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Abstract

The principle of continual relation extrac-001
tion (CRE) involves adapting to emerging novel002
relations while preserving old knowledge. Ex-003
isting CRE approaches excel in preserving old004
knowledge but falter when confronted with con-005
taminated data streams, likely due to an artifi-006
cial assumption of no annotation errors. Rec-007
ognizing the prevalence of noisy labels in real-008
world datasets, we introduce a more practical009
learning scenario, termed as noisy-CRE. In re-010
sponse to this challenge, we propose a noise-011
resistant contrastive framework called Noise-012
guided Attack in Contrastive Learning (NaCL),013
aimed at learning incremental corrupted rela-014
tions. Diverging from conventional approaches015
like sample discarding or relabeling in the pres-016
ence of noisy labels, NaCL takes a transfor-017
mative route by modifying the feature space018
through targeted attack. This attack aims to019
align the feature space with the provided, al-020
beit inaccurate, labels, thereby enhancing con-021
trastive representations. Extensive empirical022
validations demonstrate the consistent perfor-023
mance improvement of NaCL with increasing024
noise rates, surpassing state-of-the-art methods.025

1 Introduction026

Alongside the predictive wins of relation extrac-027

tion (RE) on various benchmarks (Trisedya et al.,028

2019; Ye et al., 2022), the need for the ability to029

acquire sequential experience in dynamic environ-030

ments stands out the significance. Catering to the031

real-world learning requirement, a new RE formu-032

lation, namely continual relation extraction (CRE),033

has been proposed (Wang et al., 2019).034

Under this topic, catastrophic forgetting (Mc-035

Closkey and Cohen, 1989) where previous knowl-036

edge is overwritten as new concepts are learned,037

remains a key challenge. To prevent forgetting, a038

variety of sophisticated methods are developed by039

memory replay (Rebuffi et al., 2017; Sun et al.,040

2020), weight regularization (Kirkpatrick et al.,041

Figure 1: Left Table: Noisy labels exist widely in well-
annotated benchmarks. Right Plot: Performance of
the state-of-the-art CRE methods drop significantly on
TACRED with noise ratio ranging from 0% to 50%.

2017) or architecture expansion (Hung et al., 2019). 042

Wang et al. (2019) explicitly store past experiences 043

into a limited memory and replay them to comple- 044

ment new tasks learning. In comparison to exem- 045

plars storage, Dong et al. (2021) impose constraints 046

on the update of the important network weights for 047

old knowledge consolidation. As for architecture- 048

based method, it dynamically changes model archi- 049

tectures to acquire new information while remem- 050

bering previous knowledge (Ehret et al., 2021). 051

Despite the effectiveness, all of these methods 052

implicitly assume the correctness of the labels for 053

the streaming data. In practice, such an assumption 054

is rather artificial even impossible to satisfy since 055

label shifts are inevitable in real-world scenarios. 056

Worse still, official statistics in the table of Figure 1 057

reveal that the widely used benchmarks with elabo- 058

rate human annotations, likewise, contain a certain 059

proportion of noisy labels. Due to the ignorance 060

of noisy labels over data streams, it is clear to see 061

in Figure 1 that state-of-the-art CRE models fail 062

to defend against label inconsistency, resulting in 063

significant performance drops. 064

To break the impractical structure of current 065

CRE setup and to enhance the noise-resistant ca- 066

pacity of models, in this paper, we present a more 067

generalized learning setting coined as noisy-CRE. 068

In this challenging scenario, there is a potential for 069

mislabeled samples to contaminate the sequential 070

stream in every incremental task. We assume that 071
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models trained under the noisy-CRE setting can072

reflect their ability to adapt to new relations in the073

real world.074

In the face of the great challenge, in this pa-075

per, we propose a robust contrastive framework as076

Noise-guided attack Contrative Learning (NaCL)077

for noisy-CRE. Generally, handling noisy labels078

can be relaxed to a subsequent process of clean079

sample selection and noisy sample correction. In080

NaCL, we introduce an auxiliary model to play the081

two roles. First, at each new task, the auxiliary082

model will be re-initialized to train for new rela-083

tions learning. Intriguingly, we term it as reboot,084

which can make the model escape the interference085

of prior knowledge so that its logit outputs can be a086

measure of clean sample selection for current task.087

Second, this model will translate a novel sight into088

feature space for correction by performing noise-089

guided attack. This attack can actively drive the090

feature distribution of noisy negatives more aligned091

with their given labels.092

To demonstrate the effectiveness of NaCL, we093

design two benchmarks based on FewRel and TA-094

CRED. Empirical results and in-depth analyses095

show that our NaCL can achieve consistent im-096

provements when noise rates vary from light to097

heavy, and it outperforms all state-of-art baselines098

far ahead. In summary, the contributions of this099

work are three-fold:100

•We define a practical noisy-CRE setting and101

construct well-designed benchmarks. To the best102

of our knowledge, this is the first work to improve103

the robustness of CRE models against noisy labels.104

• We propose NaCL, a noise-resistant con-105

trastive framework that can jointly prevent catas-106

trophic forgetting and learn with noisy labels.107

•We provide empirical results and extensive as-108

sessments to verify the effectiveness of NaCL, out-109

performing other state-of-the-art baselines adapted110

from CRE methods by a large margin.111

2 Noisy-CRE Setting Formulation112

Continual relation extraction is defined as train-113

ing models on non-stationary data from sequen-114

tial tasks. In the setup of noisy-CRE, we first de-115

fine a sequence of tasks T = (T 1, · · · , T n). For116

the k-th task T k, its training dataset is denoted117

as Dk
train = {(xi, yi)}Nk

i=1 containing tuples of the118

input sample xi ∈ X and corresponding relation119

label yi ∈ Y , where Y has a probability of rate to120

be corrupted. Our goal is to train a single model121

Figure 2: The generalized setting of noisy-CRE with
two types of noisy labels existing in the contaminated
data stream.

fθ : X → Y parameterized by θ, such that it pre- 122

dicts the label y = fθ(x) ∈ Y given an unseen test 123

sample x from arbitrary learned tasks. 124

Protocols for Label Corruption. In an ideal 125

CRE mode, each task has independent relation 126

space Y . However, for noisy-CRE, due to the in- 127

evitable label corruption, this assumption does not 128

hold in the training set. As shown in Figure 2, the 129

relation space Yk of the k-th task can be contam- 130

inated arbitrarily by samples from label space Y i 131

with i ∈ {1, · · · , k−1, k+1, · · · , n}, thus leading 132

to two kinds of noisy labels. When i ≤ k, we term 133

these noisy labels as closed-set ones, since their 134

gold relations are embedded in the model knowl- 135

edge and can be recovered. In contrast, when i > k, 136

the gold relations of the noisy ones are unreachable 137

and formed as open-set noise. 138

3 NaCL: Towards Noise-resistant CRE 139

In this section, we present NaCL, our noise- 140

resistant contrastive learning framework designed 141

to simultaneously handle closed-set and open-set 142

noisy labels in the noisy-CRE scenario. 143

3.1 Overall Framework 144

Building upon noisy-CRE setting, the learning pro- 145

cess of each task contains two components: new 146

relations learning with noisy labels and memory re- 147

play for old knowledge consolidation, as presented 148

in the overall framework depicted in Figure 5. 149

New Relations Learning. When learning a new 150

task T k, the presence of noisy labels can lead to the 151

introduction of false contrastive pairs in vanilla con- 152

trastive learning framework. To mitigate this issue, 153

NaCL employs two procedures. First, a rebooted 154

selection process is executed to identify clean posi- 155

tive samples, as described in Section 3.2. Second, a 156

noise-guided attack is performed on noisy samples 157

to generate hard negatives, which is discussed in 158
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Section 3.3.159

Old Knowledge Replay. Once new relations are160

well-learned at the completion of each task, clean161

and representative samples stored in the memory162

buffer will be replayed for old relations prevention.163

3.2 Rebooted Selection for Clean Positives164

To handle the noisy labels, a broadly applied crite-165

rion is to select samples with small losses and treat166

them as clean data. It is inspired by empirical ob-167

servations that deep learning models tend to learn168

simple patterns first before overfitting on the noisy169

labels (Arpit et al., 2017; Zhang et al., 2017a).170

As shown in Figure 3, we can observe the model171

quickly converges to a small loss for the first task.172

However, as the task progresses, an obvious loss173

threshold between clean and noisy samples gradu-174

ally disappears. We recognize this failure of small-175

loss-based selection is attributed to the old knowl-176

edge of prior tasks embedded in model parameters,177

which prevents the model from learning incremen-178

tal tasks from scratch.179

Figure 3: Training loss at
different tasks on FewRel
with 30% noise ratio.

Figure 4: Confidence dis-
tribution of clean and noisy
samples at Task 10.

For the sake of overcoming the problem origi-180

nating from knowledge intervention, we propose to181

introduce an auxiliary model fA(·, θ∗) and reboot182

it to help select clean samples at each incremental183

task. With the decomposition into fA = FA ◦ EA,184

EA being the feature extractor and FA the classifier,185

we train fA with the following classification loss:186

J(x,y) = − log p(y|x) (1)187

In light of the fact that fA(·, θ∗) is re-initialized188

at each new task, it can avoid being intervened by189

previous knowledge. With a classifier introduced190

in the auxiliary model fA, we can use the logit191

probability p(x) as a measure of confidence to dif-192

ferentiate between clean and noisy samples. As193

shown in Figure 4, for the tenth task trained on194

FewRel with a 30% noise ratio, a high confidence195

threshold γ successfully identifies almost all clean196

Figure 5: Main framework of NaCL and the training
pipeline for T k learning.

samples. Consequently, we can predict pseudo 197

clean and noisy set for T k as follows: 198

Dk
train =

{
D̃clean(x), p(x) ≥ γ,

D̃noisy(x), p(x) < γ,
(2) 199

3.3 Noise-guided Attack for Hard Negatives 200

Since errors are costly but abstention is manage- 201

able, selecting clean samples first and then discard- 202

ing the noisy ones is a natural approach in the con- 203

text of learning with noisy labels (Jiang et al., 2018; 204

Xia et al., 2022). Nonetheless, over the contami- 205

nated data stream, training samples for each task 206

are limited, and thus direct discarding can lead to a 207

loss of abundant context information. Furthermore, 208

the reduction of negative samples will impair con- 209

trastive representation learning (Chen et al., 2020). 210

Account of the two reasons, making use of noisy 211

samples becomes essential. 212

Noise Correction in Feature Sapce. One typ- 213

ical way to utilize the noisy samples is to relabel 214

them for correction (Li et al., 2020a; Zhou et al., 215

2021). Faced with the challenge of the co-existence 216

of open-set and closed-set noise, it is impossible 217

for NaCL to apply off-the-shelf techniques to re- 218

label as some noisy labels are unreachable up to 219

current task learning. This inaccessible to label 220

space drives NaCL to translate a novel sight into 221

feature space for noise correction, performed by a 222

variant of targeted attack as noise-guided attack. 223

Noise-guided attack intends to modify the fea- 224

ture to let them match the noisy labels, compared 225

with relabeling that modifies labels to match the 226

given sample features. Within the framework of 227

NaCL, we re-utilize the auxiliary model fA to im- 228

plement the attack. As shown in Figure 5, at each 229

new task T k, after training for clean sample selec- 230

tion, fA will act as the proxy to generate adversarial 231

perturbation on the input embeddings of noisy sam- 232

ples. Assuming the noisy labels y as the attack 233
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targets ytgt, the adversarial loss of fA is essentially234

to maximize the probability of classification into235

ytgt as follows:236

x′ ← Πϵ

(
x− ϵsign(∇x′(J(x′,ytgt)))

)
(3)237

To further help in generating targeted adversarial238

examples to match the noisy labels actively, we239

encourage every adversarial sample to move far240

away from its starting point in the feature space.241

To achieve this goal, we add a regularization term242

to the training objective of Equation 3:243

x′ ← Πϵ

(
x− ϵsign(∇x′(J(x′,ytgt)

+ λKL(fA(x; θ
∗)||fA(x′; θ∗))))

) (4)244

where KL is the Kullback–Leibler divergence,245

we name this KL regularization as the feature-246

disruption term, and λ is the fixed hyper-parameter247

to weigh the contribution of this feature disruption.248

Attack as Hard Negative Mining. From the249

perspective of contrastive representation learning,250

under the noise-guided attack, noisy samples serv-251

ing as the negatives all move towards the same252

direction of the feature space where their noisy la-253

bel lies. To this extent, it can be viewed as hard254

negative mining which generates more informative255

negative samples. What’s more, given the fixed at-256

tack steps s, some noisy samples originally closer257

to the positive region can be successfully pushed258

into this region for positives diversified. Specifi-259

cally, denoting the relation-wise centroid as cr by260

calculating the mean of the hidden representations261

for each relation from D̃clean, we can obtain dmax262

that measures the maximum euclidean distance of263

the clean sample to its centroid cr. If the distance264

between the attacked sample x′ and its correspond-265

ing relation centroid cr is smaller than dmax, we266

can recognize this noisy sample is attacked success-267

fully. Consequently, the attack success rate (ASR)268

can be calculated as follows:269

ASR =

∑
1
[
∥EM (x′)− cr∥2 <= dmax

]
|D̃noisy|

(5)270

New Contrastive Pool. We add the successfully271

attack samples from D̃noisy into the positive set272

as Datt-pos. To this end, we can obtain following273

contrastive samples pool for current task learning:274

A = D̃clean ∪ Datt-pos︸ ︷︷ ︸
Positive Set P (x)

∪ Dneg (6)275

Final Learning Objective. Hence, we come to 276

the training objective of NaCL for new relations 277

learning: 278

LNaCL = − 1

|P (x)|
∑

j∈P (x)

log
exp

(
zi · zj/τ

)∑
k∈A

exp(zi · zk/τ)

(7) 279

where zℓ = Proj(EM (x)), τ ∈ R+ is a scalar 280

temperature parameter. 281

3.4 Memory Replay and Inference 282

After the stage of k-th task training for new rela- 283

tions, NaCL will select representative samples from 284

Dk
train to store in the memory buffer B. The buffer 285

size is the number of memory samples needed for 286

each relation, i.e., 20 in our experiments. Like 287

previous rehearsal-based methods for CRE (Han 288

et al., 2020; Cui et al., 2021), we apply K-Means 289

in the representation space produced by EM for 290

exemplar selection, which is only carried out in 291

D̃clean. As for each cluster, the sample closest to 292

the cluster center will be selected to store in the 293

buffer B. When the memory buffer is updated with 294

all the seen relations stored, we train fM with these 295

exemplars of following supervised contrastive loss: 296

LSCL = − 1

|P ′(x)|
∑

j∈P ′(x)

log
exp

(
zi · zj/τ

)∑
k∈B

exp(zi · zk/τ)

(8) 297

Relation inference. Given a test sample xi, near- 298

est class mean (NCM) is utilized to obtain the rela- 299

tion predicted by fM . Concretely, after the training 300

pipeline of T k, we can obtain the prototype for 301

each seen relation as pr by calculating the mean 302

of the features from its corresponding exemplars 303

in the buffer B. To be noted, the calculation of 304

the features is in the space after the projector of 305

the main model fM . Then, we compare the pro- 306

jected representation of xi with all the prototypes 307

of seen relations and assign the relation label with 308

the closest prototype: 309

ỹ = argmin
r=1,...,C

∥Proj(EM (x))− pr∥ (9) 310

4 Experiments 311

4.1 Benchmark Construction 312

Datasets. We carry out our experiments on 313

widely-used FewRel (Han et al., 2018b) and TA- 314

CRED (Zhang et al., 2017b). FewRel is an RE 315

dataset that contains 80 relations, each with 700 316
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instances, and TACRED contains 42 relations and317

106,264 samples in total. To be noted, previous318

works for CRE employ two different task partition-319

ing methods to construct the continual benchmarks,320

one is the imbalanced division based on clustering321

of relation embeddings (Wang et al., 2019; Han322

et al., 2020; Wu et al., 2021) and the other is a323

random partition with balanced relations for each324

task (Cui et al., 2021; Zhao et al., 2022). This di-325

version in task construction makes the baselines326

incomparable, and we unify them into the same327

second policy that we split FewRel and TACRED328

into 10 clusters of relations, leading to 10 tasks and329

each relation just belongs to only one task.330

Noise generation. We design four levels of ran-331

dom noisy labels to accommodate varying noise332

rates in real-world data, including clean data, 10%333

noisy data, 30% noisy data, and 50% noisy data334

for Dk
train at each task T k. To generate synthetic335

noises that contain both close-set and open-set336

noisy labels, we first randomly flip the relation337

labels across the whole dataset according to the338

noise ratio. Then, we partition the dataset based339

on the flipped relations and cluster them into ten340

sequential tasks.341

4.2 Baselines342

We adapt the following state-of-the-art CRE base-343

lines to the proposed noisy-CRE setting and make344

a comparison with our NaCL model.345

EA-EMR (Wang et al., 2019) employs memory346

replay and embedding alignment to tackle the prob-347

lem of embedding space distortion when training348

on new tasks.349

EMAR (Han et al., 2020) applies episodic mem-350

ory activation and reconsolidation mechanism to351

maintain learned knowledge.352

CML (Wu et al., 2021) adopts meta learning and353

curriculum learning to cope with the challenges354

of catastrophic forgetting and order-sensitivity in355

continual relation extraction.356

RP-CER (Cui et al., 2021) refines sample em-357

beddings with an attention-based memory net-358

work fed with relation prototypes to alleviate catas-359

trophic forgetting.360

CRL (Zhao et al., 2022) proposes a consistent361

representation learning that maintains the stability362

of the relation by adopting contrastive learning and363

knowledge distillation when replaying memory.364

ACA (Wang et al., 2022) points out catastrophic365

forgetting problem of previous CRE models mainly366

lies in shortcuts learning and applies a simple yet ef- 367

fective adversarial class augmentation mechanism 368

to learn more robust representations. 369

Joint-training corresponds to training a model 370

from scratch during each incremental task with the 371

total dataset containing all data about new and past 372

classes. We treat the performance of joint-training 373

model on clean dataset as upper bound. 374

Finetuning in the other hand represents the 375

lower bound of performance, as it is a simple train- 376

ing setup that fine-tunes the model at each incre- 377

mental task with no replay, regularization or model 378

expansion. 379

4.3 Training Details and Evaluation Metrics 380

Implementation Details. The main model fM is 381

composed of a feature extractor EM implemented 382

by BERT-base (Devlin et al., 2019) and a projector 383

of 2-layer MLP. For the auxiliary model fA, its 384

feature extractor is implemented by another BERT- 385

base, and the output dimension of the classifier FA 386

is the relation numbers of each incremental task, 387

i.e., 8-dim for FewRel and 4-dim for TACRED. At 388

each session k, we will re-initialized fA(; θ
∗) and 389

train it for 3 epochs to help select the clean sam- 390

ples. Following the baseline methods (Cui et al., 391

2021; Zhao et al., 2022), we adopt Adam as the 392

optimizer with the learning rate of 1e-5 on FewRel 393

and 2e-5 on TACRED for both main model and 394

auxiliary model. Considering that baselines all 395

leverage memory replay to help attenuate catas- 396

trophic learning, we set a fixed memory size of 20 397

for relation-wise storage when re-implementing all 398

methods for the sake of a fair comparison. 399

Evaluation Metrics. As the main performance 400

metric, we adopt last test accuracy, where after all 401

tasks are learned, testing on the test sets of all tasks. 402

We report the average accuracy over 5 random runs. 403

Additionally, we introduce a normalized forget- 404

ting metric to quantify the severity of catastrophic 405

learning. As a self-relative metric on the perfor- 406

mance drop of the first task, the forgetting measure 407

from previous works (Liu et al., 2020) applied to 408

a noisy setting could be misleading since even if 409

a model performs poorly, small forgetting metric 410

values will be observed due to its little information 411

to forget from the beginning. Therefore, we nor- 412

malize this forgetting on the accuracy of the first 413

task. 414

Forget =
|An

T =1 −A1
T =1|

A1
T =1

(10) 415
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Models
FewRel TACRED

Acc (%) ↑ Forget (%) ↓ Acc (%) ↑ Forget (%) ↓

Joint-training 88.1 73.7 56.4 – – – 87.3 70.2 50.4 – – –
Finetuning 10.0 9.6 9.3 100.0 100.0 100.0 12.6 12.3 11.7 100.0 100.0 100.0
EA-EMR (Wang et al., 2019) 22.3 13.5 8.9 84.3 93.9 96.1 23.6 17.1 12.3 89.5 95.7 95.9
EMAR (Han et al., 2020) 37.2 29.8 21.2 64.7 72.2 78.2 19.7 16.4 10.3 78.8 76.2 88.5
CML (Wu et al., 2021) 37.1 34.0 25.1 68.2 85.3 89.4 22.4 20.7 18.1 70.1 79.2 81.3
EMAR+BERT 83.0 77.6 67.9 22.1 33.0 42.1 71.2 62.2 52.8 27.7 37.5 47.7
RP-CRE (Cui et al., 2021) 77.1 65.0 54.2 30.2 42.7 56.7 70.0 56.7 44.9 37.4 52.5 64.7
CRL (Zhao et al., 2022) 77.7 73.0 66.8 13.7 17.3 19.9 75.9 68.9 57.0 21.1 27.4 41.9
ACA (Wang et al., 2022) † 84.1 78.1 68.3 18.9 27.3 38.9 75.7 66.4 52.9 25.8 38.2 54.6

NaCL 84.1 83.7 80.5 11.4 16.0 16.8 80.5 77.5 71.6 13.1 16.8 24.6

Table 1: Last test accuracy and forgetting on FewRel and TACRED with noise ratio of { 10%, 30%, 50%}.
We re-implement all the baselines with equal task division and evaluation for a fair comparison. † indicates
EMAR+ACA since ACA is implemented based on the backbone of EMAR and RP-CRE, and it achieves better
accuracy.

(a) FewRel 30% noise (b) FewRel 50% noise (c) Tacred 30% noise (d) Tacred 50% noise

Figure 6: Accuracy (%) on all seen relations at the stage of learning current tasks with varying noise rates on
FewRel and TACRED.

where Ak
T =1 denotes the accuracy on the first task416

at the session k. For accuracy, the larger is better,417

while for forget, the smaller will be better.418

4.4 Main Results419

We compare the proposed NaCL with nine base-420

lines on FewRel and TACRED with varying label421

noise and summarize the results in Table 1.422

Overall Performance. Table 1 clearly demon-423

strates that NaCL achieves consistent performance424

improvements with noise rate from light to heavy,425

and outperforms all the baselines by a large mar-426

gin. Furthermore, we can observe that: (i) Apart427

from our NaCL, all the baselines suffer from the428

vulnerability of label flips in the continual stream,429

indicating current CRE models are not resistant to430

noisy labels. It is apparent to see as the noise rate431

increases, their last test accuracy declines sharply432

and the forget rate remains high. (ii) Comparison433

among the baselines validates that BERT-like pre-434

trained language models are better continual learn- 435

ers since EA-EMR, EMAR, and CML that lever- 436

age LSTM as main feature extractor attain worse 437

performances. (iii) There is a close connection be- 438

tween model learning accuracy and the ability to 439

defend against catastrophic forgetting. As shown in 440

Figure 6, test accuracy over ten incremental tasks 441

depicts a vivid trend that if a model achieves high 442

accuracy at each incremental task, its final forget 443

rate tends to retain at a low level. 444

Purity of Memory Buffer. As rehearsal-based 445

methods served for old knowledge consolidation, 446

the purity of the memory buffer is vital. There- 447

fore, we compare the ratio of clean samples in the 448

memory between NaCL and the high-performing 449

baselines. As shown in Table 2, we observe that 450

EMAR-BERT, RP-CRE and CRL all experience 451

a significant decrease in the purity of the memory 452

buffer as the noise rate increases. In contrast, NaCL 453
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Figure 7: t-SNE visualization of relation representation
learned from Task 1 and tested by CRL and NaCL at the
last task, with a noise rate of 50% on FewRel. Colors
stand for different relations.

is able to maintain comparative purification even454

with the noise rate increasing.455

FewRel TACRED

noise rate(%) 10 30 50 10 30 50

EMAR-BERT 80.2 58.9 40.7 76.1 60.0 46.1
RP-CRE 88.1 76.4 63.8 79.1 63.1 50.9

CRL 68.3 47.2 36.3 71.4 53.6 41.2
NaCL 98.6 96.4 80.3 94.8 82.4 71.5

Table 2: Purity of the memory buffer.

Preserve of Cluster Relative Positions. We fur-456

ther demonstreate the t-SNE visualization of the457

representations learned at the first task and tested458

at the subsequent tasks in Figure 7. As we can ob-459

serve, compared to CRL, NaCL can achieve more460

compact clustering of the representations in the461

feature space and better preserve the relative posi-462

tions of each relation cluster. It is worth noting that463

when approaching the last task, relations learned464

with CRL become indistinguishable, while NaCL465

maintains their structures, revealing that NaCL has466

a better capacity to prevent catastrophic forgetting.467

5 Analysis and Discussion468

5.1 Effectiveness of Adversarial Attack469

From the results in Table 3, we can conclude that470

compared with discarding the expected noisy sam-471

ples directly, employing targeted adversarial attack472

can de facto make better use of the noisy ones, thus473

leading to performance improvements. To better474

investigate the influence of attack, we calculate at-475

tack success rate by Equation 5 on FewRel and476

(a) FewRel (b) TACRED

Figure 8: Attack success rate with noise ratio of
{10%, 30%, 50%}.

(a) 30% Noise Ratio (b) 50% Noise Ratio

Figure 9: Accuracy (%) on all seen relations at the
stage of learning current tasks with varying noise rates
on FewRel ID set and OOD set (TACRED).

TACRED with different noise rates. As shown 477

in Figure 8, by imposing a small perturbation on 478

the input embedding, noise-guided attack can suc- 479

cessfully force a great number of samples to the 480

direction of their noisy labels in the feature space. 481

FewRel TACRED

Acc (%) ↑ Acc (%) ↑
Noise Attack 10 30 50 10 30 50

Discarding 81.1 80.7 76.9 77.8 72.4 68.5
✓ 83.0 82.1 78.0 78.6 75.5 70.5
✓ ✓ 84.1 83.7 80.5 80.5 77.5 71.6

Table 3: Ablation studies on the noise-guided attack,
compared with noisy samples discarding.

5.2 Globally Open-set Label Noise 482

In real-world applications, we expect a robust con- 483

tinual learner to be able to adapt well to noisy 484

data streams, even with out-of-distribution (OOD) 485

samples. Empirical results have demonstrated that 486

NaCL can successfully handle both closed-set label 487

flips and open-set outliers. However, the meaning 488

of open-set we introduced before is only from a lo- 489

cal perspective relative to the task progression. To 490

explore the potential for noisy label learning from 491

a global OOD set, as for FewRel, we further con- 492

struct the label noise completely from TACRED. 493
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As the experimental results in Figure 9 show, NaCL494

achieves consistent performance when transferring495

from FewRel-ID to FewRel-OOD with varying496

noise rates, which demonstrates the superiority of497

NaCL for the strong noise resistance.498

6 Related Work499

6.1 Continual Learning500

Prevalent methods for continual learning to tackle501

catastrophic forgetting problem can be catego-502

rized into three macro-types: rehearsal-based,503

regularization-based, and architecture-based ones.504

Specifically, rehearsal-based methods construct a505

data buffer to save samples from older tasks to506

train with data at the current task (Rebuffi et al.,507

2017). When the buffer storage is limited, exem-508

plar selection techniques (Aljundi et al., 2019) or509

generative modeling (Sun et al., 2020) are devel-510

oped to help approximate the old data distribution.511

Viewed as exemplar-free methods without storing512

old task data, regularization-based ones consoli-513

date old knowledge by limiting the learning rate514

on important parameters for previous tasks (Kirk-515

patrick et al., 2017). Differently, architecture-516

based methods aim at having separate compo-517

nents for each task, and these task-specific com-518

ponents can be identified by expanding the net-519

work (Loo et al., 2021) or attending to task-specific520

sub-networks (Gurbuz and Dovrolis, 2022).521

Among them, rehearsal-based methods are sub-522

stantiated to be the most effective paradigm in con-523

solidating old knowledge (Wang et al., 2019; Sun524

et al., 2020). In this work, we consider combin-525

ing NaCL with memory replay to help handle the526

severe forgetting problem.527

6.2 Learning with Noisy Labels528

Deep neural networks are validated to easily overfit529

noisy labels resulting in poor generalization perfor-530

mance (Arpit et al., 2017). To improve model gen-531

eralization with noisy labels, numerous approaches532

have been developed from various perspectives,533

e.g., loss correction (Hendrycks et al., 2018), robust534

loss functions with provable noise tolerance (Ma535

et al., 2020), sample-reweighting (Ren et al., 2018),536

curriculum learning (Zhou et al., 2021) and model537

co-teaching (Han et al., 2018a; Yu et al., 2019). The538

principle idea shared among these methods is to de-539

tect clean labels while discarding, down-weighting540

or relabeling the wrong labels.541

Up to now, none of the works has focused on542

continual learning with noisy labels. Although 543

strategies above seem to be well-handled for noisy 544

labels, they are confined to closed-set label flips 545

and hence cannot be applied to our noisy-CRE set- 546

ting. To be more generalized, our NaCL undertakes 547

noise correction in the feature space to resolve both 548

closed-set and open-set label noise. 549

6.3 Contrastive Representation Learning 550

As a dominant paradigm for representation learn- 551

ing, unsupervised contrastive learning (UCL) has 552

achieved comparable performance. The core idea 553

behind UCL is to pull the anchor and the positive 554

sample close to each other while pushing apart 555

the anchor and the negative sample in embedding 556

space (He et al., 2020). Usually, the positives are 557

produced from data augmentation while the neg- 558

atives are random samples from the batch or the 559

whole dataset. Concerned with the negative sam- 560

pling distribution, recent works (Robinson et al., 561

2021; Ge et al., 2021) further validate that using 562

hard negative samples, i.e., the negative samples 563

that are difficult to distinguish from the anchor can 564

improve performance. Concurrently, supervised 565

contrastive learning (SCL) has developed to ex- 566

tend the unsupervised batch contrastive approach 567

to a fully-supervised setting that can leverage la- 568

bel information to select the positive and negative 569

samples (Khosla et al., 2020; Gunel et al., 2021). 570

Motivated by the hard-negative sampling strate- 571

gies in UCL and the value of label information in 572

SCL, our proposed NaCL utilizes both label in- 573

formation to retain the clean positives and attack 574

the noisy samples to move closer to the decision 575

boundary as a kind of hard negative mining. 576

7 Conclusion 577

Building on the recent wave of learning without for- 578

getting, in this paper, we demonstrate current con- 579

tinual learners are vulnerable under natural label 580

shifts. Hence, we propose a novel noise-resistant 581

contrastive learning framework NaCL to correct the 582

false contrastive pairs brought by the co-existence 583

of closed-set and open-set label noise. Compre- 584

hensive experiments and analyses validate that our 585

method can achieve the triple wins that boost old 586

knowledge, new task learning and noisy label ro- 587

bustness in one integrated algorithm. 588
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Limitations589

The problem of natural shifts in label space590

over streaming data exists in various domains591

and datasets. To validate the effectiveness of592

our method for a better comparison, we conduct593

comprehensive experiments on relation extraction.594

Therefore, it is intriguing to generalize our noise-595

resistant contrastive learning framework to other596

applications for more robust continual learners. On597

the other hand, our method directly lineages the598

step of memory replay from previous work for its599

certified performance. However, from the perspec-600

tive of efficiency and online learning, to maintain601

the plasticity-stability trade-off without replaying602

is worth further refinement.603

Ethics Statement604

There is an ongoing trend of developing continual605

learners to adapt the streaming data without forget-606

ting previously learned knowledge. We hope our607

work can encourage the community to consider a608

more generalized setting of continual learning for609

better robustness. Moreover, our noise-resistant610

contrastive learning framework provides insight611

into dealing with false contrastive pairs with better612

views of positives and hard negatives mining.613
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A Supplementary Explanation862

A.1 Real-world Noise863

Dataset Noise Level

Clothing1M 38% (Wei et al., 2021)
Food-101N 20% (Wei et al., 2021)

NYT-10 35% (Li et al., 2020b)
TACRED 6.62% (Zhou and Chen, 2021)
CoNLL03 5.38% (Zhou and Chen, 2021)

Docred 41.4% (Yao et al., 2019)

Table 4: References for the noise level in Figure 1.

Notation Meaning

fM Main Model
EM Main Feature Extractor
Proj Projector in Main Model
fA Auxiliary Model
EA Auxiliary Feature Extractor
FA Classifier in Auxiliary Model

Table 5: Model Components Notation.

B Training Algorithm 864

We present the whole training procedure for T k in 865

Algorithm 1.

Algorithm 1 Training procedure for T k

Receives: Dk
train: contaminated training set of the

k-th task, fM (·, θ): main model, fA(·, θ∗):
auxiliary model, B: memory buffer with ex-
emplars stored

Require: learning rate η for fM and fA, batch
size ms, training epochs E1, E2, perturbation
radius ϵ, noise-guided attack step s

1: for epoch= 1, · · · , E2 do ▷ Selection
2: Sample a batch {(xi, yi)}ms

i=1 from Dk
train

3: Training fA by Equation 1
4: end for
5: Obtain D̃clean and D̃noisy by Equation 2
6: for (xi, yi) ∈ D̃noisy do ▷ Attack
7: x′i ← xi + δ, where δ ∼ Uniform(−ϵ, ϵ)
8: for fixed step s = 1, · · · , S do
9: Perform noise-guided attack by Equa-

tion 4
10: end for
11: Group (xi, yi) with success attack to
Datt-pos and Dneg otherwise

12: end for
13: for epoch= 1, · · · , E1 do ▷ T k Training
14: Sample a batch {(xi, yi)}ms

i=1 from D̃clean

15: Contrastive training of fM by Equation 7
16: end for
17: if T k is not the first task then ▷ Replay
18: Update memory buffer B with exemplars

selected from D̃clean

19: for epoch= 1, · · · , E1 do
20: Sample a batch {(xi, yi)}ms

i=1 from B
21: Training fM by Equation 8
22: end for
23: end if

866

C Hyper-parameter Setup 867

All the hyper-parameters in our experiments for 868

reproduction are shown in Table 6. 869
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Parameter Meaning FewRel TACRED

γ selection threshold (Equation 2)
0.8,0.6,0.5 0.9,0.75,0.6

for {10%, 30%, 50%} for {10%, 30%, 50%}
λ trade-off for attack (Equation 4) 0.1 0.1

ϵ perturbation size (Equation 4) 0.1 0.1

s attack steps (Equation 4) 5 5

τ temperature (Equation 7) 0.1,0.05,0.2 for {10%, 30%, 50%}
n total task numbers 10 10

C classes of each incremental task 8 4

η learning rate for fM and fA 1e-5 2e-5

ms training batch size 16 16

dim projection dimension 64 64

E1 training epoch of fM for new relations 1 1

E2 training epoch of fA for selection 3 3

Table 6: List of hyper-parameters for our approach to reproduce the results in Table 1.
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