
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20028  | https://doi.org/10.1038/s41598-021-99003-7

www.nature.com/scientificreports

A topology‑preserving 
dimensionality reduction method 
for single‑cell RNA‑seq data using 
graph autoencoder
Zixiang Luo1,4, Chenyu Xu2,4, Zhen Zhang3* & Wenfei Jin1*

Dimensionality reduction is crucial for the visualization and interpretation of the high‑dimensional 
single‑cell RNA sequencing (scRNA‑seq) data. However, preserving topological structure among cells 
to low dimensional space remains a challenge. Here, we present the single‑cell graph autoencoder 
(scGAE), a dimensionality reduction method that preserves topological structure in scRNA‑seq data. 
scGAE builds a cell graph and uses a multitask‑oriented graph autoencoder to preserve topological 
structure information and feature information in scRNA‑seq data simultaneously. We further extended 
scGAE for scRNA‑seq data visualization, clustering, and trajectory inference. Analyses of simulated 
data showed that scGAE accurately reconstructs developmental trajectory and separates discrete 
cell clusters under different scenarios, outperforming recently developed deep learning methods. 
Furthermore, implementation of scGAE on empirical data showed scGAE provided novel insights into 
cell developmental lineages and preserved inter‑cluster distances.

Single-cell RNA sequencing (scRNA-seq) is an ideal approach for investigating cell-cell variation. Conventional 
dimensionality reduction techniques such as principal component analysis (PCA) and t-Distributed Stochastic 
Neighbor Embedding (t-SNE)1 were implemented on scRNA-seq data for visualization and downstream analy-
ses, significantly increasing our understanding of cellular heterogeneity and development progress. The recent 
emergence of massively parallel scRNA-seq such as droplet platforms enabled interrogation of millions of cells 
in complex biological  systems2–5, which provide a fantastic potential for dissection of tissue and cellular micro-
environment, identification of rare/new cell types, inference of developmental lineages, and elucidation of the 
mechanism of cellular response to  stimulations6. However, the data generated by massively parallel scRNA-seq 
are of high dropout and high noise with complex structure, which posed a series of challenges on dimensionality 
reduction. Particularly, it is a big challenge to preserve the complex topological structure among cells.

Many dimensionality reduction methods have been developed or introduced for scRNA-seq data analyses in 
the past several years. Recently developed competitive methods include  DCA7,  scVI8,  scDeepCluster9,  PHATE10, 
 SAUCIE11,  scGNN12, ZINB-WaVE13 and  Ivis14. Among them, deep learning showed the greatest potentials. 
For instance, DCA, scDeepCluster, Ivis, and SAUCIE adapted the autoencoder to denoise, visualize and clus-
ter the scRNA-seq data. However, these deep learning-based models only embedded the distinct cell features 
while ignoring the cell–cell relationships, which limited their ability to reveal the complex topological structure 
among cells and made them difficult to elucidate the developmental trajectory. The recently proposed graph 
 autoencoder15 is very promising as it preserves the long-distance relationships among data in a latent space. 
In this study, we developed the single-cell graph autoencoder (scGAE). It improved the graph autoencoder to 
preserving global topological structure among cells. We further extended the scGAE for visualization, trajectory 
inference, and clustering. Analyses of simulated data and empirical data showed that scGAE outperformed the 
other competitive methods.
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Results
The model architecture of scGAE. scGAE combines the advantage of the deep autoencoder and graphi-
cal model to embed the topological structure of high-dimensional scRNA-seq data to a low-dimensional space 
(Fig. 1). After getting the normalized count matrix, scGAE builds the adjacency matrix among cells by K-near-
est-neighbor algorithm. The encoder maps the count matrix to a low-dimensional latent space by graph atten-
tional  layers16. scGAE decodes the embedded data with a feature decoder and a graph decoder. The feature 
decoder reconstructs the count matrix to preserve the feature information; The graph decoder recovers the adja-
cency matrix and preserves the topological structure information. It decodes the embedded data to the spaces 
with the same dimension as original data by minimizing the distance between the input data and the recon-
structed data (see “Methods”). We use deep clustering to learn the data embedding and do cluster assignment 
 simultaneously17, generating a clustering-friendly latent representation (Supplementary Fig. S1). The implemen-
tation and usage of scGAE can be found on Github: https:// github. com/ Zixia ngLuo 1161/ scGAE.

Visualization of scGAE embedded data and comparison to other methods. To systematically 
evaluate the performance of scGAE, we summarized four representative scenarios (scenario1: cells in continu-
ous differentiation lineages; scenario2: cells in differentiation lineages where cells concentrate at the center of 
each branch; scenario3: distinct cell populations with apparent differences; and scenario4: distinct cell popula-
tions with small population differences) (Fig. 2 left). We used  Splatter18 and  PROSSTT19 to simulate scRNA-seq 
data in four scenarios. For scGAE, the data was visualized by tSNE after projected to a latent space. Compared 
with other methods, scGAE better captured the complex structures in the data (Fig. 2). In scenario1 and sec-
nario2, scGAE almost entirely reproduced the differentiation lineages (Fig.  2a,b), while other methods only 
revealed some local structures and failed to exhibit the overall structure of simulated data. The results of tSNE 
and SAUCIE exhibited distinct clusters but lost lineage relationship in scenario2. In scenario3 and 4, scGAE 
almost perfectly preserved the compact cell clusters and inter-cluster distances in the simulated data, while the 
clusters inferred by other methods are dispersed, and the topological structure among these clusters was not 
preserved (Fig. 2c,d). Only scGAE separated all the clusters while the other methods mixed different types of 
cells when the differences between clusters are small (Fig. 2d). Based on these observations, scGAE perfectly 
reproduced the differentiation lineages and distinct clusters in the simulated data, indicating scGAE outper-
forms other competitive methods in restoring the relationship between cells.

Trajectory inference and cell clustering based on scGAE embedded data. We further quan-
titatively evaluated the performance of scGAE for trajectory inference tasks. The scGAE and other competi-
tive methods were used to perform dimensionality reduction on the developmental lineage data simulated by 
PROSSTT (scenario1 and 2). We conducted trajectory inference on these embedded data using  DPT20. The 
Kendall correlation  coefficient21 between the inferred trajectories and the ground truth was calculated to meas-
ure their similarity. Because scDeepCluster is a clustering method, we didn’t include it for trajectory inference 
tasks. The results showed that scGAE, scGNN, and scVI better recovered the original trajectory than the other 
competitive methods on both scenario1 and 2 (Fig. 3a,b). Compared with scenario1, the data is not uniformly 
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Figure 1.  The model architecture of scGAE. The normalized count matrix represents the gene expression level 
in each cell. The adjacency matrix is constructed by connecting each cell to its K nearest neighbors. The encoder 
takes the count matrix and the adjacency matrix as inputs and generates low-dimensional latent variables. The 
feature decoder reconstructs the count matrix. The graph decoder reconstructs the adjacency matrix. Clustering 
is performed on the latent variables.

https://github.com/ZixiangLuo1161/scGAE
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Figure 2.  Visualization of the four simulated datasets by scGAE, tSNE, SAUCIE, Ivis, and PHATE. Each 
color represents a cell subpopulation in the simulated dataset. (a) scenario1: cells in continuous differentiation 
lineages. (b) scenario2: cells in differentiation lineages where cells concentrate at the center of each branch. (c) 
scenario3: distinct cell populations with apparent population differences. (d) scenario4: distinct cell populations 
with small population differences.
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Figure 3.  Quantitative evaluation of scGAE and several other competitive methods on clustering and trajectory 
inference tasks. In scenario1 (a) and scenario2 (b), the Kendall correlation between the ground truth and 
inferred trajectory was calculated. In scenario3 (c) and scenario4 (d), the normalized mutual information (NMI) 
measures the difference between the ground truth and the inferred clusters.
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distributed along the developmental trajectory in scenario2. Most methods have a lower Kendall correlation, but 
two graph neural network based methods and scVI still have good performances. It shows that the graph-based 
structure can well preserve the relationship among data. Next, we evaluated the performance of scGAE and other 
competitive methods on cell clustering tasks with data simulated by Splatter (scenario3 and 4). We performed 
Louvain clustering on these embedded data. Normalized mutual information (NMI) was used to measure the 
difference between inferred clusters and ground truth. The results showed that scGAE was the best among these 
methods (Fig. 3c,d, Supplementary Fig. S2). Although scVI, ZINB-Wave, and scGNN performed well for trajec-
tory inference (Fig. 3a,b), they got a low score in the cell clustering task (Fig. 3c,d). The inconsistence between 
data structure imposed in existing methods and simulated data structure might contribute the differences of 
performance. Some methods such as scGAE assume no prior hypothesis on the data, which may facilitate their 
performances in all cases. Also, different data preprocessing approaches might affect the results. For the methods 
that takes normalized data as input, we normalized data using the Seurat R package. While the three method that 
dropped most only accept raw data as input. Moreover, when there are noises, scGAE can do better than these 
three methods in the low-dimensional cell clustering. This may be because scGAE optimize clustering and latent 
representation simultaneously in one shot.

To test the effect of zero-inflation, we varied the parameters in scenario 4 for dropout.shape = −1 , dropout.mid 
range in (−0.5, 0, 0.5, 1) . The corresponding dropout rates are 12±0.3%, 17±0.4%, 23±0.5%, and 30±0.6%. The 
corresponding normalized mutual information (NMI) is 0.62, 0.62, 0.65, and 0.61. The result shows that scGAE 
is robust again zero-inflation. Overall, scGAE performed well for both trajectory inference and cell clustering 
in four scenarios.

scGAE identified novel subpopulations that shaped hematopoietic lineage relationship. Sin-
gle cell analysis of hematopoietic stem and progenitor cells (HSPCs) have significantly increased our understand-
ing of the early cell subpopulations and developmental trajectory during  hematopoiesis5,22–27. We further used 
scGAE to analyze HSPCs scRNA-seq data from our previous  study5 (Fig. 4a). We found the previous identified 
Basophil/Eosinophil/Mast progenitors (Ba/Eo/MaP) has been classified into multiple subpopulations (Fig. 4b). 
It indicates that the cells in Ba/Eo/MaP may have different differentiation potentials at early phase. While the 
other competitive methods did not identify the subpopulations in Ba/Eo/MaP (Supplemental Figs. S3a, S4a), 
supporting scGAE has the highest statistical power to identify the substructure in the scRNA-seq data.

scGAE preserved topological structure among human pancreatic cells populations. The func-
tion of the pancreas hinges on complex interactions among distinct cell types and cell populations. We re-ana-
lyzed the scRNA-seq data of human pancreatic cells from Baron et al.28. Although the pancreatic cell subpopula-
tions identified by scGAE are the same as the original study, we found the distances and topological structures 
among cell types inferred by scGAE better fit our knowledge (Fig. 4c). For instance, the activated stellate and 
quiescent stellate showed similar expression profiles and  phenotypes29. scGAE revealed the close relationship 
between two cell populations better than the other methods (Fig. 4d and Supplemental Figs. S3b, S4b). scGAE 
also preserved the short distance between two ductal subtypes, while some methods including tSNE project 
them into a longer distance. Moreover, scGAE clearly separated other cell populations while SAUCIE, Ivis, and 
PHATE mixed some of the clusters. Overall, scGAE preserved the topological structure among different cell 
populations, which greatly benefit our understanding of the cellular relationships.

Discussion
Because of the high noises of scRNA-seq data and complicated cellular relationships, preserving the topologi-
cal structure of scRNA-seq data in low-dimensional space is still a challenge. We proposed scGAE which is a 
promising topology-preserving dimensionality reduction method. It generates a low-dimensional representation 
that better preserves both the global structure and local structure of the high-dimensional scRNA-seq data. The 

Figure 4.  Analyses of two real datasets. (a) Visualization of HSPC cells by scGAE and tSNE (b) scGAE 
identified the multiple subpopulations in previous reported Ba/Eo/MaP. (c) Visualization of pancreases cells 
by scGAE and tSNE. (d) The close distance between two stellate states and the short distance between ductal 
subtypes recovered by scGAE.
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key innovation of scGAE is to embed the structure information and feature information simultaneously using a 
multitask graph autoencoder. It is suitable for analyzing the data both in lineages and clusters. The learned latent 
representation benets various downstream analyses, including clustering, trajectory inference, and visualization. 
The analyses on both simulated data and empirical data suggested scGAE accurately preserved the topological 
structures of data.

scGNN12 is another tool that utilize graph autoencoder for single cell RNA-seq data dimensinoality reduc-
tion. scGAE is designed to perform dimensionality reduction while being friendly for further clustering and 
trajectory inference. scGNN is designed to do multi-tasks for modeling heterogeneous cell–cell relationships and 
their underlying complex gene expression patterns. It consists of four types of autoencoders with appropriate 
regularizations and iterations among these autoencoders. From the performance perspective, scGAE and scGNN 
have similar performance on the trajectory inference while scGAE has better performance on clustering. From 
the computational perspective, the running time of scGAE is much shorter than scGNN and memory cost is 
slightly lower than scGNN. This is due to the iterative process in scGNN, which is more time-consuming and 
requires more computational resources.

As an early study adapting graph autoencoder for dimensionality reduction of scRNA-seq data, this approach 
is likely to be significantly improved in the future. Firstly, because the complex data structure is hard to be 
directly embedded into two-dimensional space by graph autoencoder, we embedded the scRNA-seq data into an 
intermediate dimension and used tSNE to visualize the embedded data into a two-dimensional space. However, 
the tSNE focuses more on local information, and it sometimes fails to correctly recover the global structure, 
which may distort the topological structure in the data. A better visualization method is needed to preserve the 
topological structure of scRNA-seq data. Secondly, the graph in scGAE is constructed by the K-nearest neigh-
bor (KNN) algorithm that relies on a predefined parameter K. However, the optimal K varies among different 
datasets and different parts of a dataset. Constructing an optimal graph is challenging due to the difficulty in 
determining a suitable K, which could be our potential future endeavors. Thirdly, scGAE has a moderate time 
cost but a relatively high memory cost compared with other statistics model and deep learning methods without 
graph-based layers (Supplementary Figs. S5–S7). This is caused by the recursive neighborhood expansion across 
layers in graph neural  network30. In the future, we will investigate more efficient architectures such as GNN with 
graph  sampling30 to reduce the time and memory cost.

Methods
Joint graph autoencoder. The graph autoencoder is a type of artificial neural network for unsupervised 
representation learning on graph-structured  data15. The graph autoencoder often has a low-dimensional bot-
tleneck layer so that it can be used as a model for dimensionality reduction. Let the inputs be single-cell graphs 
of node matrices X and adjacency matrices A. In our joint graph  autoencoders31, there is one encoder E for the 
whole graph and two decoders DX and DA for nodes and edges respectively. In practice, we first encode the input 
graph into a latent variable h = E(X,A) , and then we decode h into the reconstructed node matrix Xr = DX(h) 
and the reconstructed adjacency matrix Ar = DA(h) . The objective of learning process is to minimize the the 
reconstruction loss

where the weight � is a hyper-parameter. In our experiments, � is set to be 0.6.
We used the Python package  Spektral32 to implement our model. There are many types of graph neural 

networks that can be used as the encoder or decoder. Hereby, to extract the features of a node with the aid of 
its neighbors, we apply graph attention layers as default in the encoder. Other graph neural networks such as 
 GCN33,  GraphSAGE34 and  TAGCN35 can also be implemented as the encoder in scGAE. The feature decoder DX 
is a four-layer fully connected neural network with 64, 256, 512 nodes in hidden layers.

The edge decoder consists of a fully connected layer followed by the composition of quadratization and 
activation:

where Z = σ(Wh) arises as an output of a fully connected layer with the weight matrix W, and σ(x) = max(0, x) 
is the rectified linear unit.

Deep‑clustering embedding. Motivated by Yang et al.36, we use a two-stage method. The first stage is to 
pre-train scGAE by minimizing Lr . The resulting neural network parameters are set as the initialization of the 
second stage, which we call alter-training. The loss function in the alter-training stage compromises both recon-
struction error Lr and clustering cost Lc = Lc(h,µ):

where µ is a collection of clustering centroids, and γ is a hyper-parameter set as 2.5 in our experiments.
The alter-training consists of doing the following two steps alternately: 

1. Given a collection of clustering centroids µ , update network parameters by minimizing L;
2. Compute the embedded data h using the updated network, and do clustering in the embedded space to 

obtain new centroids µ;

Lr = ��X − Xr�
2
2 + (1− �)�A− Ar�

2
2,

Ar = DA(h) = σ(ZZ⊤),

L = Lr + γ Lc ,
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In experiments, we use the pre-trained network to generate the initial embedded data which are clustered to 
obtain the initial centroids by  Louvain37. There are various choices for the loss Lc and the clustering algorithm 
in the second  step17. In practice, we compute the new centroids µ by minimizing Lc using the stochastic gradient 
descent. A good choice of Lc is the soft assignment loss, which is the KL divergence of empirical clustering assign-
ment distribution Q from a target distribution P. This is motivated by t-SNE1 which uses a proper distribution 
Q in low dimensional space in order to inherit the clustering property from the high dimensional space. Given 

an embedded point hi and a centroid µj , Q is defined as Student’s t-distribution qij =

(

1+�hi−µj�
2
)−1

∑

j′

(

1+
∥

∥

∥
hi−µj′

∥

∥

∥

2
)−1 . An 

ideal target distribution should have the following properties: (1) improve cluster purity, (2) put more emphasis 
on data points assigned with high confidence, and (3) prevent large clusters from distorting the hidden feature 
space. In experiments, we follow  DEC38 choose P as pij =

q2ij/
∑

i qij
∑

j′ q
2
ij′
/
∑

i qij′
.

Evaluation metric. Clustering results are measured by Normalized Mutual Information (NMI)39. Given the 
knowledge of the ground truth class assignments U and our clustering algorithm assignment V on n data points, 
NMI measures the agreement of the two assignment, ignoring permutations. NMI is defined as

where H(U) = −
∑|U |

i=1
|Ui |

n log( |Ui |

n ) is the entropy.
Trajectory inference results are measured by Kendall correlation coefficient. We define an order among the 

set of observations (x1, y1), (x2, y2), . . . , (xn, yn) : any pair of observations (xi , yi) and (xj , yj) , where i < j are said 
to be concordant if either both xi > xj and yi > yj hold or both xi < xj and yi < yj hold; otherwise they are said 
to be discordant. Denote the number of concordant pairs as Nconco and the number of discordant pairs as Ndiscon , 
Kendall correlation coefficient is defined as

Data simulation. We simulated five scRNA-seq datasets using Splatter R package (data1, data3, and data4) 
and PROSSTT Python package (data2 and data5). The cells in data1 and data5 are in the linear distribution along 
the developmental trajectory. The cells in data2 have a skewed distribution where cells concentrate at the center 
of each branch. The cells in data3 and data4 are in distinct clusters with moderate and small cluster differences, 
respectively. All datasets have 2000 cells and 5000 genes. Data1, data2, data3, and data4 were simulated for sce-
nario1 to scenario4 for data visualization. Data5, data2, data3, and data4 are used for the evaluation of scGAE on 
trajectory inference and cell clustering tasks.

Data preprocessing. The scRNA-seq data preprocessing was conducted using  scTransform40 in The Seurat 
 package41. The pre-processed count matrix was used to construct the single-cell graph, where the nodes repre-
sent cells, and the edges represent the relationships between cells. The cell graph is built by the K-nearest neigh-
bor (KNN)  algorithm42 in the Scikit-learn Python  package43. The default K is predened as 35 in this study and 
adjusted according to the datasets in our experiments. The generated adjacency matrix is a 0–1 matrix, where 1 
represents being connected, and 0 represents no connection.

Empirical scRNA‑seq data. We analyzed two different scRNA-seq datasets, namely HSPCs data and pan-
creatic cells data. HSPCs data and pancreatic cells data represent cells showing lineages relationship and cells 
showing distinct clusters, respectively. The HSPCs data are single-cell transcriptome data of FACS sorted CD34+ 
cells from human bone marrow mononuclear cells, accessible in the national genomics data center (HRA000084) 
and described in our previous  study5. The pancreases cells data contains   10,000 single-cell transcriptomes with 
14 distinct cell clusters, download from GEO (GSE84133)28.

Competitive methods. Nine competitive methods, namely scDeepCluster, DCA, scVI, PCA, Ivis, 
SAUCIE, scGNN, ZINB-Wave, and PHATE, were compared with scGAE. Among these methods, scDeepClus-
ter, DCA, scVI, Ivis, scGNN, and SAUCIE are deep learning based and showed the greatest potential. These 
methods usually generate hidden variables for downstream analysis, including visualization, clustering, and 
trajectory inference. The raw count matrix was used as input for DCA, scVI, scGNN, ZINB-WaVE and scDeep-
Cluster. For methods that take normalized data as input (scGAE, SAUCIE, PCA, Ivis, and PHATE), scTransform 
was used for data preprocessing. Each software was run following its manual and with default parameters. For 
SAUCIE, Ivis, and DCA, we first performed PCA to reduce the dimension to 100, 50, and 32 PCs, respectively. 
Ivis, SAUCIE, and PHATE directly generate the 2-dimensional embeddings. The cell clustering and trajectory 
inference were performed on the two-dimensional embeddings. scGNN and ZINB-Wave generated 128 and 10 
dimensional embeddings. Both scGAE and PCA embedded simulated data to ten dimensions and embedded 
empirical data to 20 dimensions due to the complex structure of the empirical data. We performed tSNE to 
visualize data for these methods.

NMI(U,V) =
1

mean(H(U), H(V))

|U|
∑

i=1

|V|
∑

j=1

∣

∣Ui ∩ Vj

∣

∣

N
log

(

n
∣

∣Ui ∩ Vj

∣

∣

|Ui|
∣

∣Vj

∣

∣

)

,

τ =
2(Nconco − Ndiscon)

n(n− 1)
.
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Data availability
The hematopoietic stem and progenitor cells (HSPCs) data is available in the Genome Sequence Archive in BIG 
Data Center, under accession numbers HRA000084. The data of human pancreatic cells is available throuth 
NCBI GEO with the accession number GSE84133.

Code availability
Accession codes The code and software of scGAE are available on GitHub (https:// github. com/ Zixia ngLuo 1161/ 
scGAE).
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