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Abstract

Humans and animals have a natural ability to quickly adapt to their surroundings,
but machine-learning models, when subjected to changes, often require a complete
retraining from scratch. We present Knowledge-adaptation priors (K-priors) to
reduce the cost of retraining by enabling quick and accurate adaptation for a wide-
variety of tasks and models. This is made possible by a combination of weight and
function-space priors to reconstruct the gradients of the past, which recovers and
generalizes many existing, but seemingly-unrelated, adaptation strategies. Training
with simple first-order gradient methods can often recover the exact retrained model
to an arbitrary accuracy by choosing a sufficiently large memory of the past data.
Empirical results show that adaptation with K-priors achieves performance similar
to full retraining, but only requires training on a handful of past examples.

1 Introduction

Machine-Learning (ML) at production often requires constant model updating which can have
huge financial and environmental costs [19, 44]. The production pipeline is continuously evolving,
where new data are regularly pooled and labeled and old data become irrelevant. Regular tuning of
hyperparameters is required to handle drifts [19], and sometimes even the model class/architecture
may need to change. Due to this, the model is frequently retrained, retested, and redeployed, which
can be extremely costly, especially when the data and model sizes are large. The cost can be reduced
if, instead of repeated retraining, the system can quickly adapt to incremental changes. Humans
and animals can naturally use their prior knowledge to handle a wide-variety of changes in their
surroundings, but such quick, wide, and accurate adaptation has been difficult to achieve in ML.

In theory, this should be possible within a Bayesian framework where the posterior is used as the prior
for the future, but exact Bayes is computationally challenging and the design of generic Bayesian
priors has its own challenges [55, 39]. In ML, simpler mechanisms are more popular, for example,
in Support Vector Machines (SVMs) for adding/removing data [12, 58, 60], and in deep learning
for model compression [24]. Weight-priors are used in online learning [13], and more recently for
continual learning [30, 40, 47, 33, 62], but they are not suited for many other tasks, such as model
compression. In some settings, they also perform worse, for example, in continual learning when
compared to memory-based strategies [34, 46, 45, 9]. All these previous works apply to narrow,
specific settings, and designing generic adaptation-mechanisms remains an open challenge.

We present Knowledge-adaptation priors (K-priors) for the design of generic adaptation-mechanisms.
The general principle of adaptation is to combine the weight and function-space divergences to
faithfully reconstruct the gradient of the past. K-priors can handle a wide variety of adaptation tasks
(Fig. 1, left) and work for a range of models, such as generalized linear models, deep networks,
and their Bayesian extensions. The principle unifies and generalizes many seemingly-unrelated
existing works, for example, weight-priors [13], knowledge distillation [24], SVMs [12, 35, 58],
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Figure 3: (a) When compared at the Batch solution for the ‘Add Data’ task on USPS, weight priors
give incorrect values of h0(f i

w) (shown with black dots, each dot correspond to a data examples).
Points on the diagonal means a perfect match which is the case for K-priors (show with red dots). (b)
Due to this, weight-priors (green diamonds) perform worse than K-priors (red squares). (c) For the
’Add data’ task on CIFAR-10, K-priors outperform replay (blue circles), but performance can still be
improved by using a temperature parameter (dark-red triangles). (d) The same is true for knowledge
distillation [21], and we see that we can reduce memory size while still performing better than the
student model. The dip in the middle, we believe, is due to suboptimal hyperparameter tuning.

[29] with MLPs and 10-way classification on CIFAR-10 with CifarNet [57], trained with the Adam319

optimizer [26]. In Figure 3(c) we show one representative result for the ‘Add data’ task with CIFAR-320

10, where we add a random 10% of CIFAR-10 training data to the other 90% (mean and standard321

deviation over 3 runs). Although vanilla K-priors outperform Replay, there is now a bigger gap322

between K-prior and Batch even with 50% past data stored. However, when we use a temperature323

(similar to knowledge distillation in (14) but with the weight term included), K-priors improves.324

A similar result is shown in Figure 3(d) for knowledge distillation (� = 0 but with a temperature325

parameter) where we are distill from a CifarNet teacher to a LeNet5-style student (details in Ap-326

pendix D). Here, K-priors with 100% data is equivalent to Knowledge Distillation, but when we327

reduce the memory size using our method, we still outperform Batch (which is trained from scratch328

on all data). There is a dip in performance at memory sizes of 10% past data, which we believe is due329

to the use of a suboptimal ⌧ or �. More empirical effort is require to tune various hyperparameters to330

get a consistent behavior at all memory sizes. Overall, our initial effort here suggests that K-priors331

can do better than Replay, and have potential to give better results with more hyperparameter tuning.332

6 Discussion333

In this paper, we proposed a class of new priors, called K-prior. We show general principles of334

obtaining accurate adaptation with K-priors which are based on accurate gradient reconstructions.335

These principles have many properties that a good prior is expected to have [50]. The prior applies336

to a wide-variety of adaptation tasks for a range of models, and helps us to connect many existing,337

seemingly-unrelated adaptation strategies in ML. Based on our adaptation principles, we derived338

practical methods to enable adaptation by tweaking models’ predictions at a few past examples. This339

is analogous to adaptation in humans and animals where past experiences is used for new situations.340

In practice, the amount of required past memory seems sufficiently low for many tasks. Overall,341

K-priors provide an intuitive yet practical mechanisms for generic adaptation in ML.342

The financial and environmental costs of retraining are a huge concern for ML practitioners, which343

can be reduced with quick adaptations. During this work, we realized how little work has been done344

on this topic. The current pipelines and designs are specialized for an offline, static setting. Our345

approach here pushes towards a simpler design which will support a more dynamic setting. The346

approach can eventually lead to new systems that learn quickly and flexibly, and also act sensibly347

across a wide range of tasks. This opens a path towards systems that learn incrementally in a continual348

fashion, with the potential to fundamentally change the way ML is used in scientific and industrial349

applications. We hope that this work will help others to do more work towards this goal in the future.350

We ourselves will continue to push this work in that direction.351
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Figure 1: Left: K-priors can handle a wide-variety of adaptation tasks by using the past model and a
small memory of the past data. Middle: For adaptation, the model needs tweaking at only a handful
of past examples (shown with dark purple markers). The adapted model (dashed red line) is very
close to the retraining on the full batch (solid black line). Right: Results on binary classification on
‘USPS’ digits with neural networks show that K-priors (red square) obtain solutions close to the batch
training (gray line) but by using only a fraction (2-5%) of the past data. It also performs better than
‘Replay’ (blue circles) where the same memory is used for replay. See Sec. 5 for more details.

online Gaussian Processes [17], and continual learning [36, 45, 9]. It leads to natural adaptation-
mechanisms where models’ predictions need to be readjusted only at a handful of past experiences
(Fig. 1, middle). This is quick and easy to train with first-order optimization methods and, by choosing
a sufficiently large memory, we obtain results similar to retraining-from-scratch (Fig. 1, right). Code
is available at https://github.com/team-approx-bayes/kpriors.

2 Adaptation in Machine Learning

2.1 Knowledge-adaptation tasks

Our goal is to quickly and accurately adapt an already trained model to incremental changes in its
training framework. Throughout we refer to the trained model as the base model. We denote its
outputs by fw∗(x) for inputs x ∈ RD, and assume that its parameters w∗ ∈ W ⊂ RP are obtained
by solving the following problem on the data D,

w∗ = arg min
w∈W

¯̀(w), where ¯̀(w) =
∑
i∈D

`i(w) +R(w). (1)

Here, `i(w) denotes the loss function on the i’th data example, andR(w) is a regularizer.

A good adaptation method should be able to handle many types of changes. The simplest and most
common change is to add/remove data examples, as shown below at the left where the data example
j /∈ D is added to get w+, and at the right where an example k ∈ D is removed to get w−,

w+ = arg min
w∈W

∑
i∈D∪j

`i(w) +R(w), w− = arg min
w∈W

∑
i∈D\k

`i(w) +R(w). (2)

We refer to these problems as ‘Add/Remove Data’ tasks.

Other changes are the ‘Change Regularizer’ (shown on the left) task where the regularizer is replaced
by a new one G(w), and the ‘Change Model Class/Architecture’ task (shown on the right) where the
model class/architecture is changed leading to a change of the parameter space fromW to Θ,

wG = arg min
w∈W

∑
i∈D

`i(w) + G(w), θ∗ = arg min
θ∈Θ

∑
i∈D

˜̀
i(θ) + R̃(θ). (3)

Here, we assume the loss ˜̀
i(θ) has the same form as `i(w) but using the new model f̃θ(x) for

prediction, with θ ∈ Θ as the new parameter. θ can be of a different dimension, and the new
regularizer can be chosen accordingly. The change in the model class could be a simple change in

2
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features, for example it is common in linear models to add/remove features, or the change could be
similar to model compression or knowledge distillation [24], which may not have a regularizer.

Another type of change is to add privileged information, originally proposed by Vapnik and Izmailov
[60]. The goal is to include different types of data to improve the performance of the model. This
is combined with knowledge distillation by Lopez-Paz et al. [37] and has recently been applied to
domain adaptation in deep learning [4, 50, 51].

There could be several other kinds of changes in the training framework, for example, those involving
a change in the loss function, or even a combination of the changes discussed above. Our goal is to
develop a method that can handle such wide-variety of changes, or ‘adaptation tasks’ as we will call
them throughout. Such adaptation can be useful to reduce the cost of model updating, for example in
a continuously evolving ML pipeline. Consider k-fold cross-validation, where the model is retrained
from scratch for every data-fold and hyperparameter setting. Such retraining can be made cheaper
and faster by reusing the model trained in the previous folds and adapting them for new folds and
hyperparameters. Model reuse can also be useful during active-learning for dataset curation, where a
decision to include a new example can be made by using a quick Add Data adaptation. In summary,
model adaptation can reduce the cost by avoiding the need to constantly retrain.

2.2 Challenges of knowledge adaptation

Knowledge adaptation in ML has proven to be challenging. Currently there are no methods that can
handle many types of adaptation tasks. Most existing works apply narrowly to specific models and
mainly focuses on adaptation to Add/Remove Data only. This includes many early proposals for
SVMs [12, 59, 25, 20, 49, 35, 31, 58], recent ones for machine-unlearning [11, 21, 41, 22, 53, 8], and
methods that use weight and functional priors, for example, for online learning [13], continual deep
learning [30, 40, 47, 33, 62, 34, 46, 7, 57, 45, 9], and Gaussian-Process (GP) models [17, 52, 56].
The methodologies of these methods are entirely different from each other, and they do not appear
to have any common principles behind their adaptation mechanisms. Our goal is to fill this gap and
propose a single method that can handle a wide-variety of tasks for a range of models.

We also note that there is no prior work on the Change Regularizer task. Adaptation has been used to
boost hyperparameter tuning [61] but only Add/Remove Data adaptation is used. Warm-starts have
been employed as well [18], but it is often not sufficient and can even hurt performance [5].

2.3 Problem setting and notation

Throughout, we will use a supervised problem where the loss is specified by an exponential-family,

`(y, h(f)) = − log p(y|f) = −〈y, f〉+A(f), (4)

where y ∈ Y denotes the scalar observation output, f ∈ F is the canonical natural parameter,
A(f) is the log-partition function, and h(f) = E(y) = ∇A(f) is the expectation parameter. A
typical example is the cross-entropy loss for binary outcomes y ∈ {0, 1} where A(f) = log(1 + ef )
and h(f) = σ(f) is the Sigmoid function. It is straightforward to extend our method to a vector
observation and model outputs. An extension to other types of learning frameworks is discussed in
the next section (see the discussion around Eq. 14).

Throughout the paper, we will use a shorthand for the model outputs, where we denote f iw = fw(xi).
We will repeatedly make use of the following expression for the derivative of the loss,

∇`(yi, h(f iw)) = ∇f iw [h(f iw)− yi]. (5)

3 Knowledge-Adaptation Priors (K-priors)

We present Knowledge-adaptation priors (K-priors) to quickly and accurately adapt a model’s
knowledge to a wide variety of changes in its training framework. K-priors, denoted below by
K(w; w∗,M), refer to a class of priors that use both weight and function-space regularizers,

K(w; w∗,M) = Df (f(w)‖f(w∗)) + τDw (w‖w∗) , (6)

where f(w) is a vector of fw(ui), defined at inputs inM = (u1,u2, . . . ,uM ). The divergence
Df (·‖·) measures the discrepancies in the function space F , while Dw(·‖·) measures the same in the

3



weight spaceW . Throughout, we will use Bregman divergences Bψ(p1, p2) = ψ(p1) − ψ(p2) −
∇ψ(p2)>(p1 − p2), specified using a strictly-convex Bregman function ψ(·).

K-priors are defined using the base model w∗, the memory setM, and a trade-off parameter τ > 0.
We keep τ = 1 unless otherwise specified. It might also use other parameters required to define the
divergence functions. We will sometimes omit the dependency on parameters and refer to K(w).

Our general principle of adaptation is to use K(w) to faithfully reconstruct the gradients of the past
training objective. This is possible due to the combination of weight and function-space divergences.
Below, we illustrate this point for supervised learning for Generalized Linear Models (GLMs).

3.1 K-priors for GLMs

GLMs include models such as logistic and Poisson regression, and have a linear model f iw = φ>i w,
with feature vectors φi = φ(xi). The base model is obtained as follows,

w∗ = arg min
w∈W

∑
i∈D

`(yi, h(f iw)) +R(w). (7)

In what follows, for simplicity, we use an L2 regularizerR(w) = 1
2δ‖w‖

2, with δ > 0.

We will now discuss a K-prior that exactly recovers the gradients of this objective. For this, we choose
Dw(·‖·) to be the Bregman divergence withR(w) as the Bregman function,

Dw (w‖w∗) = BR(w‖w∗) = 1
2δ‖w −w∗‖2.

We set memoryM = X , where X is the set of all inputs from D. We regularize each example using
separate divergences whose Bregman function is equal to the log-partition A(f) (defined in Eq. 4),

Df (f(w)‖f(w∗)) =
∑
i∈X
BA(f iw‖f iw∗) =

∑
i∈X

`
(
h(f iw∗), h(f iw)

)
+ constant.

Smaller memories are discussed later in this section. Setting τ = 1, we get the following K-prior,

K(w; w∗,X ) =
∑
i∈X

`
(
h(f iw∗), h(f iw)

)
+ 1

2δ‖w −w∗‖2, (8)

which has a similar form to Eq. 7, but the outputs yi are now replaced by the predictions h(f iw∗), and
the base model w∗ serves as the mean of a Gaussian weight prior.

We can now show that the gradient of the above K-prior is equal to that of the objective used in Eq. 7,

∇K(w; w∗,X ) =
∑
i∈X

φi
[
h(f iw)− h(f iw∗)

]
+ δ(w −w∗), (9)

=
∑
i∈D

φi
[
h(f iw)− yi

]
+ δw︸ ︷︷ ︸

=∇¯̀(w).

−
������������∑
i∈D

φi
[
h(f iw∗)− yi

]
− δw∗︸ ︷︷ ︸

=0.

, (10)

where the first line is obtained by using Eq. 5 and noting that ∇f iw = φi, and the second line is
obtained by adding and subtracting outputs yi in the first term. The second term there is equal to 0
because w∗ is a minimizer and therefore∇¯̀(w∗) = 0. In this case, the K-prior withM = X exactly
recovers the gradient of the past training objective.

Why are we able to recover exact gradients? This is because the structure of the K-prior closely
follows the structure of Eq. 7: the gradient of each term in Eq. 7 is recovered by a corresponding
divergence in the K-prior. The gradient recovery is due to the property that the gradient of a Bregman
divergence is the difference between the dual parameters ∇ψ(p):

∇p1B(p1, p2) = ∇ψ(p1)−∇ψ(p2).

This leads to Eq. 9. For the function-space divergence term, h(f iw)− h(f iw∗) are the differences in
the (dual) expectation parameters. For the weight-space divergence term, we note that the dual space
is equal to the original parameter spaceW for the L2 regularizer, leading to w −w∗. Lastly, we find
that terms cancel out by using the optimality of w∗, giving us the exact gradients.
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3.2 K-priors with limited memory

In practice, settingM = X might be as slow as full retraining, but for incremental changes, we may
not need all of them (see Fig. 1, for example). Then, which inputs should we include? The answer
lies in the gradient-reconstruction error e, shown below forM⊂ X ,

e(w;M) = ∇¯̀(w)−∇K(w; w∗,M) =
∑

i∈X\M

φi
[
h(f iw)− h(f iw∗)

]
. (11)

The error depends on the “leftover” φi for i ∈ X\M, and their discrepancies h(f iw)− h(f iw∗). A
simple idea could be to include the inputs where predictions disagree the most, but this is not feasible
because the candidates w are not known beforehand. The following approximation is more practical,

e(w;M) ≈ G∗(X\M)(w −w∗), where G∗(X\M) =
∑

i∈X\M

φih
′(f iw∗)φ

>
i . (12)

This is obtained by using the Taylor approximation h(f iw)− h(f iw∗) ≈ h
′(f iw∗)(∇f

i
w∗)
>(w −w∗)

in Eq. 11 (h′(f i) is the derivative). The approximation is conveniently expressed in terms of the
Generalized Gauss-Newton (GGN) matrix [38], denoted by G∗(·). The approximation suggests
that M should be chosen to keep the leftover GGN matrix G∗(X\M) orthogonal to w − w∗.
Since w changes during training, a reasonable approximation is to choose examples that keep the
top-eigenvalues of the GGN matrix. This can be done by forming a low-rank approximation by using
sketching methods, such as the leverage score [16, 1, 15, 10]. A cheaper alternative is to choose the
examples with highest h′(f iw∗). The quantity is cheap to compute in general, for example, for deep
networks it is obtained with just a forward pass. Such a set has been referred to as the ‘memorable
past’ by Pan et al. [45], who found it to work well for classification. Due to its simplicity, we will use
this method in our experiments, and leave the application of sketching methods as future work.

K-priors with limited memory can achieve low reconstruction error. This is due to an important
feature of K-priors: they do not restrict inputs ui to lie within the training set X . The inputs can be
arbitrary locations in the input space. This still works because a ground-truth label is not needed for
ui, and only model predictions fw(ui) are used in K-priors. As long as the chosen ui represent X
well, we can achieve a low gradient-reconstruction error, and sometimes even perfect reconstruction.
Theoretical results regarding this point are discussed in App. A, where we present the optimal
K-prior which can theoretically achieve perfect reconstruction error by using singular vectors of
Φ> = [φ(x1),φ(x2), . . . ,φ(xN )]. When only top-M singular vectors are chosen, the error grows
according to the leftover singular values. The optimal K-prior is difficult to realize in practice, but the
result shows that it is theoretically possible to achieve low error with limited memory.

3.3 Adaptation using K-priors

We now discuss how the K-prior of Eq. 8 can be used for the Add/Remove Data tasks. Other
adaptation tasks and corresponding K-priors are discussed in App. B.

Because K-priors can reconstruct the gradient of ¯̀(w), we can use them to adapt instead of retraining
from scratch. For example, to add/remove data from the GLM solution in Eq. 7, we can use the
following K-prior regularized objectives,

ŵ+ = arg min
w∈W

`j(w) +K(w; w∗,M), ŵ− = arg min
w∈W

−`k(w) +K(w; w∗,M). (13)

Using Eq. 10, it is easy to show that this recovers the exact solution when all the past data is used.
App. B details analogous results for the Change Regularizer and Change Model Class tasks.
Theorem 1. ForM = X , we have w+ = ŵ+ and w− = ŵ−.

For limited memory, we expect the solutions to be close when memory is large enough. This is
because the error in the gradient is given by Eq. 11. The error can be reduced by choosing betterM
and/or by increasing its size to ultimately get perfect recovery.

We stress that Eq. 13 is fundamentally different from replay methods that optimize an objective
similar to Eq. 2 but use a small memory of past examples [48]. Unlike such methods, we use the
predictions h(f iw∗), which we can think of as soft labels, with potentially more information than the
true one-hot encoded labels yi. Given a fixed memory budget, we expect K-prior regularization to
perform better than such replay methods, and we observe this empirically in Sec. 5.
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3.4 K-priors for Generic Learning Problems

The main principle behind the design of K-priors is to construct it such that the gradients can faithfully
be reconstructed. As discussed earlier, this is often possible by exploiting the structure of the learning
problem. For example, to replace an old objective such as Eq. 1, with loss `old

i (f) and regularizer
Rold(w), with a new objective with loss `new

i (f) and regularizerRnew(w), the divergences should be
chosen such that they have the following gradients,

∇Dw(w‖w∗) = ∇Rnew(w)−∇Rold(w), ∇Df (f(w)‖f(w∗)) = ∇f(w)>B dm (14)

where dm is an M -length vector with the discrepancy ∇`new
i (f iw) − ∇`old

i (f iw∗) as the i’th entry.
The matrix B is added to counter the mismatch between D andM. Similar constructions can be
used for other learning objectives. For non-differentiable functions, a Bayesian version can be used
with the Kullback-Leibler (KL) divergence (we discuss an example in the next section). We can use
exponential-family distributions which implies a Bregman divergence through KL [6]. Since the
gradient of such divergences is equal to the difference in the dual-parameters, the general principle is
to use divergences with an appropriate dual space to swap the old information with new information.

4 K-priors: Extensions and Connections

The general principle of adaptation used in K-priors connects many existing works in specific settings.
We will now discuss these connections to show that K-priors provide a unifying and generalizing
principle for these seemingly unrelated methods in fields such as online learning, deep learning,
SVMs, Bayesian Learning, Gaussian Processes, and continual learning.

4.1 Weight-Priors

Quadratic or Gaussian weight-priors [13, 30, 54] be seen as as specialized cases of K-priors, where
restrictive approximations are used. For example, the following quadratic regularizer,

Rquad(w; w∗) = (w −w∗)
> [G∗(X ) + δI] (w −w∗),

which is often used in used in online and continual learning [13, 30], can be seen as a first-order
approximation of the K-prior in Eq. 8. This follows by approximating the K-prior gradient in Eq. 8
by using the Taylor approximation used in Eq. 12, to get

∇K(w; w∗,X ) ≈
∑
i∈X

φi

[
h′(φ>i w∗)φ

>
i (w −w∗)

]
+ δ(w −w∗) = ∇Rquad(w; w∗).

K-priors can be more accurate than weight priors but may require larger storage for the memory
points. However, we expect the memory requirements to grow according to the rank of the feature
matrix (see App. A) which may still be manageable. If not, we can apply sketching methods.

4.2 K-priors for Deep Learning and Connections to Knowledge Distillation

We now discuss the application to deep learning. It is clear that the functional term in K-priors is
similar to Knowledge distillation (KD) [24], which is a popular approach for model compression in
classification problems using a softmax function (the following expression is from Lopez-Paz et al.
[37], also see App. E),

`KD(w) = λ
∑
i∈D

`
(
yi, h(f iw)

)
+ (1− λ)

∑
i∈D

`
(
h(f iw∗/T ), h(f iw)

)
, (15)

The base model predictions are often scaled with a temperature parameter T > 0, and λ ∈ [0, 1]. KD
can be seen as a special case of K-priors without the weight-space term (τ = 0). K-priors extend KD
in three ways, by (i) adding the weight-space term, (ii) allowing general link functions or divergence
functions, and (iii) using a potentially small number of examples inM instead of the whole dataset.
With these extensions, K-priors can handle adaptation tasks other than compression. Due to their
similarity, it is also possible to borrow tricks used in KD to improve the performance of K-priors.

KD often yields solutions that are better than retraining from scratch. Theoretically the reasons
behind this are not understood well, but we can view KD as a mechanism to reconstruct the past
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gradients, similarly to K-priors. As we now show, this gives a possible explanation behind KD’s
success. Unlike GLMs, K-priors for deep learning do not recover the exact gradient of the past
training objective, and there is an additional left-over term (a derivation is in App. C),

∇K(w) =
∑
i∈D
∇f iw

[
h(f iw)− yi

]
+ δw︸ ︷︷ ︸

=∇¯̀(w)

−

(∑
i∈D
∇f iwriw∗ + δw∗

)
︸ ︷︷ ︸

Additional term since∇fi
w 6=∇fi

w∗

, (16)

where riw∗ := h(f iw∗)− yi is the residual of the base model. It turns out that the gradient of the KD
objective in Eq. 15 has this exact same form when δ = 0, T = 1 (derivation in App. C),

∇`KD(w) =
∑
i∈D
∇f iw

[
h(f iw)− yi

]
− (1− λ)

∑
i∈D
∇f iwriw∗ .

The additional term adds large gradients to push away from the high residual examples (the examples
the teacher did not fit well). This is similar to Similarity-Control for SVMs from Vapnik and Izmailov
[60], where “slack”-variables are used in a dual formulation to improve the student, who could now
be solving a simpler separable classification problem. The residuals riw∗ above play a similar role as
the slack variables, but they do not require a dual formulation. Instead, they arise due to the K-prior
regularization in a primal formulation. In this sense, K-priors can be seen as an easy-to-implement
scheme for Similarity Control, that could potentially be useful for student-teacher learning.

Lopez-Paz et al. [37] use this idea further to generalize distillation and interpret residuals from the
teachers as corrections for the student (see Eq. 6 in their paper). In general, it is desirable to trust the
knowledge of the base model and use it to improve the adapted model. These previous ideas are now
unified in K-priors: we can provide the information about the decision boundary to the student in a
more accessible form than the original data (with true labels) could.

4.3 Adding/removing data for SVMs

K-prior regularized training yields equivalent solutions to the adaptation strategies used in SVM to
add/remove data examples. K-priors can be shown to be equivalent to the primal formulation of such
strategies [35]. The key trick to show the equivalence is to use the representer theorem which we will
now illustrate for the ‘Add Data’ task in Eq. 13. Let Φ+ be the (N + 1)× P feature matrix obtained
on the dataset D ∪ j, then by the representer theorem we know that there exists a β ∈ RN+1 such
that w+ = Φ>+β. Taking the gradient of Eq. 13, and multiplying by Φ+, we can write the optimality
condition as,

0 = Φ>+∇[`j(w+) +K(w+)] =
∑
i∈D∪j

(
∇f `(yi, h(f))|f=β>i ki,+

)
ki,+ + δK+β, (17)

where K+ = Φ+Φ>+ and its i’th column is denoted by ki,+. This is exactly the gradient of the primal
objective in the function-space defined over the full batch D ∪ j; see Equation 3.6 in Chapelle [14].
The primal strategy is equivalent to the more common dual formulations [12, 59, 25, 20, 49, 31, 58].
The function-space formulations could be computationally expensive, but speed-ups can be obtained
by using support vectors. This is similar to the idea of using limited memory in K-priors in Sec. 3.

4.4 K-priors for Bayesian Learning and Connections to GPs

K-priors can be seamlessly used for adaptation within a Bayesian learning framework. Consider
a Gaussian approximation q∗(w) trained on a variational counterpart of Eq. 1 with prior p(w) ∝
exp [−R(w)], and its adapted version where we add data, as shown below (DKL[· ‖ ·] is the KL
divergence),

q∗(w) = arg min
q∈Q

∑
i∈D

Eq[¯̀i(w)] + DKL[p ‖ q], q+(w) = arg min
q∈Q

∑
i∈D∪j

Eq[`i(w)] + DKL[p ‖ q].

Assuming the same setup as Sec. 3, we can recover q+(w) by using qK(w) ∝ exp [−K(w)] where
we use the K-prior defined in Eq. 8 (note that normalization constant of qK is not required),

q̂+(w) = arg min
q∈Q

Eq[`j(w)] + DKL[q ‖ qK], (18)
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This follows using Eq. 10. Details are in App. D. In fact, when this Bayesian extension is written in
the function-space similarly to Eq. 17, it is related to the online updates used in GPs [17]. When qK is
built with limited memory, as described in Sec. 3, the application is similar to sparse variational GPs,
but now data examples are used as inducing inputs. These connections are discussed in more detail
in App. D. Our K-prior formulations operates in the weight-space and can be easily trained with
first-order methods, however an equivalent formulation in the function space can also be employed, as
is clear from these connections. The above extensions can be extended to handle arbitrary exponential-
family approximations by appropriately defining K-priors using KL divergences. We omit these
details since this topic is more suitable for a Bayesian version of this paper.

4.5 Memory-Based Methods for Deep Continual Learning

K-priors is closely related to recent functional regularization approaches proposed for deep continual
learning [34, 46, 7, 54, 57, 45, 9]. The recent FROMP approach of Pan et al. [45] is closest to ours
where the form of the functional divergence used is similar to our suggestion in Eq. 14. Specifically,
comparing with Eq. 14, their functional divergence correspond to the vector dm with the i’th entry as
h(fw(ui))− h(fw∗(ui)) for ui ∈M, and the matrix B is (can be seen as Nystrom approximation),

B = Λ(w)
[
Λ(w∗)∇f(w∗)G(w∗)

−1∇f(w∗)
>Λ(w∗)

]−1
,

where Λ(w) is a diagonal matrix with h′(fw(ui)) as the i’th diagonal entry, and G(w∗) =
∇f(w∗)

>Λ(w∗)∇f(w∗) + δI is the GGN matrix. They also propose to use ‘memorable past’
examples obtained by sorting h′(f iw∗), which is consistent with our theory (see Eq. 11). Based on
our work, we can interpret the approach of Pan et al. [45] as a mechanism to reconstruct the gradient
of the past, which gives very good performance in practice.

Another related approach is the gradient episodic memory (GEM) [36], where the goal is to ensure
that the

∑
i∈M[`(yi, f

i
w)− `(yi, f iw∗)] < 0. This is similar in spirit to the student-teacher transfer of

Vapnik and Izmailov [60] where the loss of the student is regularized using the model output of the
teacher (see Eq. 7 in Vapnik and Izmailov [60] for an example). Lopez-Paz and Ranzato [36] relax
the optimization problem to write it in terms of the gradients, which is similar to K-priors, except
that K-priors use a first-order optimization method, which is simpler than the dual approach used in
Lopez-Paz and Ranzato [36].

Most of these approaches do not employ a weight-space divergence, and sometimes even the function-
space divergence is replaced by the Euclidean one [7, 9]. Often, the input locations are sampled
randomly, or using a simple replay method [9] which could be suboptimal. Some approaches propose
computationally-expensive methods for choosing examples to store in memory [2, 3], and some can
be seen as related to choosing points with high leverage [3]. The approach in Titsias et al. [57] uses
inducing inputs which is closely connected to the online GP update. The method we proposed does
not contradict with these, but gives a more direct way to choose the points where the gradient errors
are taken into consideration.

5 Experimental Results

We compare the performance of K-priors to retraining with full-batch data (‘Batch’) and a retraining
with replay from a small memory (‘Replay’), and use τ = 1. For fair comparisons, we use the same
memory for Replay and K-priors obtained by choosing points with highest h′(f iw∗) (see Sec. 3).
Memory chosen randomly often gives much worse results and we omit these results. Replay uses
the true label while K-priors use model-predictions. We compare these three methods on the four
adaptation tasks: ‘Add Data’, ‘Remove Data’, ‘Change Regularizer’, and ‘Change Architecture’. For
the ‘Add Data’ task, we also compare to Weight-Priors with GGN.

Our overall finding is that, for GLMs and deep learning on small problems, K-priors can achieve the
same performance as Batch, but with a small fraction of data (often 2-10% of the full data (Fig. 1,
right, and Fig. 2). Replay does much worse for small memory size, which clearly shows the advantage
of using the model predictions (instead of true labels) in K-priors. Weight priors generally perform
well, but they can do badly when the adaptation involves a drastic change for examples inM (see
Fig. 3). Finally, for large deep-learning problems, results are promising but more investigations are
required with extensive hyperparameter tuning.
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Figure 2: K-priors (red squares) match Batch (grey) while mostly using 2-5% of the data (for only 3
tasks a larger fraction is required). K-priors always outperforms Replay which uses the true labels.
K-priors replace the labels by the model predictions (see the discussion after Theorem 1).

Several additional experiments are in App. E. In App. E.4, we study the effect of randomly initializa-
tion and find that it performs similarly to a warm start at w∗. In App. E.5, we find that K-priors with
limited memory are take much less time to reach a specified accuracy than both batch and replay.
The low cost is due to a small memory size. Replay also uses small memory but performs poorly.

Logistic Regression on the ‘UCI Adult’ dataset. This is a binary classification problem consisting
of 16,100 examples to predict income of individuals. We randomly sample 10% of the training data
(1610 examples), and report mean and standard deviation over 10 such splits. For training, we use the
L-BFGS optimizer for logistic regression with polynomial basis. Results are summarized in Fig. 2(a).
For the ‘Add Data’ task, the base model uses 9% of the data and we add 1% new data. For ‘Remove
Data’, we remove 100 data examples (6% of the training set) picked by sorting h′(f iw∗)). For the
‘Change Regularizer’ task, we change the L2 regularizer from δ = 50 to 5, and for ‘Change Model
Class’, we reduce the polynomial degree from 2 to 1. K-priors perform very well on the first three
tasks, remaining very close to Batch, even when the memory sizes are down to 2%. ‘Changing Model
Class’ is slightly challenging, but K-priors still significantly out-perform Replay.

Logistic Regression on the ‘USPS odd vs even’ dataset. The USPS dataset consists of 10 classes
(one for each digit), and has 7,291 training images of size 16 × 16. We split the digits into two
classes: odd and even digits. Results are in Fig. 2(b). For the ‘Add Data’ task, we add all examples
for the digit 9 to the rest of the dataset, and for ‘Remove Data’ we remove the digit 8 from the whole
dataset. By adding/removing an entire digit, we enforce an inhomogeneous data split, making the
tasks more challenging. The ‘Change Regularizer’ and ‘Change Model Class’ tasks are the same as
the Adult dataset. K-priors perform very well on the ‘Add Data’ and ‘Change Regularizer’ tasks,
always achieving close to Batch performance. For ‘Remove Data’, which is a challenging task due to
inhomogeneity, K-priors still only need to store 5% of past data to maintain close to 90% accuracy,
whereas Replay requires 10% of the past data.

Neural Networks on the ‘USPS odd vs even’ dataset. This is a repeat of the previous experiment
but with a neural network (a 1-hidden-layer MLP with 100 units). Results are in Fig. 1 (right). The
‘Change Regularizer’ task now changes δ = 5 to 10, and the ‘Change Architecture’ task compresses
the architecture from a 2-hidden-layer MLP (100 units per layer) to a 1-hidden-layer MLP with 100
units. We see that even with neural networks, K-priors perform very well, similarly out-performing
Replay and remaining close to the Batch solution at small memory sizes.

Weight-priors vs K-priors. As discussed in the main text, weight-priors can be seen as an approxi-
mation of K-priors where h′(f iw) are replaced by ‘stale’ h′(f iw∗), evaluated at the old w∗. In Fig. 3(a),
we visualize these ‘stale’ h′(f iw∗) and compare them to K-priors which obtains values close to the
ones found by Batch. Essentially, for the points at the diagonal the match is perfect, and we see that
it is the case for K-priors but not for the weight-priors. We use logistic regression on the USPS data
(the ‘Add Data’ task). This inhomogeneous data split is difficult for weight-priors, and we show in
Fig. 3(b) that weight-priors do not perform well. For homogeneous data splits, weight-priors do
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Figure 3: (a) When compared at the Batch solution for the ‘Add Data’ task on USPS, weight priors
give incorrect values of h′(f iw) (shown with black dots, each dot corresponds to a data example).
Points on the diagonal means a perfect match which is the case for K-priors (show with red dots). (b)
Due to this, weight-priors (green diamonds) perform worse than K-priors (red squares). (c) For the
’Add data’ task on CIFAR-10, K-priors outperform replay (blue circles), but performance can still be
improved by using a temperature parameter (dark-red triangles). (d) The same is true for knowledge
distillation [24], and we see that we can reduce memory size while still performing better than the
student model.

better than this, but this result goes to show that they do not have any mechanisms to fix the mistakes
made in the past. In K-priors, we can always changeM to improve the performance. We provide
more plots and results in App. E, including results for weight-priors on all the ‘Add data’ tasks we
considered in this paper.

MNIST and CIFAR-10, neural networks. Finally, we discuss results on larger problems in deep
learning. We show many adaptation tasks in App. E for 10-way classification on MNIST [32] with
MLPs and 10-way classification on CIFAR-10 with CifarNet [62], trained with the Adam optimizer
[29]. In Fig. 3(c) we show one representative result for the ‘Add data’ task with CIFAR-10, where we
add a random 10% of CIFAR-10 training data to the other 90% (mean and standard deviation over 3
runs). Although vanilla K-priors outperform Replay, there is now a bigger gap between K-prior and
Batch even with 50% past data stored. However, when we use a temperature (similar to knowledge
distillation in (15) but with the weight term included), K-priors improves.

A similar result is shown in Fig. 3(d) for knowledge distillation (δ = 0 but with a temperature
parameter) where we are distill from a CifarNet teacher to a LeNet5-style student (details in App. E).
Here, K-priors with 100% data is equivalent to Knowledge Distillation, but when we reduce the
memory size using our method, we still outperform Batch (which is trained from scratch on all data).
Overall, our initial effort here suggests that K-priors can do better than Replay, and have potential to
give better results with more hyperparameter tuning.

6 Discussion

In this paper, we proposed a class of new priors, called K-prior. We show general principles of
obtaining accurate adaptation with K-priors which are based on accurate gradient reconstructions.
The prior applies to a wide-variety of adaptation tasks for a range of models, and helps us to connect
many existing, seemingly-unrelated adaptation strategies in ML. Based on our adaptation principles,
we derived practical methods to enable adaptation by tweaking models’ predictions at a few past
examples. This is analogous to adaptation in humans and animals where past experiences is used for
new situations. In practice, the amount of required past memory seems sufficiently low.

The financial and environmental costs of retraining are a huge concern for ML practitioners, which
can be reduced with quick adaptations. The current pipelines and designs are specialized for an
offline, static setting. Our approach here pushes towards a simpler design which will support a more
dynamic setting. The approach can eventually lead to new systems that learn quickly and flexibly,
and also act sensibly across a wide range of tasks. This opens a path towards systems that learn
incrementally in a continual fashion, with the potential to fundamentally change the way ML is used
in scientific and industrial applications. We hope that this work will help others to do more towards
this goal in the future. We ourselves will continue to push this work in that direction.
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