554

a language model is trained to follow natural lan- 555

guage instruction, has shown impressive zero-shot 556

performance on unseen tasks (Wei et al., 2021; 557

Ouyang et al., 2022). In our work, we use instruc- 558

tions to guide to model toward assigning better 559

scores to more relevant document paths. 560

LM-based Reranking Our scoring function is 561

related to query likelihood retrieval (Ponte and 562

Croft, 2017) and is in line with previous work that 563

employed generative language models for passage 564

reranking (Nogueira et al., 2020; dos Santos et al., 565

2020). dos Santos et al. (2020) performed single- 566

hop reranking using question likelihood given the 567

passage, but their setting was limited to fully- 568

supervised, single-hop QA. Concurrent with our 569

work is (Sachan et al., 2022), where the authors 570

leverage LLMs for unsupervised passage reranking 571

for QA. While their focus is on single passages, we 572

study the reranking of multi-passage paths, which 573

is more challenging. Moreover, their exploration 574

of prompting is limited to a single manual instruc- 575

tion, whereas we provide an in-depth analysis of 576

the effect of different prompting aspects on the re- 577

call such as instruction importance, location in the 578

prompt, and manual vs. automated. 579

6 Conclusion 580

This work introduces PROMPTRANK, a method 581

to perform few-shot reranking of multi-document 582

paths for multi-hop question answering based on 583

large language models. Experiments on a standard 584

multi-hop QA benchmark show the strong perfor- 585

mance of PROMPTRANK in the few-shot setting. 586

7 Limitations 587

One limitation to LM-based reranking is the compu- 588

tational overhead involved in reranking paths. Our 589

approach requires a forward pass through the LM 590

to rerank each path, which can become expensive 591

when using relatively large models such as GPT-3 592

or when dealing with more hop count that creates 593

combinatorially more paths. Another limitation 594

of PROMPTRANK is imposed by the transformer 595

context window length. Since PROMPTRANK re- 596

quires the prompt to include all path documents, it 597

could be infeasible to fit all path documents into 598

the prompt for paths with a larger hop count. A po- 599

tential direction to workaround this is to condense 600

or summarize the path documents beforehand. We 601

leave it to future work to explore this and other 602

techniques. 603
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A Instructions876

A.1 Best Instructions877

Table A1 shows the top 10 performing instructions878

found by instruction search (§2.2) based on R@2879

and using T5-XL.880

A.2 Instruction Search881

The actual templates we feed T5 are “Task: <X>882

documents <Y> question based on them. Ques-883

tion:” and “Task: <X> previous documents and884

<Y> question based on them. Question:”. We have885

found using the phrase “based on them” to be es-886

sential in directing the model to generate sensible887

instructions. Otherwise, the model would generate888

something like “Read the documents in question..”.889

However, we remove that phrase from the obtained890

instructions”.891

B Document Scores892

It is not immediately obvious how to compute a893

final score for each document since PROMPTRANK894

is mainly used to score document. The main issue895

is that a document can fall on multiple paths at the896

same time (some of which could be incomplete or897

not fully expanded yet) and therefore could have898

multiple such scores.899

For example, assume a path A → B → C of900

consisting of the documents A, B, and C, respec-901

tively. Considering the document B, we see that902

two scores are associated with B: score of the sub-903

path A → B and score of the full A → B → C904

path. To compute the final score of B, we could905

either just take the score of the longest path, or906

combine the two scores using mean, minimum, or907

maximum operations. What we found to work best908

compared to other alternatives is to take maximum,909

which is similar to what is done in (Das et al., 2019).910

We use this formulation when computing our recall911

metrics in §3.1.912

C Hyperparameters913

C.1 ELECTRA Reader914

We use the default hyperparameters for HotpotQA915

from (Xiong et al., 2021) in their codebase.8 We916

use a maximum path length of 512 tokens, maxi-917

mum question length of 64, and answer length of918

30. In their experiments, Xiong et al. (2021) com-919

bine the answer confidence along with a ranking920

8https://github.com/facebookresearch/
multihop_dense_retrieval

score using linear interpolation with a hyperparam- 921

eter λ. For our experiments, we use the path scores 922

produced by PROMPTRANK instead and learn λ on 923

a held-out development set. 924

D Sensitivity to Document Order 925

Here, study PROMPTRANK’s recall sensitivity to 926

the document order in the prompt τc by running a 927

simple experiment comparing two document order- 928

ing schemes: link-based and inverted link-based. 929

Link-based ordering is the standard approach used 930

in PROMPTRANK, which orders the documents in 931

the path based on their Wikipedia hyperlink traver- 932

sal order. The inverted scheme, reverses the order 933

of the documents in the prompt. No instruction is 934

used for this experiment. 935

Table A2 shows the retrieval performance with 936

both orderings. Interestingly, reversing the order 937

of the documents in the path does not seem to have 938

a tangible effect on the reranking performance. 939

While it is expected that p(q|τc) will change by 940

reversing the document order in the prompt, it ap- 941

pears that the ranks of different paths remain almost 942

unchanged, which explains why the recall is hardly 943

affected. 944

In other words, the path scores output by T5-XL 945

does not appear to be sensitive to the document 946

order prompt and can still. This might point to 947

another benefit of LM-based path reranking: Since 948

the performance is hardly affected by the document 949

order, we do not have to worry about finding paths 950

in the correct order (if such order exists) since the 951

LM will still be able to assess the path relevance 952

given different orders. 953
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ID Prompt

1 Document: [D1] Document: [D2] , ...,
Review previous documents and ask some question.
Question:

2 Document: [D1] Document: [D2] , ...,
Review the previous documents and answer question.
Question:

3 Document: [D1] Document: [D2] , ...,
Read the previous documents and write the following question.
Question:

4 Document: [D1] Document: [D2] , ...,
Search previous documents and ask the question.
Question:

5 To analyze the documents and ask question.
Document: [D1] Document: [D2] , ...,
Question:

6 Document: [D1] Document: [D2] , ...,
To read the previous documents and write a question.
Question:

7 Document: [D1] Document: [D2] , ...,
Read previous documents and write your exam question.
Question:

8 Document: [D1] Document: [D2] , ...,
Read the previous documents and ask this question.
Question:

9 Read two documents and answer a question.
Document: [D1] Document: [D2] , ...,
Question:

10 Identify all documents and ask question.
Document: [D1] Document: [D2] , ...,
Question:

Table A1: Top 10 instructions found through automated instruction search (§2.2) using T5-XL. Instructions are
sorted in descending order according to R@2 on a held-out development set of size 128 from HotpotQA (Yang
et al., 2018). We use the first 5 for instruction ensembling (section §2.2). Blue represents fixed text that does not
depend on the path i.e the instruction. The tokens [D1], [D2],.., etc. indicate where path documents are inserted.

Doc. Ordering R@2 R@10 AR@2 AR@10

T5-Large
Link-based 44.9 66.9 73.6 88.0

Inverted 44.5 67.7 72.6 87.8

T5-XL
Link-based 44.6 67.9 74.1 88.2

Inverted 45.7 69.0 74.4 88.3

Table A2: Retrieval performance of PROMPTRANK
using two different orderings of the documents in the
prompt. Evaluation is done on a set of 2K examples
from HotpotQA train set. PROMPTRANK exhibits mini-
mal sensitivity to the document ordering.
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