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Abstract

Quantization of Convolutional Neural Networks (CNNs) is a common approach
to ease the computational burden involved in the deployment of CNNs. However,
fixed-point arithmetic is not natural to the type of computations involved in neural
networks. In our work, we consider symmetric and stable variants of common
CNNs for image classification, and Graph Convolutional Networks (GCNs) for
graph node-classification. We demonstrate through several experiments that the
property of forward stability preserves the action of a network under different
quantization rates, allowing stable quantized networks to behave similarly to their
non-quantized counterparts while using fewer parameters. We also find that at
times, stability aids in improving accuracy. These properties are of particular
interest for sensitive, resource-constrained or real-time applications.

1 Introduction

Deep neural networks have demonstrated superiority in solving many real world problems. In partic-
ular, CNNs are an effective approach for processing structured high-dimensional data. Consequently,
the demand for the deployment of CNNs on resource-constrained devices is constantly increasing,
where at the same time, CNNs grow larger than ever. CNNs still face critical challenges despite this
success and their predictions can be highly sensitive to perturbations of the input [32, 18]. Because
they often require extremely deep and wide architectures they often impose a high computational cost
and make deployment on resource-constrained devices prohibitive, especially for mission-critical
applications such as autonomous driving.

Several authors have established a direct link between CNNs and partial differential equations
(PDEs) [12, 8, 21]. The connection is two-fold. First, CNNs filter input features with multiple
layers, employing both elementwise non-linearities and affine transformations, which can be seen as
linear combinations of the finite difference discretizations of spatial derivative operators [35, 15, 14].
Furthermore, the popular residual network architectures (ResNets) [23] can be interpreted as a discrete
time integration of a non-linear ODE using the forward Euler scheme. Another possibility is to view
the network as a continuous function [10, 35, 20, 17]. This conceptual framework gives rise to many
interesting questions such as: what is the importance of the forward stability of CNNs, and can we
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create analogues to stable time integration through Courant-Friedrichs-Lewy conditions, to make
CNNs more robust to errors? Specifically, in this work we consider round-off and quantization errors.

Quantization methods enable neural networks to carry out computations with fixed-point operations
rather than floating-point arithmetic. This contributes to the efficiency of the networks and reduces
their memory footprint, often at the cost of accuracy [11]. Accordingly we consider a per-layer,
uniform and static (same number of bits for every layer) quantization-aware training method.

In our work we wish to examine the concept of quantized CNNs by considering that forward time
integration in PDEs inevitably generates error at every step. To satisfy forward stability, this error
must decay from time step to time step, such that the integration error is bounded, resulting in a
discrete approximation close to the real continuous solution of the PDE. Therefore, a significant
contribution of our work is the promotion of stability in quantized CNNs via small changes to
common architectures. We examine the behaviour of quantization under symmetric and stable, heat
equation-like CNNs [21, 1, 2]. We show that the quantization process produces significantly lighter-
weight networks, with minimal loss of accuracy, and study the consistency of quantization methods
in CNNs, a key attribute in the construction of quantized variants of CNNs. To this end, we measure
the aforementioned similarity using symmetric (potentially stable) and non-symmetric (potentially
unstable) networks. Our experiments indicate that symmetric and stable networks achieve better
consistency and that quantized networks are expected to perform better and more in line with their
full-precision counterparts when stable architectures are used, rather than unstable architectures.

Neural networks are known to be susceptible to noise in their inputs [19]. Similarly, the quantization
of the activation maps inevitably adds noise to the input of every layer. While the quantization error
is not chosen specifically for a given input, it does appear in every layer. The introduction of such
errors throughout the layers of the network resembles the approximation and round-off errors in time
integration of PDEs which require forward stability to converge. To relieve this phenomenon, we
follow the approach of constructing stable architectures that are more robust against such errors [21].

We call a discrete forward propagation stable if it prevents any perturbation from growing as it
propagates through time steps. More explicitly, an N -layered network is stable if there exists some
M > 0 such that

‖xN − x̃N‖ ≤M‖xi − x̃i‖, i = 1, ..., N − 1 (1)

where xi and x̃i are the true and perturbed feature maps of the i-th layer, respectively. The Jacobian
of xN with respect to xi can then be bounded proportionally to M , and accordingly, any stable
architecture needs to have a bounded Jacobian [35]. See Appendix A for a more precise formulation.

2 Stable and quantized residual networks

To promote stability in CNNs and to prevent the amplification of quantization errors, we would like
the quantized network to behave similarly (in terms of its activations) to a non-quantized instance
of the same network. The symmetric variant of ResNet, together with the activation quantization
operator is given as follows:

xj+1 = Qb(xj − hK>j Qb(σ(Kjxj))), (2)

where Qb denotes the quantization operation. We consider the same weights K between the two
architectures, whether quantized or not, and also assume that the absolute quantization error for any
scalar is bounded by some δ. We analyze the propagation of the quantization error and show that it is
the Jacobian matrix of the ResNet block that multiplies the error at every iteration and propagates the
previous error into the next block. Assuming that σ is non-decreasing, it means that K>j σ

′()Kj is
positive semi-definite, and with a proper choice of Kj and h, we can force ρ(Jj) < 1, so that the
error decays. To ensure this forward stability we must set h < 2(L‖Kj‖22)−1 for every layer j in the
network, where L is the upper bound for σ′() [1]. This is generally possible in ResNets only if we
use the symmetric variant in of ResNet. We measure the quantization error by

MSE(x,xb) =
1

n

n∑
i=1

(xi − (xb)i)
2, (3)

and reduce this MSE to maximize the accuracy of the quantized network, as shown in [4].
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Table 1: CIFAR-10 image classification on quantized stable and unstable networks, and their consis-
tency with their non-quantized counterparts.

Architecture Params Accuracy (%) MSE (Acc.)
(M) FP/FP 4W/8A 4W/4A 4A→ 32A

ResNet56 (orig.) 0.85 93.8 93.0 92.6 0.076 (92.9)
Stable ResNet56 (ours) 0.41 92.1 92.3 91.6 0.024 (92.0)

MobileNetV2 (orig.) 2.20 94.0 92.9 92.4 0.067 (92.5)
Stable MobileNetV2 (ours) 1.70 93.1 92.2 91.6 0.034 (91.7)

3 Stable and quantized GCNs

We also study the importance of stability for quantized Graph Convolution Networks (GCNs), which
can be thought of as a PDE discretized on unstructured grids [14]. Specifically, we use the diffusive
PDE-GCN architecture formulated in [13], which utilizes symmetric operators, only on unstructured
graphs:

xj+1 = xj − hS>j K>j σ(KjSjxj). (4)
Here, xj are the features defined over the nodes of a graph, Kj is a learnt 1× 1 convolution operator
and Sj is either learnt (e.g., as in [14]) or pre-defined spatial operation (e.g., the graph Laplacian),
both for the j-th layer of the network. Here, the forward stability is guaranteed in the continuous case
by the symmetry of the operator [13]. Refer to Appendix A for a more precise formulation.

We refer to a network governed by the dynamics in Eq. (4) as PDE-GCND(sym.). Analogously, we
define the non-symmetric residual layer:

xj+1 = xj − hS>j Kj2σ(Kj1Sjxj) (5)

Where Kj1 and Kj2 are distinct learnt 1 × 1 convolution operators. This formulation does not
necessarily yield a symmetric operator, thus, we denote by such a network by PDE-GCND(non-sym.).
The quantization for Eq. (4) and (5) is applied to the weights and before each convolution operator.

4 Image classification using stable and quantized networks

We evaluate our symmetric architectures under quantization by testing them using ResNet-34, ResNet-
56 [23] and MobileNetV2 [36]. We conduct several experiments using CIFAR-10/100 and present
their results in Tab. 1 and 2. Symmetric networks achieve similar accuracy as non-symmetric
networks, while using approximately half of the parameters, a significant saving obtained as a
by-product of promoting stability.

Furthermore, we quantify the notion of stability by comparing the behaviour of symmetric and
non-symmetric networks under 4-bit quantization. In addition to the 4-bit quantized network, we
relax the quantization of the activation maps, allowing them to use the full 32-bit precision, and we
measure the divergence between corresponding activations in both runs of the same network - one
at 4 bits and the other at 32 bits. This divergence is summarized as the per-entry MSE between the
activation maps throughout the two networks. Tables 1 and 2 show that the divergence of the two runs
is greater in the non-symmetric (original) network variants, as predicted by the theoretical analysis.
This is illustrated in Fig. 1, where we plot the same MSE difference along the layers of each network.

5 Semi-supervised node-classification with quantized GCNs

We employ PDE-GCND(sym.) and PDE-GCND(non-sym.) from Eq. (4)-(5) for semi-supervised
node-classification on the Cora, CiteSeer and PubMed data-sets. Namely, we measure the impact
of symmetry on the network’s accuracy, as well as its ability to maintain similar behaviour with
respect to activation similarity under activation quantization of 8 and 4 bits. In all experiments, we
use 32 layers, with 64 hidden channels for Cora, and 256 hidden channels for CiteSeer and PubMed.
The training and evaluation procedure we used is identical to [28]. Details on initialization and
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Table 2: CIFAR-100 image classification on quantized stable and unstable networks, and their
consistency with their non-quantized counterparts.

Architecture Params Accuracy (%) MSE (Acc.)
(M) FP/FP 4W/8A 4W/4A 4A→ 32A

ResNet34 (orig.) 21.3 78.5 75.1 74.7 0.019 (74.7)
Stable ResNet34 (ours) 9.60 76.8 75.4 75.0 0.0083 (75.2)

ResNet56 (orig.) 0.86 72.0 69.0 69.6 0.14 (70.0)
Stable ResNet56 (ours) 0.41 68.4 66.7 66.1 0.031 (67.3)

MobileNetV2 (orig.) 2.30 74.2 71.1 69.8 0.083 (70.6)
Stable MobileNetV2 (ours) 1.80 73.1 71.6 70.9 0.058 (71.0)
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Figure 1: Per-layer MSE between the activation maps of symmetric and non-symmetric network pairs -
in each pair one network has quantized activation maps and the other does not. The symmetric variants
(red) exhibit a bounded divergence, while the non-symmetric networks diverge as the information
propagates through the layers (blue), and hence are unstable. Both networks in each pair achieve
similar classification accuracy. ResNet56 on CIFAR-10 (left) and CIFAR-100 (right).

hyper-parameter tuning, are identical to [13]. The results provided in Tab. 3 reveal two benefits of a
symmetric (stable) formulation over a non-symmetric (unstable) one. First, it is apparent that that the
former results in better accuracy, often by over 2%, while using almost half the number of parameters.
In addition, the action of the network is better preserved under quantization using the symmetric
formulation. We note that the symmetric formulation in Eq. (4) is a sub-set of the non-symmetric
counterpart in Eq. (5). Therefore, theoretically, both networks can achieve identical expressiveness.
However, as demonstrated in Tab. 3, this was not observed in our experiments. We attribute this gap
to the smoother optimization process of the stable PDE-GCND(sym.).

Table 3: PDE-GCND symmetric vs non-symmetric. All networks are of 32 layers and and float-
precision weights. Activation quantization of 8 and 4 bits is applied.

Data-set Architecture Params Accuracy (%) MSE
(M) FP 4W/8A 4W/4A 4A→ 32A

Cora PDE-GCND (non-sym.) 0.35 82.7 82.2 75.7 6.11
PDE-GCND (sym.) 0.22 84.3 84.0 79.4 2.03

CiteSeer PDE-GCND (non-sym.) 5.14 73.9 72.6 71.1 20.48
PDE-GCND (sym.) 3.04 75.6 74.1 72.2 12.44

PubMed PDE-GCND (non-sym.) 4.32 79.0 79.3 75.1 5.14
PDE-GCND (sym.) 2.22 80.2 80.1 77.6 2.52
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6 Summary

In this work, we explored quantized neural networks from the perspective of PDEs and demonstrated
that stability preserves the action of a network under different quantization rates. We find that at times,
stability aids to improve accuracy. These properties are of particular interest for resource-constrained,
low-power or real-time applications like autonomous driving.
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A Continuous neural networks and stable ResNet architectures

The general goal of supervised machine learning is to model a function f : Rn×Rp → Rm and train
its parameters θ ∈ Rp such that

f(y,θ) ≈ c (6)
for input-output pairs {(yi, ci)}si=1 from a certain data set Y × C. Typical tasks include regression or
classification, and the function f can be viewed as an interpolation of the true function that we want
the machine to learn.

In learning tasks involving images and videos, the learnt function f commonly includes a CNN that
filters the input data. Among the many architectures we focus on feed-forward networks of a common
type called by ResNets [23]. In the simplest case, the forward propagation of a given example y
through an N -layer ResNet can be written as

xj+1 = xj + hF (xj ,θj), j = 0, . . . , N − 1, x0 = Fopen(y,θopen). (7)
The layer function F consists spatial convolution operators parameterized by the weights θ1, . . . ,θN ,
and non-linear element-wise activation functions. The parameter h > 0 in this notation serves as a
time step, arising from a discretization of a continuous network, as we show in the next section. The
classical ResNet layer reads

FResNet(x,θ) = K1σ (K2x) . (8)
where K1,K2 are two different convolution operators parameterized by θ, and σ is a non-linear
activation function, like σ(x) = max{x, 0}, known as the Rectified Linear Unit (ReLU) function.
The term Fopen denotes an opening layer that typically outputs a nc-channel image x0, where nc is
greater than the number of input channels, which is typically 3 for RGB images, while possibly also
reducing the size of the image. Usually, the opening layer reads

x0 = σ(Kopeny) (9)
where Kopen is a convolution operator parameterized by θopen that widens the number of channels
from this point onward in the network.

Continuous neural networks have recently been suggested as an abstract generalization of the more
common discrete network, where the network is viewed as a discretized instance of a continuous
ODE or PDE. As shown by [8, 12, 21, 10], Eq. (7) (or a ResNet) is essentially a forward Euler
discretization of a continuous non-linear ODE

∂tx(t) = F (x(t),θ(t)), t ∈ [0, T ], x(0) = x0 = Fopen(y,θopen), (10)
where [0, T ] is an artificial time interval related to the depth of the network. Relating spatial convolu-
tion filters with differential operators, the authors of [35] propose a layer function representation F
that renders Eq. (10) similar to a parabolic diffusion-like PDE

Fsym(x,θ) = −K>σ (Kx) . (11)
For example, when K represents a discrete gradient operator and σ(x) = x, we obtain the heat
equation under this treatment. The approach of Eq. (11) is natural, as similar developments have led to
several breakthroughs in image processing, including optical flow models for motion estimation [24],
non-linear anisotropic diffusion models for image denoising [33, 34], and variational methods
for image segmentation [3, 7]. To best balance the network’s representational abilities with its
computational cost, a “bottleneck” structure is used commonly, exploiting a different number of input
and output channels in K, as in Eq. (11).

Generally speaking, the training of the neural network model consists of finding parameters θ such
that Eq. (6) is approximately satisfied for examples from a training data set. The same should also
hold for examples from a validation data set, which is not used to optimize the parameters. The
training objective is commonly modeled as an expected loss to be minimized, denoted as

min
θ

Φ(θ), where Φ(θ) =
1

s

s∑
k=1

loss(f(yk,θ), ck) +R(θ). (12)

Here, (y1, c1), . . . , (ys, cs) ∈ Y × C are the training data, f(y,θ) includes the action of the neural
network, but may also contain other layers, e.g., fully-connected layers, opening and connective
layers, and softmax transformations in classification. R is a regularization term. The optimization
problem in Eq. (12) is typically solved with gradient-based non-linear optimization techniques [6].
Due to the large-scale and stochastic nature of the learning problem, it is common to use stochastic
approximation schemes such as variants of stochastic gradient descent (SGD) like Adam [27]. These
methods perform iterations using gradient information from randomly chosen subsets of the data.
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B Stable and quantized residual networks

As discussed earlier, our goal is to promote stability in CNNs, to prevent the amplification of
quantization errors. To obtain that, we would like the quantized network to behave similarly (in terms
of its activations) to a non-quantized instance of the same network. The symmetric variant of ResNet
in Eq. (8) and (11), together with the activation quantization operator in Eq. (18) is given as follows:

xj+1 = Qb(xj − hK>j Qb(σ(Kjxj))), (13)

where Qb denotes the quantization operation in Eq. (18). Let us denote the feature maps of the
non-quantized network by x̂j (i.e., assuming qb(x) = x in Eq. (18)), and let the error between
corresponding activations be denoted by ηj = xj − x̂j . We consider the same weights K between
the two architectures, whether quantized or not, and also assume that the absolute quantization error
for any scalar is bounded by some δ. We analyze the propagation of the quantization error ηj+1 as a
function of ηj .

We start unwrapping the block in Eq. (2). First, we subtract x̂j+1 from both sides, and replace the
outer quantization with the error term ηj1 .

ηj+1 = ηj1 + xj − hK>j Qb(σ(Kjxj))− x̂j+1 (14)

Next, we remove the other instance of Qb and add another error term ηj2 :

ηj+1 = ηj1 − hK>j ηj2 + xj − hK>j σ(Kjxj)− x̂j+1. (15)

Remembering that xj = x̂j + ηj , and using the first-order approximation of σ, we note that
σ(Kjxj) ≈ σ(Kjx̂j) + σ′(Kjx̂j)Kjηj . Therefore, we have

ηj+1 = ηj1 − hK>j ηj2 + x̂j + ηj − hK>j (σ(Kjx̂j) + σ′(Kjx̂j)Kjηj)− x̂j+1

= ηj1 − hK>j ηj2 + ηj − hK>j σ′(Kjx̂j)Kjηj

= (I− hK>j σ′(Kjx̂j)Kj)ηj + ηj1 − hK>j ηj2 . (16)

The key ingredient of the analysis above is that ηj1 and ηj2 are fixed and bounded for every layer.
On the other hand, it is the Jacobian matrix of the block Jj = I− hK>j σ′(Kjx̂j)Kj that multiplies
ηj at every iteration and propagates the previous error into the next block. Assuming that σ is
non-decreasing, it means that K>j σ

′()Kj is positive semi-definite, and with a proper choice of Kj

and h, we can force ρ(Jj) < 1, so that the error decays. To ensure this forward stability we must set
h < 2(L‖Kj‖22)−1 for every layer j in the network, where L is the upper bound for σ′() [1]. This is
generally possible in ResNets only if we use the symmetric variant in Eq. (11). [35, 40] also achieved
a similar stability result, but not in the context of quantization.

C Quantization-aware training

As mentioned before, in this paper we focus on quantized neural networks, and in particular, on the
scenario of quantization-aware training. We restrict the values of the weights to a smaller set, so
that after training, the calculation of a prediction by the network can be carried out in fixed-point
integer arithmetic. The intermediate hidden layers are quantized (rounded) as well. Even though
the quantization involves a discontinuous rounding function, the discrete weights can be optimized
using gradient-based methods, also known as quantization-aware training schemes [22, 39]. During
the forward pass, both the weights and hidden activation maps are quantized, while during gradient
calculation in the backward pass, derivative information is passed through the rounding function,
whose exact derivative is zero. This method is known as the Straight Through Estimator (STE) [5].
We note that the gradient-based optimization for the weights is applied in floating-point arithmetic as
we describe next, but during inference, the weights and activations are quantized, and all operations
are performed using integers only.

We now present the details of the quantization scheme that we use, based on [30]. First, we define the
pointwise quantization operator:

qb(t) =
round((2b − 1) · t)

2b − 1
, (17)
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Figure 2: An example of a uniform signed 4-bit quantized weight tensor. The original distribution
is given in (a). The original values are then clipped to the range [−α, α] (in this example α = 0.5),
divided by α and multiplied by 7 (= 24−1 − 1, for 4 bits). Then, the values are quantized to integer
values in (b), and scaled back (multiplied by α/7) to their original values in (c).

where t is a real-valued scalar in one of the ranges [-1, 1] or [0, 1] for signed or unsigned quantization1,
respectively. b is the number of bits that are used to represent t as integer at inference time (during
training, t and qb(t) are real-valued). During the forward pass, we force each quantized value to one
of the ranges above by applying a clipping function to the quantized weights and activations before
applying Eq. (17):

wb = Qb(w) = αwqb−1(clip(
w

αw
,−1, 1))

xb = Qb(x) = αxqb(clip(
x

αx
, 0, 1)). (18)

Here, w,wb are the real-valued and quantized weight tensors, x, xb are the real-valued and quantized
input tensors, and αw, αx are their associated clipping parameters (also called scales), respectively.
An example of Eq. (18) applied to a weight tensor using 4-bit signed quantization, is given in Fig. 2.
During training, we iterate on the floating-point values of the weights w, while both the weights and
activation maps are quantized in the forward pass (i.e., xb and wb are passed through the network).
The STE [5] is used to compute the gradient in the backward pass, where the derivative of qb is
ignored and we use the derivatives w.r.t wb in the SGD optimization to update w iteratively.

The quantization scheme in Eq. (18) involves the clipping parameters αw and αx, also called scales,
that are used to translate the true value of each integer in the network to its floating-point value. This
way, at inference time, two integers from different layers can be multiplied in a meaningful way that
is faithful to the original floating-point values [31, 26]. These scales also control the quantization
error, and need to be chosen according to the values propagating through the network and the bit
allocation b, whether the weights or the activations.

Alternatively, the works [30, 16], which we follow here, introduced an effective gradient-based
optimization to find the clipping values αx, αw for each layer. Given Eq. (18) the gradients w.r.t
αw, and αx can be approximated using the STE [30, 16]. For the activation maps, for example, this
resolves to:

∂xb
∂αx

=


0 if x ≤ 0

1 if x ≥ αx
xb

αx
− x

αx
if 0 < x < αx.

(19)

This enables the quantized network to be trained end-to-end manner with backpropagation. To further
improve the optimization, [30] normalize the weights before quantization:

ŵ =
w − µ
σ + ε

. (20)

Here, µ and σ are the mean and standard deviation of the weight tensor, respectively, and ε = 10−6.
1We assume that the ReLU activation function is used in between any convolution operator, resulting in

non-negative activation maps, and can be quantized using an unsigned scheme. If a different activation function
is used that is not non-negative, like tanh(), signed quantization should be used instead.
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D Stable channel and resolution changing layers

The classical CNN architecture typically applies several layers like Eq. (7). However, to obtain better
representational capabilities for the network, the number of channels typically increases every few
layers. In CNNs, this is typically accompanied by a down-sampling operation performed by a pooling
layer or a strided convolution. In such cases, the residual equation Eq. (7) cannot be used, since
the update F (xj ,θj) does not match xj in terms of dimensions. For this reason, ResNets typically
include 3-4 steps like

xj+1 = Kjxj + F (xj ,θj), or xj+1 = F (xj ,θj), (21)

throughout the network to match the changing resolution and number of channels. These layers are
harder to control than Eq. (7) and (11) if one wishes to ensure stability.

In this work we are interested in testing and demonstrating the theoretical property described in Sec.
2 empirically, using fully stable networks (except for the very first and last layers). To this end, when
increasing the channel space from ncin to ncout for xj+1 and xj respectively, we simply concatenate
the output of the step with the necessary channels from the current iteration to maintain the same
dimensions. That is, we apply the following:

xj+1 =

[
xj + hF (xj ,θj)
(xj)1:ncout−ncin

]
, (22)

where (xj)1:ncout−ncin
are the first ncout − ncin channels of xj . This assumes that each of the

channel changing steps satisfies ncin ≤ ncout
≤ 2ncin , which is quite common in CNNs. This way,

we only use the symmetric dynamics as in Eq. (11) throughout the network, which is guaranteed to
be stable for a proper choice of parameters. Finally, we do not apply strides as part of Eq. (22), and
to reduce the channel resolution we simply apply average pooling following Eq. (22), which is a
stable, parameter-less, operation.

E A stable variant of MobileNetV2

In addition to standard residual networks, we also consider the popular MobileNet family of light-
weight CNN architectures [36, 25], which are the most common architectures for edge devices,
achieving very nice results while requiring modest computational resources to deploy. These archi-
tectures utilize the “inverse bottleneck” structure, where the channel space throughout the network is
relatively small, but in every step it is expanded and reduced by 1× 1 convolutions, with “depthwise”
3× 3 convolutions in the middle expanded channel space. The depthwise convolutions apply 3× 3
kernels on each channel without mixing between the channels, and hence they are less expensive than
1× 1 convolutions. The general structure of MobileNetV2 [36] reads:

x(k+1) = x(k) + K3
1×1σ(K2

dwσ(K1
1×1x

(k))) (23)

where K3
1×1,K

1
1×1 are two different learnable 1 × 1 convolution filters, and K2

dw is a learnable
depthwise 3× 3 convolution matrix. Due to the relatively small channel space used throughout the
architecture, the quantization of this network to low bit-rates is challenging.

The MobileNetV2 architecture in Eq. (23) can also be seen as a residual network, and is generally
unstable. Because of its inverse bottleneck structure, it does not fit the structure of Eq. (7) and Eq.
(11). To test the importance of stability under quantization for such networks as well, we define the
stable MobileNetV2 variant:

x(k+1) = x(k) − (K1
1×1)>((K2

dw)>σ(K2
dwK

1
1×1x

(k))), (24)

where now, the separable convolution operator K2
dwK

1
1×1 takes the role of the single operator K in

Eq. (11). Going between Eq. (23) and (24) we lost one non-linearity, but as we show later, this has
marginal influence on the accuracy of the network. We also apply the depthwise operation twice, but
this is inexpensive compared to 1× 1 convolutions. Changing the resolutions and channel space is
done the same way as described in section D.
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Figure 3: Per-layer MSE between the activation maps of symmetric and non-symmetric MobileNetV2
network pairs - in each pair one network has quantized activation maps and the other does not. Values
are normalized per-layer to account for the different dimensions of each layer. In all the cases, the
symmetric variants (in red) exhibit a bounded divergence, while the non-symmetric networks diverge
as the information propagates through the layers (in blue), and hence they are unstable. Both networks
in each pair achieve similar classification accuracy.

F Settings and data-sets

Our code is implemented in PyTorch, and all experiments are conducted on an Nvidia RTX-3090 with
24GB of memory. Below, we elaborate on the different data-sets explored throughout the numerical
experiments.

CIFAR-10/100. The CIFAR-10/100 image classification data-sets [29] each consist of 60k natural
images of size 32 × 32 where each image is assigned to one of ten categories (for CIFAR-10) or
one hundred categories (for CIFAR-100). The data-set includes 50K training examples and 10K test
examples. We derive a validation set for training by holding out 10% of the training data and report
accuracy metrics on the test data.
Node-classification data-sets. Lastly, we use graph neural networks on three citation network node
classification data-sets: Cora, CiteSeer and PubMed [37]. For each data-set, we use the standard
train/validation/test split as in [38], with 20 nodes per class for training, 500 validation nodes and
1,000 testing nodes. We use the same training scheme as in [9].
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