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ABSTRACT

The vulnerability of Deep Neural Networks (DNNs) (i.e., susceptibility to ad-
versarial attacks) severely limits the application of DNNs. Most of the existing
methods improve the robustness of the model from weights optimization, such as
adversarial training and regularization. However, the architecture of DNNs is also
a key factor to robustness, which is often neglected or underestimated. We pro-
pose a Robust Network Architecture Search (RNAS) to address this problem. In
our method, we define a network vulnerability metric based on the features’ devia-
tion between clean examples and adversarial examples. Through constraining this
vulnerability, we search the robust architecture and solve it by iterative optimiza-
tion. The extensive experiments conducted on CIFAR-10/100 and SVHN show
that our model achieves the best performance under various adversarial attacks
compared with extensive baselines and state-of-the-art methods.

1 INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have shown excellent performance in various appli-
cations, such as image classification (Krizhevsky et al., 2012; Huang et al., 2017a), target detection
(Girshick et al., 2014), and semantic segmentation (Chen et al., 2018). However, many investiga-
tions (Szegedy et al., 2013; Goodfellow et al., 2015) show that DNNs are vulnerable to adversarial
examples, i.e., images added by some elaborately designed perturbations that are imperceptible to
human eyes may lead to the model’s misclassification. At present, various techniques (Goodfellow
et al., 2015; Madry et al., 2017; Carlini & Wagner, 2017) have been proposed to generate adver-
sarial examples. Meanwhile, countermeasures (Madry et al., 2017; Zhang et al., 2019; Wong et al.,
2020) have been proposed to defend against adversarial examples. However, most of the methods
focus on weight optimization, while neglecting the influence of network structures. For example,
adversarial training (AT) (Madry et al., 2017), as one of the most effective defensive methods, only
optimizes the weights by adversarial examples. Nevertheless, recent studies reveal that robustness
is highly related to a structure (Guo et al., 2020). We believe that a fixed structure may limit the
further improvement of robustness.

Network Architecture Search (NAS) (Zoph & Le, 2017; Liu et al., 2019) is a high-performance auto-
matic network structure design technology. In this paper, we propose Robust Network Architecture
Search (RNAS) based on Differentiable Architecture Search (DARTS) (Liu et al., 2019), which can
stably search for the network structure with high robustness. We define the network vulnerability
specifically for the cell-based search process (Liu et al., 2019; Xu et al., 2019). First, we define
channel vulnerability by the KL divergence of the output distribution of the adversarial examples
and their corresponding clean examples in a channel. Then, we define cell vulnerability as the sum
of the channel vulnerabilities in the cell’s output layer. At last, we define network vulnerability
by the cell vulnerability. With the above definitions, we constrain the search to get a more robust
structure. Inspired by DARTS, we transform the original bilevel single-objective optimization into a
bilevel multi-objective optimization by imposing network vulnerability constraints. Then, we sim-
plify this optimization into a constrained single-objective optimization that can be solved by our
proposed iterative algorithm. We evaluate its robustness on CIFAR-10/100, and SVHN based on
extensive comparisons.
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Our contributions are summarized as follows:

• We propose a network vulnerability metric based on the training deviation between clean examples
and adversarial examples.

• We propose RNAS based on the vulnerability metric to obtain a robust network architecture.
Meanwhile, we propose a noval algorithm to solve the constrained multi-objective optimization
of RNAS.

• Extensive experiments show that RNAS achieves state-of-the-art performance in robust accuracy
on several public datasets.

2 RELATED WORKS

Adversarial Attacks and Defends. Adversarial attack refers to a process of deceiving the target
model by applying a tiny perturbation to the original input, i.e., adversarial examples. According
to the available information, adversarial attacks are divided into white-box attacks (Zugner et al.,
2018; Moosavi-Dezfooli et al., 2017) and black-box attacks (Papernot et al., 2017; Tu et al., 2019).
Currently, the most classic white-box attack methods contain: Fast Gradient Sign Method (FGSM)
(Goodfellow et al., 2015), Projected Gradient Descent (PGD) (Madry et al., 2017) and Carlini &
Wagner (C&W) (Carlini & Wagner, 2017). Recently, Croce & Hein (2020a) proposed a reliable and
stable attack method: AutoAttack (AA). It is an automatic parameter-free method for robustness
evaluation. Four attack methods are integrated in AutoAttack, including three white-box attacks:
APGD (Croce & Hein, 2020a) with cross entropy loss, targeted APGD with difference-of-logits-
ratio loss and targeted FAB (Croce & Hein, 2020b), and a black-box attack: SquareAttack (An-
driushchenko et al., 2020). Various adversarial defense methods have been proposed to improve the
robustness of DNN against adversarial attacks, such as random smoothing (Lecuyer et al., 2019),
defensive distillation (Papernot et al., 2016), and adversarial training (Madry et al., 2017; Zhang
et al., 2019).

NAS For Robustness Network. NAS is proposed to automatically design the network architecture
to replace the traditional manually-designed method. Representative techniques include reinforce-
ment learning (Zoph & Le, 2017), evolutionary algorithms (Real et al., 2019), and differentiable
approaches (Liu et al., 2019). One of the most representative differentiable methods is DARTS (Liu
et al., 2019), which conducts search and evaluation at the same time. Though NAS achieves ex-
cellent performance by automatically searching the network architecture, the robust accuracy of the
obtained model is neglected (Devaguptapu et al., 2020).

At present, researchers begin to focus on searching a more robust network architecture through NAS
(Guo et al., 2020). They proved that robustness has a strong correlation with structure. Dong et al.
(2020) discussed the relationship between robustness, Lipschitz constant and architecture parame-
ters. They proved that proper constraints of the architecture parameter can reduce Lipschitz constant,
thereby improve robustness. Hosseini et al. (2021) defined two differentiable metrics to measure the
architecture robustness based on verifiable lower bounds and Jacobian norm bounds. The robust
architecture is obtaind by maximizing the robustness metrics.

3 PRELIMINARY

In our work, DARTS is used as the basic framework, which is a differentiable search framework,
and its search space is defined based on the cell. The cell is defined as a directed acyclic graph
(DAG) with N nodes {x0, x1, . . . , xN−1}, where each node represents a layer in the network. We
define an operation space O, where each element o(·) ∈ O represents an operation in the layer (3×3
convolution, pooling, zero operation, etc.). Within a cell, the goal is to select one operation in O to
connect each pair of nodes. The information flow between node i and node j is represented as edge
f(i,j), which is composed of operations weighted by the architecture parameter α(i,j) and denoted
as:

fi,j(xi) =
∑

o∈Oi,j

exp(α
(i,j)
o )∑

o′∈Oi,j
exp(α

(i,j)
o′ )

· o(xi) (1)
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Figure 1: The layer vulnerability of VGG16 and ResNet18 on CIFAR-10/100.

where xi is the output of the i-th node and α(i,j)
0 is the weight of operation o(xi). A node’s input

is the sum of all outputs of its previous nodes, i.e., xj =
∑
i<j fi,j(xi). The output of the entire

cell is xN−1 = concat(x0, x1, . . . xN−2), where concat(·) represents concatenating all channels.
A proxy network on the search process is constructed by m cells.

The parameter of the operations on the edges is called as operation parameter θ. The search space of
DARTS is differentiable so that θ and α can be updated with gradient alternately during the search in
an end-to-end manner. When the search converges, we retain the operation with the largest α in each
edge f(i,j) to compose the final cell structure. The obtained cell is taken as the basic unit to form
the target network by stacking multiple cells together. To obtain the optimal structure parameter α,
we define the optimization problem of DARTS as follows (Liu et al., 2019):

min
α
Lval(θ∗(α), α)

s.t.θ∗(α) = argmin
θ
Ltrain(θ, α)

(2)

where Ltrain and Lval represent training loss and validation loss, respectively. More technical
details can be referenced to (Liu et al., 2019).

4 METHODOLOGY

We propose Robust Network Architecture Search (RNAS) to find a robust network architecture.
First, we define the network vulnerability to guide the search process. Then, based on the search
process of DARTS, we apply the network vulnerability as a constraint to the architecture parameter
α to obtain a robust structure. We describe RNAS as a multi-objective bilevel optimization problem
and propose an iterative optimization algorithm to solve the optimal α.

4.1 NETWORK VULNERABILITY CONSTRAINT

We use the expectation of the KL divergence (Kullback & Leibler, 1951) to measure the deviation
between adversarial examples and clean examples on the feature map. We train two kinds of models:
adversarial training (AT) and standard training (ST). The deviation between adversarial examples
and clean examples on AT and ST is demonstrated in Figure 1. Compared with standard training,
the deviation of the model with adversarial training becomes significantly smaller, which indicates
that adversarial training improves the robust accuracy by reducing the deviation. Inspired by this
observation, our main idea is to reduce the deviation to weaken the influence of adversarial examples
on the model. To clarify the above idea, we formally define the vulnerability of channel, layer, cell,
and network as follows.

Channel Vulnerability: The vulnerability of the k-th channel of the l-th layer is defined as:

F (z(l,k), z̃(l,k)) = E(x,y)∼DKL(z
(l,k), z̃(l,k)) (3)

where z(l,k) represents the feature value of the k-th feature map in the l-th layer of the clean example.
Similarly, z̃(l,k) represents the adversarial case.
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Layer Vulnerability: We define the layer vulnerability as the mean of the channel vulnerability of
one layer, the l-th layer vulnerability is defined as:

fl =
1

N (l)

N(l)∑
k=1

F (z
(l,k)
i , z̃

(l,k)
i ) (4)

where N (l) is the number of the feature maps of the l-th layer.

Since the search space is defined based on cells, we define cell vulnerability, and further define
network vulnerability based on cell vulnerability.

Cell Vulnerability: We define cell vulnerability as layer vulnerability of the output layers of the
corresponding cell. The i-th cell vulnerability is defined as:

f
(o)
i =

1

N
(o)
i

N
(o)
i∑
i=1

F (z
(o,k)
i , z̃

(o,k)
i ) (5)

where z(o,k)i is the feature value of the k-th feature map in the output layer of the i-th cell of the
clean example, similarly z̃(o,k)i represents the adversarial case and N (o)

i is the number of the feature
map in the output layer of the i-th cell.

Network Vulnerability: The mean of all cell vulnerabilities is denoted as the network vulnerability:

F (fθ(x), fθ(x̃)) =
1

M

M∑
i=1

f
(o)
i (6)

where M is the number of the cell in the whole network.

4.2 ROBUST NETWORK ARCHITECTURE SEARCH (RNAS)

In this paper, we take DARTS (Liu et al., 2019) as our basic framework. The original objective func-
tion of DARTS is presented in Equation 2, which only focuses on improving clean accuracy (Zhang
et al., 2019). Our goal is to find robust cells and use them to construct a robust network. Thus, we
need to add another object to the original objective function of DARTS, which achieves the minimal
network vulnerability when updating architecture parameter α during the search process. If α is
determined, we further use adversarial training to update the operation parameter θ of the new net-
work architecture (corresponding to α). Briefly, the goal of RNAS is to minimize the validation loss
and network vulnerability under the adversarial attack by searching for the architecture parameter
α, and to obtain robust operation parameter θ through adversarial training. We formalize RNAS as
a multi-objective bilevel optimization problem:

min
α

(
Lval(θ∗(α), α) + Ladvval (θ

∗(α), α),F(α)
)

s.t.θ∗(α) = argmin
θ
Ladvtrain(θ, α)

(7)

where Ladvtrain and Ladvval respectively represent adversarial training loss and adversarial validation
loss and F(α) represents the network vulnerability. In this multi-objective bilevel optimization, α
is a upper-level variable and θ is a lower-level variable. However, this problem is non-trivial. We
turn the network vulnerability into a constraint and set an upbound H ∈ [0,+∞) of the network
vulnerability. Thus, Problem 7 is transformed into a single-objective optimization problem with two
constraints, as shown in Problem 8. The operation parameter θ and the architecture parameter α are
alternately updated until they converge.

min
α
Lval(θ∗(α), α) + Ladvval (θ

∗(α), α)

s.t.θ∗(α) = argmin
θ
Ladvtrain(θ, α)

F(α) ≤ H

(8)

We project the architecture parameter α to the nearest point αp in the feasible region that satisfies
the network vulnerability constraint, then Problem 9 can be solved by a Lagrangian method.

min
αp

1

2
‖α− αp‖22

s.t.F(αp) ≤ H
(9)
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Algorithm 1 Search Process of RNAS.
Input: DatasetD, training epochsE, training iteration T , randomly initialized operation parameters
θ and randomly initialized weights in mixed operation set O.
Output: Learned architecture parameter αp.
Phase I: θ-warm up

1: while e ≤ 15 do
2: for t = 1 to T do
3: keep α fixed, and obtain θt+1 by gradient descent with∇θLadvtrain (θ

t, α)
4: end for
5: e←e+ 1
6: end while

Phase II: Search for Robust Architectures
1: while not converged or 15 < e ≤ E do
2: Step1: unconstrained searching
3: for i = 1 to u do
4: keep αt fixed, and obtain θt+1 by gradient descent with ∇θLadvtrain (θ

t, αt)
5: keep θt+1 fixed, and obtain αt+1 by gradient descent with∇θLadvval

(
θt+1, αt

)
6: end for
7: Step2: vulnerability constrained for α.
8: for t = u to T do
9: Get the projection of α outputting αp at the end of Phase II

10: Update αp
11: end for
12: e←e+ 1
13: end while

The whole process is divided into two phases. In the first warm-up phase, we only update the
operation parameters θ since it is randomly initialized at the beginning, which does not contain
much valuable knowledge to guide the search process. The second search phase is divided into
two steps, Step 1 is unconstrained search, in which a better architecture is searched freely in a
larger parameter space. In this step, the objective function of RNAS is the same as that of DARTS.
According to the first-order approximation method in DARTS, θ and α are alternately updated by
gradient descent. In Step 2, we apply network vulnerability constraint to the architecture parameter
α. In practice, we project α to the nearest point αp of the feasible set, as shown in Equation 9. The
algorithm is presented as Algorithm 1.

The advantages of Algorithm 1 are as follows: in Phase I, the operation parameters θ are warmed up
to provide a stable network for further searching. In Step 1 of Phase II, the weight and architecture
are jointly optimized by adversarial examples to determine a reasonable projection starting point
of α in Step 2. In Step 2, we apply network vulnerability constraint to α to achieve a “low-
feature-distortion” network architecture. When the inputs are adversarially perturbed, the network
vulnerability constraint can restrain the distortion by minimizing the deviation between the latent
features of clean examples and adversarial examples. After Step 2, the algorithm will return to
Step 1 to search the architecture in a larger parameter space. Therefore, even if a sub-optimal
architecture is obtained in the projection step, the unconstrained search of Step 1 can still learn a
better one. In addition, the constraint of vulnerability can be adjusted by the upper boundH to make
the search more flexible.

5 EXPERIMENT

We first search the network architecture by RNAS on CIFAR-10, then transfer the obtained archi-
tecture to SVHN and CIFAR-100 datasets. Extensive experiments are conducted on CIFAR-10,
CIFAR-100, and SVHN to evaluate the effectiveness of RNAS under various adversarial attacks.
Our model significantly outperforms the baselines and achieves the highest robustness.
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Figure 2: Architecture of the cells obtained on CIFAR-10.

5.1 EXPERIMENTAL SETUP

Datasets: (1) CIFAR-10/100: Each dataset consists of 60K images, all of which are of a spatial
resolution of 32 × 32. These images are equally distributed over 10/100 classes, with 50K training
and 10K testing images (Krizhevsky & Hinton, 2009); (2) SVHN: This dataset (SVHN, Street View
House Number Dataset) is derived from Google Street View door numbers, which consists of 73,257
images for training and 26,032 images for testing. These images are distributed over 10 classes of
digits, and all of which size are 32 × 32 (Netzer et al., 2011).

Searching: We search the robust architecture on CIFAR-10. We divide the training set into two parts
with the same size and respectively optimize the architecture parameters and the operation parame-
ters. The search space contains 8 candidate operations: 3 × 3 and 5 × 5 separable convolutions, 3 × 3
and 5 × 5 dilated separable convolutions, 3 × 3 max pooling, 3 × 3 average pooling, skip connection,
and zero operation. The proxy network consists of 8 cells: 6 normal cells and 2 reduction cells.
Each cell has 6 nodes. We use SGD with momentum to train the model for 60 epochs with a batch
size of 128. The initial learning rate is 0.01 with a momentum of 0.9, weight decay is 0.0003, and a
cosine learning rate decay is used to update the proxy network weights. Architecture parameters are
updated through Adam with a learning rate of 0.0006 and a weight decay of 0.001.The H is 0.0001

Training: After the search phase, we obtain the normal cell and the reduction cell in Figure 2.
Then we adversarially train the target network on the entire dataset. The adversarial examples are
generated by PGD and set the total perturbation size ε = 8/255, the number of attack iteration is 7
with a step size of 2/255. The training phase took 300 epochs with a batch size of 128. We used
SGD with momentum, where the initial learning rate is 0.01 with a momentum of 0.9, weight decay
is 0.0003 and a cosine learning rate decay is used to update the network weights.

Evaluation: All models are fully trained for 300 epochs to be evaluated and all parameters are
consistent with those of RNAS. We use various adversarial attack to generate adversarial examples
to evaluate the models, including FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2017), and
C&W (Carlini & Wagner, 2017). For a more comprehensive evaluation, we introduce AutoAttack
(AA) (Croce & Hein, 2020a). The attack settings are as follows: 1) FGSM attack with ε = 0.03 (8
/ 255); 2) PGD attack with ε = 0.03 (8 / 255), attack iterations of 20, and a step size of 2 / 255; 3)
C&W attack with c = 0.5 and attack iterations of 100; 4) AA with l∞-norm and ε = 0.03 (8/255).

5.2 RESULTS ON CIFAR-10

Figure 2 illustrates the architecture of the normal cell and the reduction cell obtained on CIFAR-10.
Through setting different H , we obtain two architecture (RNAS-H and RNAS-L). We observe that
the operations between nodes in RNAS-H and RNAS-L are intensive, which is consistent with the
property of the robust architecture obtained in (Guo et al., 2020). We use 20 cells to construct the
target network and evaluate it through standard training and adversarial training respectively under
various adversarial attacks. The comparison results are summarized in Table 1 and Table 2.
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Table 1: Comparison results of different models with adversarial training on CIFAR-10.
Model Params Clean FGSM PGD C&W AA

(M) (%) (%) (%) (%) (%)

VGG16(Simonyan & Zisserman, 2015) 14.7 80.08 52.85 47.50 41.80 42.10
ResNet18(He et al., 2016) 11.2 82.63 55.12 49.81 42.48 44.43

DenseNet121(Huang et al., 2017b) 7.0 84.85 53.35 47.31 42.68 42.18

NasNet(Zoph et al., 2018) 4.3 80.61 54.19 50.25 42.97 45.33
AmoebaNet(Real et al., 2019) 3.2 83.41 54.44 42.95 39.21 35.32

PNAS(Liu et al., 2018) 4.5 85.08 58.79 47.70 40.15 43.03
SNAS(Xie et al., 2019) 2.7 82.56 54.39 46.03 40.36 43.55

DARTS(Liu et al., 2019) 3.3 83.75 55.75 44.91 41.25 39.98
P-DARTS(Chen et al., 2019) 3.4 82.65 53.27 42.72 41.03 37.22
PC-DARTS(Xu et al., 2019) 3.6 83.94 52.67 41.92 39.25 37.53

MobileNetv2(Sandler et al., 2018) 2.3 81.04 53.66 49.40 41.26 42.29
ShuffleNetv2(Ma et al., 2018) 1.3 81.25 49.10 42.10 40.34 36.78

SqueezeNet(Iandola et al., 2017) 0.7 77.65 51.21 44.22 39.66 38.58

RACL(Dong et al., 2020) 3.6 83.98 57.44 49.34 43.13 44.59
RobNet(Guo et al., 2020) 6.9 78.57 54.98 49.44 42.84 45.01

DSRNA(Hosseini et al., 2021) 5.4 83.84 59.89 50.39 43.94 46.78

RNAS-L 3.5 85.13 56.91 52.88 44.65 46.82
RNAS-H 3.2 81.68 60.61 53.72 45.27 47.73

Table 2: Comparison results of different models with standard training on CIFAR-10.
Model Params Clean PGD Model Params Clean PGD

(M) (%) (%) (M) (%) (%)

NasNet 4.3 97.37 0.52 VGG16 14.7 92.64 0
AmoebaNet 3.2 97.39 0.35 ResNet18 11.2 93.02 0

PNAS 4.5 96.70 0.28 DenseNet 7.0 95.04 0.11
SNAS 2.7 97.02 0.12 MobileNetv2 2.3 94.43 0

DARTS 3.3 97.41 0.16 ShuffleNetv2 1.3 93.45 0
PC-DARTS 3.6 97.32 0.18 RNAS-L 3.5 96.86 3.91

As shown in Table 1, through adversarial training, the architecture obtained by RNAS has a bet-
ter robust performance than other models. (1) Compared with various manually designed baseline
models, our model achieves better robust accuracy. (2) Compared with NAS baselines, our model
achieves better performance under various adversarial attacks. The main reason is that RNAS ap-
plies network vulnerability to the cell-based search process. Therefore, RNAS can guarantee higher
accuracy and robust architecture. (3) Compared with existing NAS-based robust search methods,
RNAS-L and RNAS-H both achieve better performance. Under four adversarial attacks: FGSM,
PGD, C&W, and AutoAttack, RNAS-L respectively improves the robust accuracy by -2.98, +2.49,
+0.71, and +0.04 compared with the state-of-the-art DSRNA, while RNAS-H respectively improves
by +0.72, +3.33, +1.33, and +0.95. This indicates a high correlation between network vulnerabil-
ity and robustness. In addition, RNAS achieves higher clean accuracy by +1.15, +6.56, and +1.29
compared with RACL, RobNet, and DSRNA respectively.

Except for adversarial training, network architecture as well contributes to robustness, which is
evaluated by standard training instead of adversarial training. The results are shown in Table 2.
Even only with standard training, RNAS is still more robust than other network architecture, that is,
even without adversarial training, RNAS still has a robust property. In addition, the clean accuracy
of our method is yet closed to that of the optimal NAS.
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Table 3: Comparison results of different models with adversarial training on CIFAR-100.
Model Params Clean FGSM PGD C&W AA

(M) (%) (%) (%) (%) (%)

VGG16 34 47.50 21.17 15.85 14.06 14.88
ResNet18 11.2 55.02 24.56 18.89 16.04 17.82

NasNet 4.3 59.64 29.83 23.10 20.41 22.06
AmoebaNet 3.2 58.14 29.00 24.17 19.54 21.74

PNAS 4.5 58.24 29.75 24.33 19.47 22.09
SNAS 2.7 61.59 29.14 22.26 21.28 20.74

DARTS 3.3 61.14 28.79 24.72 19.45 21.54
PC-DARTS 3.6 60.71 29.29 23.10 20.72 21.60

MobileNetv2 2.3 48.51 22.89 19.78 15.83 16.97
ShuffleNetv2 1.3 51.10 22.16 17.64 15.13 16.26

RACL 3.6 60.32 31.46 24.23 21.73 21.78
RobNet 6.9 57.64 30.23 24.11 21.32 21.98
DSRNA 5.4 60.44 32.03 25.11 21.52 22.59

RNAS-L 3.5 59.71 32.52 25.73 22.82 23.64
RNAS-H 3.2 57.33 32.02 25.82 21.68 22.81

5.3 RESULTS ON CIFAR-100

To further evaluate the effectiveness of RNAS, we transfer the model to CIFAR-100. Specifically,
we use 20 cells obtained on CIFAR-10 to construct a network and adversarially retrain the network
on CIFAR-100. In Table 3, compared with most of the baselines, RNAS obtained on CIFAR-10 can
still improve the robustness after adversarial training on CIFAR-100. In addition, we observe that on
CIFAR-100, the robustness improvement of RNAS-H is not as high as it on CIFAR-10. The reason
is that the architecture search process is dataset-dependent, and RNAS-H is obtained under a higher
constraint of vulnerability, which may “overfit” the dataset. After being transferred to CIFAR-100,
the performance of the architecture obtained on CIFAR-10 decreases a little. Despite this, RNAS-H
still achieves a comparative or even better performance compared with state-of-the-art methods. The
differences in performance between RNAS-L and RNAS-H are due to the intensity of the constraints
on the vulnerability, which will be discussed in Subsection 5.5.

5.4 RESULTS ON SVHN

We transfer the model to the SVHN dataset, that is, we use 20 cells obtained on CIFAR-10 to
construct a network and adversarially retrain the network on SVHN. In Table 4, similar results are
shown as those on CIFAR-10/100, which as well demonstrates the overfit of RNAS-H to the data.

5.5 UPPER BOUND PARAMETER H OF VULNERABILITY

Recall that H is the upper bound of the constraint on the network vulnerability, which is to control
the intensity of the constraint. The larger theH value, the looser constraint on the vulnerability, vice
versa. H = 0 means that it does not allow any deviation occurring in the cell output between the
clean examples and their corresponding adversarial examples. Intuitively, the smaller H can ensure
a more robust architecture in the search process. However, experiments show that too small an H
may lead to an overfit to the training data, and further reduce the model’s generalization ability.

The network architecture search is time-consuming, and the adversarial training introduced into the
RNAS search process will further overload computation costs. In practice, the search is conducted
on a small proxy dataset first, then the obtained architecture is transferred to the target dataset.
Thus, transferability is a valuable property of the obtained models. Furthermore, the transferability
is influenced byH . Figure 3 shows howH influences the model. AsH decreases (i.e., the constraint
strengthens), the PGD robust accuracy on CIFAR-10 gradually increases, while on CIFAR-100 and

8
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Table 4: Comparison results of different models with adversarial training on SVHN.
Model Params Clean FGSM PGD C&W AA

(M) (%) (%) (%) (%) (%)

VGG16 14.7 90.33 60.25 51.70 48.48 39.41
ResNet18 11.2 91.64 61.32 53.01 49.31 41.82

NasNet 4.3 90.11 61.18 53.37 50.44 45.20
AmoebaNet 3.2 91.46 62.01 44.20 48.56 38.64

PNAS 4.5 92.13 62.84 50.91 49.80 39.65
SNAS 2.7 91.05 61.21 50.73 50.01 39.54

DARTS 3.3 91.33 61.97 48.30 49.10 43.01
PC-DARTS 3.6 91.51 60.01 46.26 49.47 40.12

MobileNetv2 2.3 88.94 59.82 50.67 48.86 43.90
ShuffleNetv2 1.3 89.26 57.26 46.50 47.57 39.24

RACL 3.6 91.80 62.46 52.02 51.02 46.54
RobNet 6.9 89.39 60.90 51.89 50.81 46.84
DSRNA 5.4 94.01 62.77 53.48 50.79 47.36

RNAS-L 3.5 92.03 62.95 53.82 52.80 48.62
RNAS-H 3.2 90.22 61.70 53.08 51.32 47.01
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(b) Robust Accuracy

Figure 3: The clean accuracy and robust accuracy of RNAS with different H value on different
datasets. We use different H to search the architecture on CIFAR-10 and transfer the obtained
model to CIFAR-100 and SVHN.

SVHN, the PGD robust accuracy falls rapidly after rising. This indicates that too small an H makes
the model overfit CIFAR-10 and reduces the generalization ability of the model; too large an H is
not effective in constraint the vulnerability of the network. In conclusion, the advantage of RNAS is
that we can tune H to adapt different datasets.

6 CONCLUSION

Our proposed RNAS aims to improve both accuracy and robustness on the basis of network ar-
chitecture search. We impose a network vulnerability metric on the search process. This network
vulnerability metric is bound by a parameter H . The experiments show that through tuning H ,
RNAS can be adaptive to specific dataset. The experimental results also show that RNAS not only
improve the robustness, but also achieve high accuracy close to standard training. Compared to ex-
isting classic methods, our model achieves state-of-the-art performance. In addition, even without
adversarial training, our method still shows robustness.
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