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ABSTRACT

For natural language processing (NLP) ‘text-to-text’ tasks, prevailing approaches
heavily rely on pretraining large self-supervised models on massive external data
sources. However, this methodology is being critiqued for: exceptional compute
and pretraining data requirements; diminishing returns on both large and small
datasets; and evaluation settings that overestimate performance differences. The
core belief behind current methodology, coined ‘the bitter lesson’ by R. Sutton,
is that ‘compute scale-up beats data and compute-efficient algorithms’, neglecting
that progress in compute hardware scale-up is based near entirely on the minia-
turisation of resource consumption. We thus approach pretraining from a minia-
turisation perspective, such as not to require massive external data sources and
models, and avoid translations from continuous input embeddings to discrete la-
bels. To minimise favourable evaluation, we examine learning on a challenging
long-tailed, low-resource, multi-label text classification dataset with noisy, highly
sparse labels and many rare concepts. To this end, we propose using a ‘dataset-
internal’, self-supervised contrastive autoencoding approach for pretraining that
enables marked improvements in zero-shot, few-shot and supervised learning per-
formance; even under a challenging, otherwise avoided, low-resource scenario,
without defaulting to large-scale external datasets as support training signals. Cru-
cially, we find evidence that zero and few-shot learning markedly benefit from
adding more ‘dataset-internal’, self-supervised training signals, e.g. when increas-
ing self-supervised learning signals via large external sources is infeasible.

1 INTRODUCTION

The current prevailing approach to supervised and few-shot learning is to use self-supervised pre-
training on large-scale ‘task-external’ data and then fine-tune on end-task labels. Recent studies
have found that, thus far, this way of pretraining fails in low-resource settings (Yogatama et al.,
2019; Şerbetci et al., 2020) and that reported performance improvements are caused in part by eval-
uation setups that are designed in line with the paradigm that “massive resources are pivotal” to
improving language understanding (Linzen, 2020; Schick & Schütze, 2020a; Dodge et al., 2020;
Brown et al., 2020) or computer vision (Chen et al., 2020). Despite these critiques, the underlying
goal of better initialisation of layer weights is a core requirement of successful learning with neural
networks, where self-supervised layer-wise pretraining (Bengio et al., 2006) was replaced by better
layer initialisation (Glorot & Bengio, 2010), which was in turn replaced by pretraining on grow-
ing amounts of external data (Bojanowski et al., 2017; Devlin et al., 2019; Chen et al., 2020; Brown
et al., 2020) – i.e. FastText, BERT, SIMCLR and GPT-3. The latter three approaches require massive
compute and data resources, but enable marked learning improvements in few-shot (SIMCLR, GPT-
3) or zero-shot (GPT-3) scenarios compared to models that have several orders of magnitude fewer
parameters. There are efforts to reduce model size requirements for few and zero-shot adaptation
by orders of magnitude (Schick & Schütze, 2020a;b; Plank & Rethmeier, 2019), with some being
increasingly beneficial in scenarios with low input data (X), label resources (Y ), and rare events
in X,Y . Crucially, such approaches do not simply rely on more data, but on creating better ini-
tialised input features X . In contrast, approaches like SIMCLR or BERT (Chen et al., 2020; Devlin
et al., 2019) use self-supervision via contrastive learning and input masking on large-scale datasets
to create broader learning signals than supervision provides. SIMCLR is based on a metric learning
approach called contrastive self-supervision – i.e. learning to distinguish (dis-)similar inputs using
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generated, but weak supervision tasks. However, as Musgrave et al. (2020) find, “when evaluating
old vs. recent metric learning approaches, while controlling for data and model size, newer meth-
ods only marginally improve over the classic contrastive formulation”. Remarkably, Bansal et al.
(2020) recently showed that adding broader self-supervision rather than increasing data size during
large-scale pretraining can substantially boost few-shot performance.

Our central question is whether increased (broader) pretraining self-supervision also boosts few and
zero-shot performance using only small-scale, ‘task-internal’ data, instead of resorting to large-
scale pretraining on orders of magnitude more ‘task-external’ data – i.e. Do we really need large
datasets for pretraining or just more (broader) self-supervised learning signals? To broaden
small data self-supervision, we propose a contrastive self-supervised objective based on label-
embedding prediction, where labels are expressed as word embeddings to learn their matching with
an input text embedding. For contrastive learning, our method samples positive and negative word
input tokens X for self-supervised pretraining, zero and few-shot learning; and positive and nega-
tive classes Y for few-shot to fully supervised fine-tuning. Thus, we propose a model architecture
that unifies training from labels Y and inputs X . To increase evaluation robustness, we compare
models of the same parameter and data sizes as suggested by Musgrave et al. (2020), and eval-
uate on a challenging learning problem as suggested by Linzen (2020); Hooker (2020). Namely,
we evaluate against a challenging low-resource, long-tailed, noisy multi-label data settings, where
information is always limited, since the long tail grows with data size and because its modeling
requires the majority of parameters (Hooker et al., 2020b). For robust evaluation, we use a typi-
cal training, development, test setup and first establish a solid, supervised baseline for many-class
multi-label classification that is optimised with a set of generalisation techniques proposed by Jiang
et al. (2020). For evaluation in supervised, few and zero-shot learning scenarios, we analyse and pro-
pose evaluation metric choices which are meaningful across all scenarios for broader performance
comparisons.

Contributions: 1 We provide a straight-forward method for self-supervised contrastive label-
embedding prediction and 2 evaluate it in a challenging, noisy long-tail, low-resource multi-label
text prediction scenario. 3 We show that small-scale ‘data-internal’ pretraining (on 8-80MB of
text) not only improves supervised performance, but also strongly boosts few and zero-shot learning
by increasing self-supervision amounts for small data, rather than increasing data amounts via the
standard large-scale external data pretraining approach.

2 RELATED WORK

Large to Web-scale data pretraining is at the core of state-of-the-art methods in computer vision
(Chen et al., 2020) and language processing (Rogers et al., 2020; Brown et al., 2020). However, chal-
lenges and disadvantages are increasingly being discussed. (i) A requirement of large-scale external
text data resources (Yogatama et al., 2019; Schick & Schütze, 2020a), (ii) an inability to pretrain
recent architectures on small-scale data (Liu et al., 2020; Melis et al., 2020; Şerbetci et al., 2020),
(iii) calls for more challenging evaluation tasks (Linzen, 2020; McCoy et al., 2019) and (iv) dimin-
ishing returns of pretraining on large supervised datasets (Wang et al., 2020b). To address issue (iii),
challenging evaluations on long-tail prediction (Chang et al., 2019), few-shot (Schick & Schütze,
2020a), or zero-shot (Brown et al., 2020), were recently shown to benefit from self-supervised pre-
training, but to-date, require massive, ‘task-external’, pretraining datasets. (c) Remarkably, Bansal
et al. (2020) showed that for large ‘data-external’ pretraining, using more self-supervision, not
more data, also boosts few-shot performance. This finding inspired us to collect evidence towards
a core question: “Do we need massive data (signals) or just more (diverse) self-supervised learn-
ing signals for pretraining?”. We collect evidence by posing three research questions and propose
solutions that require designing approaches for issues (i-iii) as follows. One, to address issue (i),
“can increasing self-supervision signals during ‘data-internal’ pretraining on small data, i.e. without
large-scale ‘data-external’ pretraining, boost few and zero-shot performance”? Two, to address issue
(ii), “what pretraining objectives and models do we chose that work without large training data”?
Three, to address issue (iii), “within what challenging learning scenario should we evaluate while
incorporating the now standard “any NLP task as a ‘text-to-text’ problem” paradigm (Raffel et al.,
2020)”?
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Fortunately, existing techniques can be extended to address these issues. For example, supervised
label embedding prediction (pre-)training enables few and zero-shot learning of subsequent (unseen)
supervised tasks. However, this requires the first (pre-training) task to be supervised, unlike recent
large scale self-supervised pretraining methods. Large-scale, self-supervised pretraining and label
embeddings can be combined (Chang et al., 2019) to fine-tune externally pretrained BERT models
via label embedding prediction to boost long-tail task performance. However, BERTs’ contextu-
alized word embeddings did not work as label embeddings ELMOs’ word embeddings had to be
used (3.2), further increasing resource requirements. Even worse, when comparing language model
pretraining on small text corpora, Transformers (Wang et al., 2020a) largely underperform CNNs
and LSTMs (Merity et al., 2017). Fortunately, Liu et al. (2017) established that label-embedding
prediction CNNs boost long-tail prediction, even without modern self-supervision or using large
‘task-external’ data pretraining. Further, Pappas & Henderson (2019); Zhang et al. (2018b) used
supervised text label-embedding (pre-)training and investigated transfer to subsequent supervised
tasks, though not under long-tail evaluation. Here, label embeddings are average word embeddings
over label description words – i.e. label descriptions are required. The former added noise con-
trastive estimation (NCE) (Ma & Collins, 2018) via negative sampling of labels to zero-shot predict
rare, unseen classes post supervised pretraining on seen classes. Later, Jiang et al. (2019) adapted
the same idea for zero-shot image classification via supervised pretraining on pairs of ‘source’ im-
ages and ‘source’ text label descriptions. They reduced overfitting by additionally pretraining on
pairs of ‘source’ image and most similar ‘zero-shot target class’ text descriptions – though this is
not technically zero-shot learning because sensible target label text descriptions have to be provided,
which when unknown (zero-shot), again leads to the long-tail issue. All these approaches are loosely
based on Matching Networks by Vinyals et al. (2016) and add various training objectives.

We thus combine the advantages of self-supervised pretraining for large data with supervised
label embedding prediction for smaller data to propose a contrastive self-supervised pretrain-
ing via label-embedding prediction usable for small data pretraining. We extend the super-
vised label embedding baseline method by Zhang et al. (2018b) and add four important changes.
First, we combine label and word embedding look-up tables into one table, as this pushes input
words and label(-words) to remain in a shared vector space during training, when predicting dense
label(-word) embeddings from dense input word embeddings. This ‘dense-to-dense’ prediction of
words to label(-words) follows the current “any NLP task as a ‘text-to-text’ prediction” paradigm
(Raffel et al., 2020), but avoids constant dense-to-sparse translation into label distributions via a
compute intensive softmax. Secondly, we thus use a noise contrastive estimation (NCE) objective
(Ma & Collins, 2018), replacing softmax normalization with negative sampling of (supervision) la-
bels. Combining NCE and label embeddings allows predicting arbitrarily large class set (long-tails)
and unseen classes. While Pappas & Henderson (2019) used NCE for supervised label pretraining,
we add self-supervised pseudo-label (word) pretraining. Because labels and input words occupy the
same vector space, we can use pseudo-labels (words) for self-supervised pretraining by sampling
positive words from a current text instance, and negative words from adjacent text instances within
a mini-batch. Three, we chose to sample from within a batch to reduce reliance (training bias) on
knowing or expecting future and past word or label distribution statistics for the whole dataset, since
in a zero-shot evaluation scenario unseen label and input word statistics are unknown. This also adds
subsequent learning flexibility because no statistics collection preprocessing is required. Fourth, we
add k-max pooling as in the CNN long-tail research by Liu et al. (2017), because it helps during
zero-shot learning.

Such label-embedding based self-supervised pretraining has multiple advantages. It does not require
large or external resources as in (i). Its small ‘data-internal’ self-supervised word pseudo label
pretraining addresses issue (ii) and enables unsupervised zero-shot learning. It also markedly boosts
few-shot performance without requiring task external supervised annotations as in (i) or supervised
embedding transfer as in Pappas & Henderson (2019); Zhang et al. (2018b); Jiang et al. (2019).
Since label embeddings are a common long-tail prediction technique, which addresses issue (iii),
it makes our approach suitable for low-resource, long-tail learning without task external labels or
large-scale annotated datasets. Finally, label embedding NCE training allows for (dense) ‘text-to-
text’ training, making it applicable to a variety of tasks. We demonstrate the benefits of such a self-
supervised pretraining method and model for self-supervised zero-shot learning (inputX-efficiency)
§6.4 or few-shot learning (label Y -efficiency) §6.3.
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Figure 1: Contrastive text-sequence-embedding-2-label-embedding matcher model: A text
(‘measuring an interaction’), and positive (‘interaction’, R) or negative labels (‘p-value’) are en-
coded by the same word embedding layer E 1 , where labels have word IDs for lookup. The text
embeddings are then encoded by a sequence encoder T 2 , while c labels are encoded by a label
encoder L 3 . Each text has multiple labels, so the text encoding ti is repeated for, and concate-
nated with, each label encoding l◦i,l. The resulting batch of ‘text-embedding, label-embedding’ pairs
[[ti, l

◦
i,1], . . . , [ti, l

◦
i,c]] 4 is fed into a ‘matcher’ classifier 5 that trains a binary cross entropy loss

6 on multiple (pseudo-)label (mis-)matches {0, 1} for each text instance ti, resulting in a noise con-
trastive estimation objective (NCE). Words like ‘measuring’ provide self-supervised pseudo-labels
(left). Positive and negative (pseudo-)labels are sampled from their own or other instances in a mini-
batch. Unlike Zhang et al. (2018a) we use a CNN for 2 , negative sampling and self-supervision.

3 SELF-SUPERVISED, CONTRASTIVE DENSE-TO-DENSE TEXT PREDICTION

In this section, we propose to use label-embeddings, previously used for supervised learning only
(Pappas & Henderson, 2019; Zhang et al., 2018b), and exploit them for self-supervised contrastive
pretraining on small-scale data. This enables contrastive self-supervised pretraining somewhat sim-
ilar to methods used for large-scale models. However, we only use small-scale ‘task-internal’ data
for pretraining, which requires orders of magnitude less data and compute than large-scale, ‘task-
external’ pretraining approaches. Most NLP models translate back and forth between discrete words
and continuous token embeddings, often using a softmax computation that is limited to predicting
classes known at training time. To ease learning from small data, our first core idea is that text input
words wi ∈ x and labels w◦i,l should be mapped into the same word representation space, i.e. drawn
from a shared embedding look-up table E, to replace dense to sparse translations with embedding-
to-embedding matching. Thus turns NLP from a discrete ‘text-to-text’ tasks, as proposed in Raffel
et al. (2020), into a ‘dense(text)-to-dense(text)’ task. We thus replace learning instance labels yi by
their corpus-internally pretrained FastText or randomly initialised word embeddings l◦i ∈ L, while
others (Pappas & Henderson, 2019) use text descriptions to form label embeddings as the vector
average over description word embeddings. As a result, pretraining word embeddings also pretrains
(favourably initialising) label embeddings. Unknown labels ( words), in turn, can be inferred via
methods like FastText subword embeddings (Bojanowski et al., 2017).

As outlined visually, left to right in Fig. 1, learning multi-label classification then becomes a con-
trastive learning problem of matching the word-sequence embedding ti of text i 2 , with its c la-
bel (word-sequence) embeddings l◦i = {l◦i,1, . . . l◦i,c} 3 , by feeding c text-vs-label combinations
[[ti, l

◦
i,1], . . . , [ti, l

◦
i,c]] 4 to a binary classifier M 5 for matching. This means that instead of

predicting c classes at once, we predict a batch of c, single-class, binary classifications using bi-
nary cross entropy 6 , where c needs not be constant across instances i. The details of steps
1 to 6 are as follows. To train a binary classifier, we need both positive and negative labels.
Thus, for each text instance wi = {wa, . . . wz} we want to classify, we need g positive labels
w−i = {w+

1 , . . . w
+
g } ∈ Rg and b negative labels w+

i = {w−1 , . . . w
−
b } ∈ Rb to form a la-

bel selection vector w◦i = {w+ ⊕ w−} ∈ Rg+b. To indicate positive and negative labels, we
also need a g sized vector of ones 1 ∈ Rg and a b sized zero vector 0 ∈ Rb, to get a class
indicator Ii = {1 ⊕ 0} ∈ Rc=g+b. Both the text (word) indices wi and the label indices w◦i
are passed through a shared ‘word-or-label embedding’ look-up-table E 1 , after which they are
passed through their respective encoder networks – T as text-sequence encoder, L as label en-
coder. Thus, the text-encoder produces a (single) text embedding vector ti = T (E(wi)) per text
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instance i 2 . The label-encoder produces c = g + n label embedding vectors (l◦i ) that form
a label-embedding matrix Li = [l+1 , . . . , l

+
g , l
−
1 , . . . , l

−
b ] ← L(E(w◦i )) 3 . As text-encoder T

we use a (CNN→max-k-pooling→ReLU) sub-network, while the label-encoder L is simply an
(average-pool) operation, since a single label (w◦i,j), e.g. ‘multi’-‘label’, can consist of multiple
words. To compare how similar the text-embedding ti is to each label-embedding l◦i,j , we re-
peat ti c times and combine text and label embeddings to get a text-vs-label-embedding matrix
Mi = [[l+i,1, ti], . . . , [l

−
i,c, ti]] 4 that is passed into the matcher network M 5 to produce a batch of

c probabilities pi = {σ(M(Mi)1, . . . , σ(M(Mi)c} 6 . As the optimisation loss, we the use binary
cross entropy (BCE) between pi and Ii, i.e. 1

c

∑c
l=1 Ii,l · log(pi,l) + (1− Ii,l) · log(1− pi,l). Sum-

ming BCE over positive and negative (pseudo-)labels is referred to as noise contrastive estimation,
as used in representation learning methods across fields (Ma & Collins, 2018).

Via pseudo-label embedding pretraining, a model can predict supervised labels absent prior super-
vision. This exploits both transfer learning from inputs and labels, using the matcher as a learned
similarity function. Positive labels w+

i can be supervision labels. Negative labels w−i can be sam-
pled from the positive labels of other instances w+

j in the same batch, which avoids needing to know
the label set beforehand. Since labels are words, we can sample positive words from the current
and negative words from other text instances to get pseudo-labels. Sampling pseudo-labels provides
a straight-forward contrastive, partial autoencoding mechanism usable as self-supervision in pre-
training or as zero-shot learner. Because both real and pseudo labels are sampled words, the model
does not need to distinguish between them. Instead, learning is controlled by an out-of-model sam-
pling routine for real supervision and pseudo self-supervision labels. This leads to a second core
idea: once inputs X and outputs Y are well initialised, the model Θ can also be better initialised
by pretraining via self-supervision. As a result, we can learn supervised, few and zero-shot tasks in
a unified manner.

4 SMALL, LONG-TAILED DENSE-TO-DENSE TEXT (LABEL) PREDICTION

Since it is our goal to research better zero and few-shot learning approaches for small ‘text-to-text’
pretraining models, we choose a small multi-label question tag prediction dataset as a test bed. We
use the “Questions from Cross Validated”1 dataset, where machine learning concepts are tagged per
question. This dataset fulfills three requirements: it is small-scale, long-tailed, and entails solving
a challenging, noisy ‘text-to-text’ prediction task. There is currently no published baseline for this
task. The classes (tags) and input words are highly long-tailed (imbalanced). The first 20% of labels
occur in only 7 ‘head’ classes. Tags are highly sparse – at most 4 out of 1315 tags are labelled per
question. Word embeddings are pretrained with FastText – details in appendix App. A.4. We use
the labelled questions part of the dataset, which has 85k questions and 244k labels. What makes this
problem particularly challenging is that 80% of the least frequent labels are distributed over 99.5%
of classes, as an extreme long tail. The label density (% of active labels per question) is only 0.22%
or ≈ 2.8/1305 possible classes per instance. For a realistic evaluation setting, we split the dataset
diachronically, using the 80% earliest documents for training, the next 10% for development, and
the last 10% for testing.

Why not large external pretraining? Real-world, long-tailed datasets are always dominated by
a low-learning-resource problem for most classes. This makes two things obvious: (A) that model
learning cannot simply be solved by using massive data sets as the long-tail problem grows as
well; (B) that studying self-supervised pretraining on challenging, but smaller, long-tailed datasets
such as this one, is useful for assessing an approach’s ability to learn from complex, real-world
data. Massive data pretraining masks and thus prevents studying these effects. We thus evaluate
the effects of self-supervision in a noisy low-resource setup, also as a response to recent critiques of
the evaluation metrics used to assess Web-scale learning (Linzen, 2020; Yogatama et al., 2019). As
McCoy et al. (2019) shows, these evaluation setups are solvable by large-scale pattern overfitting,
which, they find, leads to a ‘Clever Hans effect‘, rather than real task progress.

1https://www.kaggle.com/stackoverflow/statsquestions
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5 EXPERIMENTAL SETUP AND METRICS

We want to analyse the benefits of self-supervision for (a) fully supervised, (b) few and (c) zero-shot
learning in a noisy low-resource, long-tailed, multi-label classification setting. In this section, we
describe suitable evaluation metrics, then discuss results in the next section.

Long-tail evaluation metrics and challenges: Long-tail, multi-label classification is challenging
to evaluate. Many classification metrics are unsuitable for evaluating long-tailed datasets. They
either: (i) misrepresent performance under class imbalance; (ii) do not scale to many classes; or
(iii) are only meaningful if the desirable number of classes per instance is known (multi-label clas-
sification). For problem (i) ROCAUC is known to overestimate imbalanced performance (Davis &
Goadrich, 2006; Fernández et al., 2018), e.g. ROCAUC test scores were upwards of .98 for most
of our models. For problem (ii), measures such as F-score require discretisation threshold search
for imbalanced prediction problems, i.e. searching for the optimal threshold per class (on a devel-
opment set), which becomes computationally infeasible. Simply using a 0.5 probability threshold
drives model selection towards balanced prediction, mismatching the long-tail problem. Metrics
like precision@k handle problem (i-ii), but require knowledge of k, i.e. problem (iii): these metrics
can only compare a chosen number of labels k, and cannot handle cases where the correct num-
ber of labels per instance varies or is unknown (label distribution shift). To more reliably measure
performance under imbalance (i), to avoid unscalable class decision thresholding (ii), and to not
optimise models for a set number of labels k per instance (iii), we use the average-precision (AP )
score. It is defined as AP =

∑
n(Rn − Rn−1)Pn, where Pn and Rn are the precision and recall

at the nth threshold. AP measures classifier performance over all decision thresholds, is computa-
tionally cheaper than threshold search, and allows for a dynamic number of labels per class. This
latter property makes this task especially hard. A model has to learn when to predict a label, at what
rarity, and how many such labels to predict for each instance. We also report the macro-averaged
Brier-Score (BS) over all classes, as a scalable, compute-efficient measure of classifier calibration.
Though more accurate measures exist, computing them is more involved and they require additional
evaluation labour when optimising a specific supervised dataset, which is not our goal. For both
measures, we use their popular scikit-learn implementations2.

A challenging task, even for humans: On the dataset it is hard to guess how many labels per
question to tag and how specific they should be, especially without domain knowledge. Out of the
different weighting schemes for average precision, we choose APmicro and APmacro, as they are
the most pessimistic (hardest to increase) measures to reduce optimistic evaluation. This choice is
motivated by the goal of this work, which is to not simply to push end-task performance, but to use
supervised learning scores as a proxy to evaluate the effects of pretraining on zero-shot learning as
well as data-efficiency and speed of supervised and few-shot learning.

6 RESULTS

In this section, we first analyse a normal and a strong supervised baseline to minimise favourable
comparison against subsequently evaluated label-embedding and self-supervision enhanced ap-
proaches. Finally, we analyse the benefits of ‘dataset-internal’ pretraining for few-shot learning,
and how the amount of pretraining learning signal and model size affect zero-shot learning. Test
scores are reported according to the best dev set average precision score APmicro over all classes.

6.1 BASELINE MODEL RESULTS

In this section, we establish baseline results (BASE) for a non-learning majority class baseline (Ze-
roR), a common (‘weak’) CNN baseline trained with binary-cross-entropy, and a solid CNN baseline
optimised using a set of generalisation techniques proposed by Jiang et al. (2020). The ZeroR classi-
fier is useful for establishing a baseline performance under class imbalance – e.g. if a class is present
in only 10% of instances, then 90% accuracy is achieved by simply always predicting zero – i.e. the
majority class. When doing so on our long-tailed task, where the class majority is always zero,
we get an APmicro and APmacro of 0.2%, since out of the 1315 classes, maximally four classes
are active per instance. Importantly, this tells us that: (a) simply learning to predict zeros can not

2https://scikit-learn.org/stable/modules/model_evaluation.html
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Table 1: Supervised prediction results: comparing an optimized baseline (OB) with contrastive
methods (CM: 4-12). CMs compare training from scratch vs. pretrain→fine-tune vs. self-supervised
pretraining for few and zero-shot learning. Given the same hyperparameters (*), all CMs reach sim-
ilar supervised end-task performance, while self-supervised CMs produce fundamentally different
results for zero and few-shot learning – see subsection details.

Training method/ model learning setup AP micro/
macro test %

Brier score
macro

BASE: baselines, only supervised learning (SL)
(0) ZeroR always predict majority per class (=all zero) 00.20/00.20 n.a.
(1) WB: weak baseline (BCE) supervised 33.75/n.a. n.a.
(2) OB: optimized baseline (BCE) supervised 45.01/22.81 0.0015

FROM SCRATCH (s): train from scratch: supervised (SL), or self+supervised (S(+S)L) – no pretraining
(3) (*) SL+SSLscr: h-params base supervised + self-supervised from scratch 47.13/25.28 0.0028
(4) SLscr: h-parms like (*) supervised scratch 47.74/26.05 0.0028
SSL-PRETRAINED (p)→ FINE-TUNE (f): self-supervised (SSL) pretrain→ then fine-tune (SL or SL+SSL)
(5) SSLpre→SL+SSLfin: h-parms like (*) SSL pretrain >SL+SSL fine-tune 48.20/25.58 0.0027
(6) SSLpre→SLfin: h-parms like (*) SSL pretrain >SL fine-tune 47.53/25.65 0.0028

FEW-SHOT: few-shot 10% train, ‘pretrained then fine-tuned’ (pf) vs from scratch (s)
(7) SSLpre→SLfin: h-parms like (*) self pretrain >10% supervised fine-tune 38.01/18.31 0.0037
(8) SSLpre→SL+SSLfin: h-parms like (*) self pretrain >10% self+supervised fine-tune 38.25/18.49 0.0038
(9) SLscr: h-parms like (*) 10% supervised from scratch 30.46/13.07 0.0032
(10) (*) SL+SSLscr: 10% self+supervised from scratch 30.53/13.28 0.0039

ZERO-SHOT: zero-shot, self-supervised pretrain only
(11) SSLpre→0: h-parms, like (*) self pretrain >zero-shot 10.26/10.70 0.1139
(12) SSLpre→0: extra h-param tuning self pretrain >zero-shot 14.94/14.86 0.0791

score well on under this metric and (b) that this problem setting is challenging. Next, we evaluate
both a weak and optimised baselines (WB, OB). When using a very small CNN as baseline (WB)
with max pooling over 10 filters at filter sizes 1-3 that feed into a one-layer classifier, we achieved
33.75%APmicro on the test set – after only tuning the learning rate. When tuning this baseline for
parameters known to increase generalisation using a set of such methods suggested by Jiang et al.
(2020), we get a more solid test score of 45.01 APmicro and an of 22.81 APmacro. The macro
result tells us that not all classes perform equally well. Upon closer inspection, we find that model
performance worsens with increasing class rarity as expected. While establishing a solid baseline,
we find expected limitations of model width, max-k pooling and dropout scale-up, and a confirma-
tion that controlled experiment comparisons that only change one variable at a time, do not suffice
to find better hyperparameter configurations. For example, when widening lower layer components
and observing a decrease in performance, higher layers should also be made wider to accommodate
the additional feature information from lower layers – which is consistent with findings in Nakkiran
et al. (2020). A more detailed breakdown of this analysis can be found in Table Tab. 2 in the ap-
pendix App. A. We explore a considerable amount of hyperparameter configurations in an effort to
compute a solid baseline. This allows for more robust insights and helps to speed up optimisation of
the self-supervised models.

6.2 100% SUPERVISION (SL+SSLSCR) AS REFERENCE (*) FOR FEW AND ZERO-SHOT (0%)

Tab. 1 show both: models trained FROM SCRATCH (s), and models that are first PRETRAINED (p)
using self-supervised word pseudo-labels from text inputs, and afterwards fine-tuned (f) on supervi-
sion labels. To fit the supervised end-task (tag prediction), both fine-tuning and training from scratch
can either: (4) only fit supervision labels (SL) or (3) jointly fit supervised labels and self-supervised
word pseudo-labels (S(+S)L), as described in §3.

However, before analysing results, we define a controlled experiment setup using a fixed, but
shared hyperparameter setting ‘(*) SL+SSLscr’ as a reference (*). Since SL+SSLscr is the
most basic model learning setup that uses both self-supervision and supervision, we use its optimal
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hyperparameters ‘(*) SL+SSLscr’ as a fixed reference configuration for most subsequent learning
setups, as indicated by the ‘params like (*)’ marker. This ensures a more controlled comparison
of the effects of pretraining vs. training from scratch, and robust insights on how to design self-
supervision during end-task fitting and pretraining. The (*) reference will hence be used for most
few and zero-shot settings. When comparing PRETRAINED models with models trained FROM
SCRATCH, we see that under comparable hyperparameters, without setting-specific parameter tun-
ing, all four learning setups perform similarly within 1 percent point (%p) of each other. We also
see that the PRETRAINED (5) model which uses self-supervision during both pretraining and fine-
tuning performs best. Training FROM SCRATCH using self+supervision SL+SSLscr somewhat hurts
performance compared to using supervision alone in SLscr. Test scores are reported for the best dev
set APmicro scores.

6.3 FEW-SHOT: PRETRAIN FOR BETTER LONG-TAIL, LOW-RESOURCE, FEW-SHOT LEARNING

In this section, we present evidence that even in a data-limited, long-tailed setting, self-supervised
‘data-internal’ pretraining: (a) increases few-shot learning performance of subsequent fine-tuning,
while (b) improving learning speed and stability. This demonstrates that small data pretraining
has similar benefits as large-scale pretraining (Brown et al., 2020; Schick & Schütze, 2020a). In
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Few-shot label efficiency during joint self+supervised fine-tuning
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Figure 2: Few-shot learning: Best training from scratch (left) vs. best fine-tuned (right):
APmicro test curves for different few-shot portions: 100%, 75%, 50%, 25%, and 10% of train-
ing samples. ‘Dataset-internal’ pretraining via self-supervision (right) markedly improves few-shot
learning performance, speed and stability compared to training from scratch (left).

Fig. 2, when using the (*) reference model from Tab. 1, we now compare training from scratch
(4) as before (pretraining off, left), with pretraining via self-supervised word pseudo-labels, and
then fine-tuning on the supervised training labels (5) of the end-task (pretraining on). Note that
our model architecture (Fig. 1) does not distinguish between self-supervised and supervised labels,
which means that during self-supervised pretraining, we sample as many word pseudo-labels as real
labels during supervised fine-tuning (or when supervising from scratch).

When fine-tuning the pretrained model on an increasingly difficult FEW-SHOT portion of (100%),
75%, 50%, 25% and only 10% of the supervised training data, we see large APmicro|macro test

performance improvements compared to training FROM SCRATCH in both Tab. 1 and Fig. 2.
On the right, in Fig. 2, we see that the pretrained models start with a higher epoch-0 perfor-
mance, train faster, are more stable and achieve a markedly better few-shot end performance than
the left-hand ‘from scratch’ setting. This is confirmed by detailed results for the 10% FEW-
SHOT setting in Tab. 1, where pretrained models (SSLpre→SLfin, SSLpre→SL+SSLfin) achieve
≈ .38/.18APmicro|macro test compared to only ≈ .30/.13APmicro|macro test for models trained
from scratch (compare (7-10). This means that, when using only 10% supervised labels, pretrained
models still retain 38.25/48.20, or roughly 80%, of their fully supervised performance. This pro-
vides evidence to answer the underlying question: “Do we really need more data for pretraining or
can we simply increase self-supervision?”. Very recent work by Bansal et al. (2020) has investi-
gated this question for large-scale, self-supervised pretraining, where they showed that increasing
self-supervision to create “a richer learning signal” benefits few-shot performance of large mod-
els. Our results demonstrate that this is also the case for small-scale, non-Transformer pretrained
models, even under a much more challenging long-tailed learning setting than Bansal et al. (2020)
examined. However, to better understand the benefits of using more self-supervised training signals
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Zero-shot pretrain perf. by model size and SSL label amount
larger net, 3.3x labels 3.3x labels default like (*)

0 50 100 150

epoch
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14

AP
_m

ic
ro

_t
es

t

Few-shot Zero-shot performance (X-efficiency)
1.0 like (*) 0.75 0.5 0.25 0.1

0 100 200 300 400 500

epoch
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

AP
_m

ic
ro

_t
es

t

Figure 3: Zero-shot performance by model and signal size: Left plot: When using the same
label and parameter amount as for the ‘joint self+supervised train from scratch’ reference model (*),
allowing more self-supervision labels (left middle curve) and widening the network (left top curve)
noticeably boosts zero-shot performance (supervised APmicro dev and test). Right: when using less
training data text (few-shot on inputs X), zero-shot still works, but we need to wait much longer.

and its relation to model size, we examine the zero-shot performance of our pretraining approach
in regards to label (signal) amount, network width and zero-shot X data-efficiency (low-resource
zero-shot performance) – i.e. zero-shot performance when pretraining on fractions of inputs X to
forcibly limit self-supervision.

6.4 ZERO-SHOT: MORE IS BETTER, FOR ‘LOW-RESOURCE’ ZERO-SHOT PRETRAIN LONGER

In this experiment, we study how the number of self-supervised labels (signal) and the model width
used for self-supervised pretraining affects zero-shot performance on the end-task test set. We show
results in both Fig. 2 (11, 12) and Tab. 1 (ZERO-SHOT). In Fig. 2, we see that when using the refer-
ence hyperparameter configuration ((*) in Tab. 1), pretraining gets the lowest zero-shot performance.
When increasing the number of self-supervised word pseudo-labels from 150 to 500, the model
performs better (middle curve), while not using more parameters – so increasing self-supervision
signals is beneficial. When additionally tripling the network’s sequence and label encoder width
and doubling the label match classifier size, zero-shot performance increases even more (top curve).
This indicates that for zero-shot learning performance from pretraining, both the amount of training
signals and model size have a significant impact. While increased model size has been linked to in-
creased zero-shot performance of Web-scale pretrained models like GPT-3 (Brown et al., 2020), the
influence of signal amount on zero-shot learning is much less well understood, because large-scale
pretraining research often increases training data size when changing self-supervision, as outlined by
Liu et al. (2020). Finally, in Fig. 3 we see that when pretraining our model for zero-shot prediction
on only portions (100%, 75%, .50%, 25% and 10%) of the training text inputsX , i.e. an increasingly
low-resource zero-shot setting, we still converge towards comparable full zero-shot performance (if
we had not stopped early). However, each reduction in training size multiplies the required training
time – when using the same number of self-labels. This provides a promising insight into self-
supervised pretraining on small datasets, which, if designed appropriately, can be used to pretrain
well-initialised models for supervised fine-tuning and few-shot learning from very small text sizes.

7 CONCLUSION

We showed that label-embedding prediction, modified for self-supervised pretraining on a challeng-
ing long-tail, low-resource dataset substantially improves low-resource few and zero-shot perfor-
mance. We find that increased self-supervision, in place of increased data size or resorting to large-
scale pretraining, strongly boosts few and zero-shot performance, even in challenging settings. In
future, we envision that the proposed methods could be applied in scenarios where little in-domain
(pre-)training data is available, e.g. in medicine (Şerbetci et al., 2020), and where new labels rapidly
emerge at test time, e.g. for hashtag prediction (Ma et al., 2014). The code and data splits will be
published on https://github.com.
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A APPENDIX

A.1 A BASELINE TUNED USING GENERALISATION TECHNIQUES

Table 2: Building an optimised supervised baseline: using test set generalization techniques as
proposed by Jiang et al. (2020). %p denotes absolute percent points. Since parameters cannot be
tuned in isolation, %p only reflects drops by deviating from optimal settings once they are found.
Details on the explored hyperparameters are found in Tab. 3.

Model variable observation optimal parameter, %p drop from not using it
pre-opt NN learning rate optimized base setting 33.75%p APmicro test

optimized NN Optimal parameters ↓ base setting 45.01%p APmicro test, .0015 BSmacro

larger NN max-k pooling important max-3 pooling, 3%p better than max-1 pooling

CNN filter size important n-gram filter sizes >2 matter
(∼2%p), comparing same filter amounts

num CNN filters important 100 filters per n-gram size
wider classifier overfitting more than a 1 layer classifier lead to overfitting

dropout on CNN output improvement 2% better APmicro test test, 2%p improvement
on deeper/ wider clf none, stability stabilizes learning, but same performance

optimizer ADABOUND failed -39%p drop APmicro test, despite tuning
learning rate lower LR crucial LR = 0.0075 for ADAM with cross-entropy
batch size batch size important batch size = 1024 worked well

Table 3: Parameters we explored for the optimized baseline. Not all combinations were tried. We
tuned in order: learning rate lr, filter sizes, max-k pooling, tuning embeddings, batch size, classifier
depth and lastly tried another optimizer.

Filters {1: 57, 2: 29, 3: 14}, {1: 57, 2: 29, 10: 14},{1: 285, 2: 145, 3: 70},
{1:10, 10:10, 1:10}, {1:15, 2:10, 3:5}, {1:10}, {1:100}, {10:100}

Filter sizes 1, 2, 3, 10
lr 0.01, 0.0075, 0.005, 0.001, 0.0005, 0.0001
bs 1536, 4096
max-k 1, 3, 7

classifier two layer classifier, ’conf’:[{’do’: None—.2, ’out dim’: 2048 — 4196 — 1024}, {’do’:None— 0.2}]},
one layer classifier, ’conf’:[{’do’:.2}]}

tune embedding: True, False
optimizer: ADAM, ADABOUND by Luo et al. (2019) (very low results)

For the baseline we found optimal hyperparameters to be: lr=0.0075, filter-sizes={1: 57, 2: 29, 3:
14}, clf=one layer classifier, ’conf’:[{’do’:.2}] , max-k pooling=3, bs=1536, tune embedding=True,
optimizer=ADAM with pytorch defaults. Increasing the filter size, classifier size or depth or using
more k decreased dev set performance due to increased overfitting. In general the standard multi-
label BCE loss overfit much more quickly than the contrastive methods described in §3. The con-
trastive model only differs it was able to use more filters {1: 100, 2: 100, 3: 100}, where using only
{1: 20, 2: 20, 3: 20} loses 1.5 %p of performance, and that its optimal lr = 0.0005, while the batch
size shrinks to 1024 due to increased memory requirements of label matching. This contrastive mod-
els optimal matcher classifier is deeper, due to the increased task complexity – four layer classifier,
’conf’: [{’do’: 0.2}, {’out dim’: 1024, ’do’: 0.1}, {’out dim’: 300, ’do’: None}, {’out dim’: 1,
’do’: None}]}.

A.2 LABEL-EMBEDDINGS, PRETRAINING EFFECTS ON THE LONG-TAIL

In this section we analyse the effects of using supervised label-embeddings and self-supervised pre-
training with words as pseudo-labels. Plotting the average precision of 1305 would be unreadable.
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classes: sorted head (common) → tail (rare)
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Figure 4: Head and long-tail as 5 label frequency balanced class buckets: We bucket classes by
label frequency, into 5 buckets, so that each bucket contains equally many label occurrences – i.e.
the buckets are balanced and thus comparable. Note the log frequency scale.

Instead, we sort classes from frequent to rare and assign them to one of five 20% class frequency
buckets, such that each bucket has the same amount of positive labels (label occurrences) in it. As
seen in Fig. 4, this means that the head 0 − 20% bucket (left, blue) has very few, frequent classes,
while tail buckets 20 − 40% . . . 80 − 100% have increasingly more classes (right, orange, red) that
also become increasingly more rare. We bucket classes this to balance label frequency between
buckets to make them directly comparable.

AP macro test for each 20% class buckets: head → tail
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(2) optimized BCE baseline

(4) SLscr (LE, *)

(3) SL+SSLscr (LE, *)

(6) SSLpre→SLfin (PT, LE, *)

(5) SSLpre→SL+SSLfin (PT, LE, *)

(5.XL) SSLpre→SL+SSLfin (XL-PT, LE)

long-tail performance: BCE vs label-embedding (LE) and self-supervised pretraining (PT)

Figure 5: Long-tail effects of base, label-embeddings and self-supervised pretraining (XL):
When reporting APmacro of the five 20% head to tail class bins, the BCE multi-label objective
performs worst. Label-embedding NCE (LE, (4-6)) markedly boosts performance, especially on
the long-tail. When using label embeddings for self-supervised pretraining with the same network
parameters (*) for all LE models, there is no boost. However, when pretraining with more parameters
((5.XL) – see larger net, 3.3x labels in the zero-shot learning Fig. 3), we see substantial
long-tail performance boosts (turquoise, upper most curve).

Label-embedding increase long-tail performance: In Fig. 5 we can see that the optimized baseline
(2) from Tab. 1 performs much worse than models that use only the supervised label-embeddings
(LE) and methods that also use self-supervised pretraining (PT) via noise contrastive sampling of
input words as pseudo labels. We also see that regarding end-task performance on the tag predition
task, training from scratch (LE, pink ×, �) performs only slightly worse than fine-tuning after self-
supervised pretraining (purple ×, �). However, we also see that increasing the model size during
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self-supervised pretraining (5.XL) boost performance on the long-tail, especially with increasingly
tailed or rare (60-100%) classes. Previously, we saw in Fig. 3 that the same ”larger net, 3.3x labels”
model (5.XL) increased zero-shot performance over the default parameters (*), which demonstrates
that improved self-supervised zero-shot performance translates into better supervised end-task fine-
tuning performance. We also found that increasing the size of non-pretrained (trained from scratch)
models did not improve end-task performance, despite hyper-parameter tuning.

This leaves us with two insights for modeling. First, for small-scale, ‘data-internal’, self-supervised
pretraining a larger pretraining model increases long-tail performance, whereas Hooker et al.
(2020a) found that compressing larger models first ’forgets’ long-tail performance – both experi-
ments provide evidence that model capacity and long-tail performance are tied. This seems to be
the case even for small-scale self-supervised pretraining, i.e. it demonstrates that despite training
on small data, we still need increased self-supervision signals and model size to capture long-tail
information, which could explain why large-scale pretraining and models perform so well rather
than simply assuming them to be overparameterized. Second, this larger pretraining model has an
end-taskAPmicro score of 49%, which is only .8 percent points better than the pretrained model (5)
at 48.2% with default parameters (*), despite showing promising improvements on long-tail classes,
which together with the zero and few-shot insights underlines that optimizing for learning insights
and analysis other than supervised performance summary metrics can lead to a broader understand-
ing of neural learning processes and modeling effects.

The head is learned first (in early epochs), pretraining learns the tail much faster: In Fig. 6 we
compare early epoch training with late (optimal) epoch test scores per class bucket. We see that all
models learn the head classes during the first epochs (- - dashed line). Methods (5, 5.XL) that use
label-embedding (LE) and self-supervised pretraining (PT), start learning the long-tail during the
first epoch, while BCE multi-label baseline (2) does not start learning the long-tail until epoch 10,
and even then at a much lower performance than the pretrained label-embedding methods. Finally,
we see that pretraining a larger model with more self-supervised pretraining signal (5.XL or “larger
net, 3.3x labels” in Fig. 3) increases performance on the long-tail, even during the first epochs.

AP macro test per class bucket: head → tail
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0-20% head 20-40% 40-60% 60-80% 80-100% tail

(2) optimized BCE baseline epoch 10

(2) optimized BCE baseline epoch 82

(5) SSLpre→SL+SSLfin (PT, LE, *) epoch 1

(5) SSLpre→SL+SSLfin (PT, LE, *) epoch 94

(5.XL) SSLpre→SL+SSLfin (XL-PT, LE) epoch 1

(5.XL) SSLpre→SL+SSLfin (XL-PT, LE) epoch 
35

Long-tail: early epochs vs best (by AP micro dev) late epoch

Figure 6: The long-tail is learned during later epochs: APmacro performance over five frequency
balanced 20% head to tail class buckets. All methods (2-5.XL) learn the head classes (0 − 20%)
first – during early epochs. Self-supervised pretraining (5, 5.XL), via pseudo label-embedding NCE
(LE, PT), learn the long-tail (see 60 − 100%) even in the first epoch (- - dashed line) of supervised
learning. The baseline (2) struggles to learn this long-tail at epoch 10 and until its epoch 82 – i.e. its
optimal dev set score epoch.

Self-supervised label-embedding pretraining boosts long-tail performance: We thus conclude,
that self-supervised pretraining helps us learn the long-tail better, and faster – i.e. even after a single
epoch of supervised training. This is a useful property in supervised learning scenarios where data
or computation cycles are limited. We note that: our pretraining and fine-tuning do not require
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learning rate scheduling or normalization layers like BERT or RoBERTa (Devlin et al., 2019;
Wang et al., 2020c).

Miscellaneous result/ an open future evaluation problem: Finally, since average precision (AP )
has no explicit notion of over and under predictions, we plotted over and under predictions per class
and over all classes. In standard classification, i.e. discrete, evaluation we would have over predic-
tions as false positives and under predictions as false negatives. Using continuous measures such
as AP has computational advantages and does not limit evaluation to a single threshold like F1 or
accuracy do. However, has no notion of over and under predictions, which especially regarding
long-tail issues may have a significant impact. However, plotting over and underpredictions per
class (and overall) was only mildly informative. Due to the high label sparsity, we saw close to zero
over predictions on average, but all-class average underpredictions were much harder to reduce (op-
timize). This observation is a reflection of the high label sparsity, i.e. at most 0.3 of labels are active
per instance, combined with a long-tail distribution – i.e. many rare events. Under this combination
meaningful evaluation of prediction behaviour is hard to analyse in a meaningful, concise fashion,
because per class plots become large and hard to fit and interpret in a paper, and all-class averages
do not reveal class dynamics. We include these observations because we found them instructive to
outline the challenges of evaluating long-tail learning and do not include the per class plots, because
they would not be readable. We are however happy to discuss them upon request.

A.3 FEW-SHOT: SCRATCH, PRETRAINED, ADDITIONAL SELF+SUPERVISED SCENARIOS
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Few-shot label efficiency self+supervised train from scratch
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Few-shot label-efficiency during supervised only fine-tuning
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Few-shot label efficiency during joint self+supervised fine-tuning
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Figure 7: Few-shot training from scratch (top 2) vs. after pretraining (bottom 2): and using
only supervision to fit the end-task (left) vs. jointly using self+supervision (right). Results are in
APmicro test for different few-shot training set portions (1, 75%, 50%, 25%, 10%). Insight 1:
self-supervision during end-task fitting makes no learning difference – i.e. when comparing top (or
bottom) left (supervised) vsṙight (self+supervised) sub-figures, they look nearly the same. Insight 2:
Pretraining (bottom figs.) via self-supervision markedly improves few-shot learning performance,
speed and stability, independent of fine-tuning via supervision (left) or self+supervised (right).

Few-shot challenges: Few-shot learning increases the long-tail problem. For 10% few shot learn-
ing, we train on 6800 instances, so many classes will be unseen at training time We will publish both
the parsed data splits and a cleaned code version on Github to encourage experimenting with and
extending to other low-resource ‘dense-to-dense’ self-supervision methods, additional evaluation
metrics and datasets.

Few-shot, with and without self-supervision – as pretraining or for joint self+supervised fine
tuning: Fig. 7 shows in more detail that the pretrained model (bottom) learns better, and that joint
self+supervised end-task training (scratch or fine-tuned) makes no difference.
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A.4 TEXT PREPROCESSING DETAILS

We decompose tags such as ‘p-value’ as ‘p’ and ‘value’ and split latex equations into command
words, as they would otherwise create many long, unique tokens. 10 tag words are not in the
input vocabulary and thus we randomly initialise their embeddings. Though we never used this
information, we parsed the text and title and annotated them with ‘html-like’ title, paragraph and
sentence delimiters. The dataset is ordered and annotated by time. Dev and test set are therefore
future data compared to the training data, which results in a non-stationary problem, though we
never determined to what extend.

A.5 POTENTIAL ETHICAL CONSIDERATIONS

In this section, we outline potential impacts of our work for machine learning practice, as well as
its possible environmental, societal, health and privacy implications. As with any technology there
is the dilemma of dual use (Rappert & Selgelid, 2013). Below, we briefly discuss beneficial and
potential detrimental impacts of this work as we can foresee them Hovy & Spruit (2016); Brundage
et al. (2018).

The main goal of our research is to reduce the hardware and compute requirements of current rep-
resentation pretraining methodology for language representations, especially for challenging low
low-resource, long-tail problems. Due to the reduction in compute requirements, our methods may
help reduce carbon impact and the exhaustion of precious resources like rare metal compared to
large-scale pretraining. Consuming less energy and mining less resources for hardware production
has major impacts on the environment (Tsing et al., 2017). Thus, as a research community we should
take action not to let AI methods become a race for precious metal hardware due to its devastating
effects on our shared environment. Further, small-scale pretraining could make access to modern
NLP methods easier for machine learning researchers and practitioners, who have less hardware re-
source privileges than are required for state-of-the-art solutions, or whose language of research does
not allow for easy access to Web-scale text collections. This may become even more important as
socio-economic factors are likely to play a fundamental role in the future democratisation and fair
access to AI technology (Riedl, 2020) for economics, health and other key decision making areas.
This is especially important as large-scale hardware resources increasingly lead to research and eco-
nomic inequalities as described by Hooker (2020); Riedl (2020). Another important advantage of
researching more data-efficient methods is that using as little data as needed is a requirement of the
GDPR regulations for ‘privacy by design’.3 This principle is in direct conflict with the current self-
supervised pretraining approaches, which parties who have both access to massive data collections
and compute resources predominantly study.

Furthermore, there may be potential implications in better learning of underrepresented and rare
events from small or very limited data collections (Mitchell et al., 2020). When we increase self-
supervision during pretraining, i.e. when pretraining on more diverse learning signals than direct
supervision can provide, we see a substantial increase increase in few-shot (low-data) performance,
which, upon inspection, becomes clear is caused by a better retention of rare event performance than
direct supervision could provide – see Fig. 2. However, we did not yet study whether this pretraining
reduces or increases unwanted data biases (Waseem et al., 2020), though typical analyses of gender
and racial biases may be hard on the current dataset of machine learning questions. Note that we did
not chose this data set to solve a specific application task, but only as a proxy to study the effects of
small-scale pretraining on challenging data.

Better small-scale pretraining could benefit areas like medicine where large pretraining is not as
effective or fails for a lack of external data resources (Şerbetci et al., 2020). Due to the usage du-
ality of research in general, research into more resource-efficient learning could also cause privacy
concerns, enabling easier surveillance, and improved advertisement recommendation can have un-
foreseen political, but also economical and even environmental impacts, as the goal of advertisement
is increased resource consumption.

Thus, a general approach to furthering beneficial usage over detrimental applications of dual tech-
nology should regard applying ethics principles at every step of reuse of the discussed methods to

3https://en.wikipedia.org/wiki/Privacy_by_design
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support its transparent use and public verification and auditing, to protect vulnerable groups from
harmful applications.
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