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ABSTRACT

In this paper we presented two pruning approaches on tabular neural networks
based on the lottery ticket hypothesis that went beyond masking nodes by resiz-
ing the models accordingly. We showed top performing models in 6 of 8 datasets
tested in terms of F1/RMSE. We also showed in 6 of 8 datasets a total reduction
of over 85% of nodes and many over 98% reduced with minimal affect to accu-
racy. In one dataset the model reached a total size of one node per layer while
still improving RMSE compared to the larger model used for pruning. We pre-
sented results for two approaches, iterative pruning using two styles, and oneshot
pruning. Iterative pruning gradually reduces nodes in each layers based on norm
pruning until we reach the smallest state, while oneshot will prune the model di-
rectly to the smallest state. We showed that the iterative approach will obtain the
best result more consistently than oneshot.

1 INTRODUCTION

It has been understood for a while that pruning a network after training can lead to much smaller
networks that still maintains similar accuracy to the original network. However the question arises,
if these smaller networks perform just as well as the larger ones, could one not train the smaller
network architecture to begin with?

The lottery ticket hypothesis states, ”a randomly-initialized, dense neural network contains a sub-
network that is initialized such that - when trained in isolation - it can match the test accuracy of the
original network after training for at most the same number of iterations” Frankle & Carbin (2019).
These smaller networks are referred to as ”winning tickets”. The process of finding winning tickets
was proposed to start with an initial set of weights, train the network, prune the network, and finally
reset the remaining weights back to their initial state.

It has been shown that these winning tickets perform as well, or sometimes better and require less
time to train when compared to the original network. In this paper we focus on applying this hy-
pothesis to tabular neural networks for several datasets to generate smaller networks with similar
performance.

We use tabular neural networks from FastAl Howard et al. (2018) which work on the principle of
converting categorical features into embeddings. The models come with strong features such as
normalization of continuous features, filling in missing data, and converting dates into categorical
features. The models can be trained with their cycle training approach which raises and lowers the
learning rate to find the best local minimum while training.

There are many small tabular datasets which often don’t get optimized in research. These datasets
are filled with categorical features and missing entries while often having few samples to test. In
this paper we use the lottery ticket hypothesis to improve FastAI’s tabular neural network to easily
prune models for any tabular dataset. We test a wide range of datasets from large to small including
different ranges of categorical and continuous features.

This paper is organized as follows. Section 2 describes related previous works. Section 3 presents
the datasets used and our pruning methodology. Experiments, results and comparisons are presented
in Section 4. Finally, the paper is concluded in Section 5.
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2 PREVIOUS WORKS

The lottery ticket hypothesis was first tested by Frankle & Carbin (2019) on dense neural networks
and convolutional neural networks for MNIST and CIFAR10. The authors achieved networks 80-
90% smaller while both creating faster networks and increasing the accuracy of the models in com-
parison to the original sized models. The authors show that while pruning has been around for a
long time, pruning networks often lead to more difficult training with less accuracy. By finding the
lottery tickets of a network, difficulty in training of smaller networks is reduced while accuracy can
be maintained and even exceed the original model.

Since its introduction, there have been many papers testing the lottery ticket hypothesis on different
architectures. Morcos et al. (2019) look to find winning tickets in networks by searching for com-
mon winning tickets across many datasets. They test on a range of image datasets such as Fashion
MNIST, SVHN, CIFAR-10/100, ImageNet, and Places365. Their findings were that winning tickets
generalized over many datasets, but interestingly the larger datasets produced better winning tickets
that were more generalizable than those from smaller datasets. Girish et al. (2021) use the lottery
ticket hypotheses for object detection achieving a sparsity of up to 80%.

Chen et al. (2021) test the lottery ticket hypothesis on ever growing graph neural networks (GNN).
For node classification tasks, they show a decrease in multiply-accumulate operations (MACs) of
up to 98% while having a sparsity of nearly 98% with minimal affect to performance. For linking
predictions, they show similar sparsity with a large reduction in MACs.

The field of natural language processing (NLP) has recently exploded with new models since the in-
troduction of the transformer architecture Vaswani et al. (2017). The models grow increasingly large,
from sizes like the popular BERT Devlin et al. (2018) architecture of up to 350 million parameters to
sizes like GPT-3 Brown et al. (2020) reaching up to 175 billion parameters. Chen et al. (2020) prune
the BERT architecture, but they begin from the pretrained state and test the lottery ticket hypothesis
using downstream tasks. The paper only applies unstructured pruning stating “’since we perform
a scientific study of the lottery ticket hypothesis rather than an applied effort to gain speedups on
a specific platform, we use general-purpose unstructured pruning” Chen et al. (2020). With un-
structured pruning, they are able to find networks with sparsity of 40-90% while testing a range of
downstream tasks.

Tabular models are heading towards larger networks as well with the recent transformer architecture
making its way to tabular data. Padhi et al. (2021) proposed a time series BERT architecture for
tabular data called TabBERT and a tabular data generator TabGPT based on the GPT architecture.
Gu & Budhkar (2021) use transformers to convert text in tabular data into features and released a
package to process the data. TabTransformer by Huang et al. (2020) uses the transformer architecture
to achieve new SOTAs and tested on 15 datasets, competing well with ensemble approaches.

In this paper we focus on tabular dense neural networks with the goal to prune them as much as
possible while maintaining accuracy utilizing the lottery ticket hypothesis. We test our models on 8
datasets of different varieties and show competing results for datasets with available comparisons.

3 DATASETS

In this section we describe the tabular datasets used in our experiments. We selected a wide range
of datasets from as few hundred samples to millions. Each dataset has a variety of tabular features,
some containing just continuous features, others containing only categorical features, and many
mixed with both. The datasets are described in more detail in this section and we present the num-
ber of samples, number of features, evaluation metrics, and train-validation-test splits used in our
experiments in Table 1.

The first dataset is the Alcohol dataset Cortez & Silva (2008). It is our smallest dataset and con-
tains the most features with a mix of continuous and categorical features. The dataset contains
information on students such as school, gender, age, information like hobbies and goals, their fam-
ily and related information such as work, education, size, etc. As quoted from this recent dataset
survey Mihaescu & Popescu (2021), “This dataset has also been uploaded on Kaggle where 305
publicly available kernels perform exploratory data analysis. Unfortunately, there is not defined any
task with specific validation metric such that there is no leaderboard publicly available”, so we used
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Table 1: Dataset Information. We provide the dataset names (Video Games abbreviated to Games
and Wine Quality abbreviated to Wine), the evaluation metric used, the number of features (categor-

ical and continuous), the number of samples and the percentage of train/valid/test split.

Dataset # Samples % Split

Name Metric | Cat | Cont | Train Valid Test Train | Valid | Test
Alcohol | RMSE 17110 253 63 79 .64 .16 .20
Games RMSE 414 10623 2655 3320 .64 .16 .20
Wine RMSE 0]11 1024 255 320 .64 .16 .20
Chocolate | RMSE 61 1149 287 359 .64 .16 .20
Poker RMSE 1010 20008 5002 | 1000000 | .02 .005 | 975
Titanic F1 612 463 154 155 .60 .20 .20
Health F1 515 59724 14932 18664 .64 .16 .20
Susy F1 0]18 4000000 | 500000 | 500000 .80 .10 .10

the workday alcohol consumption of the student as the final goal. The model aims to predict the
students’ workday alcohol consumption which is a target range of 1 to 5 where 1 is very low and 5
is very high consumption.

The next dataset is the Video Games Sales dataset'. The dataset also doesn’t have a clear final goal
or leaderboard information. There are features of videos games such as rank, publisher, year and
Genre and sales information. We have information on sales for North America, Europe, Japan, other
countries and global sales. Predicting global sales means we would have to omit information about
sales in other countries as it would be just a simple sum of those sales, so we decided to predict
North American sales given information on the video game and sales information in other countries
not including global sales.

The Wine Quality dataset Cortez et al. (2009) aims to predict a quality score between 0 and 10 of
the wine given its features. The features are continuous values representing different acidity rates,
sugar levels, density, pH and more.

The Chocolate Ratings dataset” was created to generate expert opinions on chocolate. We must
predict the expert ratings which are values between 1 and 5 where 1 is bad taste and 5 is the best
taste. The features include the company, location, type of beans, percentage of cocoa, and origin
information.

The Poker Hand dataset Cattral et al. (2002) is a very large set of poker hands. Each sample is a set
of 5 cards indicating the card numbers as 5 features and their suits as 5 more features. The final goal
of this dataset is to predict the poker hand such as 0 for nothing, 1 for one pair, 2 for two pairs, 3 for
three of a kind, 4 for a straight, 5 for a flush, 6 for a full house, 7 for four of a kind, 8 for straight
flush, and 9 for a royal flush. We used this as an regression problem where higher (9) the better hand
and lower (0) the worse the hand.

The Titanic dataset® uses information on passengers of the Titanic to predict whether they survived.
The features include gender, cabin, location of embarkment, ticket class (1st, 2nd, 3rd), number of
siblings or spouses, number of parents or children, age and fare. The goal is to predict the survival
of the individual (yes or no) using F1 as a metric. There is a predefined test set without labels which
must be submitted through kaggle to be evaluated, but our results reflect a train/validation/test split
from the labelled train set only. We also take our best available model for this dataset and run it
through kaggle to get a test score for their test set in the experiments section. Note that a new dataset
Titanic Extended* was introduced with many more features and much less empty features derived
from the literature allowing others to achieve 100% accuracy, so we opted to use the more difficult
prior version for testing without knowledge of the extended features.

"https://github.com/GregorUT/vgchartzScrape, https://www.kaggle.com/gregorut/videogamesales
“https://www.kaggle.com/rtatman/chocolate-bar-ratings

3https://www.kaggle.com/c/titanic/data

*https://www.kaggle.com/pavlofesenko/titanic-extended
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The Health Insurance dataset® aims to predict vehicle insurance sales to customers of health in-
surance. We are given information on the policy holder such as a unique ID (omitted in training),
gender, age, has a driving license, region, types of vehicle information like age and damage, and
information on their premiums. The goal is whether the customer will accept the vehicle insurance
which is a binary prediction using F1 as a metric.

The Susy dataset Baldi et al. (2014) is our largest dataset containing 4 million training samples,
500k validation and 500k test samples. The test set was predefined for this dataset as the last 500k
samples in the list. The dataset contains simulation data of a particle collider with the goal to find
rare particles. There are eight kinematic features of the collision and 10 functions of those features
with the final goal distinguishing signal from background using F1 as a metric.

4 METHODOLOGY

To predict on these datasets, we use tabular neural networks repurposed from FastAl Howard et al.
(2018) and using their cycle training procedures. The cycle training increases and reduces the learn-
ing rate as needed to reach the best local minimum, so we are able to set default learning rates for
all models and automatically train our pruning approaches. We kept the number of training epochs
the same for all pruned versions of a dataset but used early stopping to avoid overfitting the models
based on validation scores. The data was preprocessed by converting categorical features to em-
beddings, filling missing values in features and normalizing continuous features. The models were
altered to allow pruning of nodes selected by different pruning approaches we describe below. Py-
torch provides functionality to select weights to prune with L1 norm pruning, a generic LN norm
pruning where we selected N=-inf, and random pruning. Of infinite possibilities for N, we chose
the interesting case of N=-inf because while N=1 selects nodes based on the sum of all weights,
we didn’t want a similar norm such as N=inf which selects the largest weight, so we chose N=-inf
which focuses on the smallest weight of each node and prunes based on the largest of these norms
(even though technically N=-inf isn’t a norm). We pruned all weights associated to nodes from the
linear layers of the model depending on a rate P where the pytorch functions provide a mask on the
nodes setting all of the weights to 0.

While the pruning functionality provided by pytorch is useful for testing, we wanted the full benefit
of smaller models which provide inference and training time improvements rather than a mask over
the weights which still require computation. In this case we designed a simple approach to fully
prune the weights. First we save the initial untrained weights of the model WO. Then we train the
model until we reach the optimal validation stopping point and record the weights W1. Next we
generate pruning masks for W1 depending on the selected norm (or random) and pruning rate P,
then apply the masks on the initial untrained weights W0. The remaining subset of weights from
WO will be copied over to a smaller blank model sized appropriately for the non-zero weights. Then
we continue to train the pruned model depending on the iterative or oneshot styles described below
using the smaller network.

FastAI’s tabular models start with a concatenation of categorical embeddings and continuous fea-
tures, then linear layers follow with optional batch normalization. We implemented batch normal-
ization in the pruning process, but results were better without these layers and removing them left
us with smaller and faster models.

4.1 ITERATIVE PRUNING

A simple iterative approach can be thought of as starting with a model size and reducing it slowly
until we reach an optimal size based on criteria for accuracy and speed performance. The iterative
approach uses a pruning rate P=0.5 (50%). We describe two iterative pruning styles, one using a
large model potentially holding many lottery tickets, and the other using a good performing model
as a starting point with potentially better lottery tickets selected (but possibly smaller in size).

The first approach uses a starting point of a large model [1600, 800] where the parameters are the
sizes of the linear layers respectively. We call this starting point the original model. We train the

>https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction
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original model, prune it at the rate of P, then repeat on the pruned model until we reach the smallest
state possible (ideally [1, 1]).

In the second approach, we instead train at various starting points of different model sizes starting
with [1600, 800], then continuing with [800, 400] and so on reducing the size by 50% at each step.
We train all of these original models in search of the best starting point for the best performing
model. Then we run iterative pruning like in the first approach on this potentially smaller model, but
ideally with better lottery ticket weights available to be selected.

4.2 ONESHOT PRUNING

The oneshot pruning approach works like iterative, but uses a prune rate of P=1.0. This means we
prune the entire model in one shot reducing it down entirely to a size of [1, 1]. We run oneshot on all
of the potential starting points we described in iterative (second approach), then we select the best
performing oneshot model.

5 EXPERIMENTATIONS, RESULTS AND DISCUSSION

There are three components to our results. The first is best performing accuracy, the second is a
comparison in train and inference times, and the last is a comparison of model sizes with minimal
affect to accuracy. To evaluate the overall performance of our models, we also provide a table of
comparisons using several different tabular models. In all tests, all random seeds were set to the
same value to allow fair comparisons and reproducibility of any result shown. We paid careful
attention to have the model weights set to the same initial states for all styles of pruning.

Table 2: Train times averaged over all epochs. The size column shows the possible prune states
representing the number of nodes in each layer of the neural network, each state 50% smaller than
the last. Then for each dataset we provide the average epoch train time in seconds followed by the
percentage improvement from [1600, 800] in parentheses.

Size Alcohol | Games | Wine | Chocol. | Poker | Titanic | Health Susy
1600, 800 0.21s 35.47s | 0.90s 1.04s 19.33s | 0.38s | 139.50s | 3611.18s
(.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00)
$00, 400 0.15s 12.23s | 0.49s 0.65s 12.49s | 0.25s 52.40s | 1168.57s
(.247) (.655) | (454) | (373) | (.354) | (.328) (.624) (.676)
400, 200 0.14s 6.53s | 0.39s 0.55s 10.10s | 0.23s 32.45s | 529.79s
(.302) (.816) | (.561) | (.468) | (477) (4) (.767) (.853)
200, 100 0.14s 5.24s | 0.36s 0.54s 8.52s 0.21s 30.28s | 425.54s
(.33) (.852) | (.595) | (.483) | (.559) | (437 (.783) (.882)
100, 50 0.14s 4.57s | 0.35s 0.54s 7.77s 0.21s 27.68s | 337.41s
(.322) (.871) | (.606) | (.478) | (.598) | (.448) (.802) (.907)
50, 25 0.14s 4.54s | 0.34s 0.52s 7.2s 0.21s 27.18s | 314.14s
(.302) (.872) | (.616) | (.498) | (.627) | (.443) (.805) (.913)
25,13 0.14s 5.47s | 0.35s 0.51s 6.36s 0.21s 27.37s | 280.77s
(.335) (.846) | (.615) | (.505) | (.671) | (.439) (.804) (.922)
13.7 0.14s 4.30s 0.34s 0.51s 5.07s 0.21s 27.2s 289.77s
’ (.324) (.879) | (.615) | (.507) | (.738) (.45) (.805) (.92)
7.3 0.14s 431s | 0.34s 0.52s 4.95s 0.21s 2691s | 287.14s
’ (.321) (.879) | (.615) | (.496) | (.744) (45) (.807) (.92)
3.1 0.14s 4.63s | 0.34s 0.52s 5.24s 0.21s 27.2s 292.28s
’ (.302) (.869) | (.622) | (.505) | (.729) | (.449) (.805) (.919)
L1 0.14s 447s | 0.33s 0.50s 5.56s 0.21s 24.28s | 302.94s
’ (.339) (.874) | (.626) (.52) (.712) | (452) (.826) (.916)
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Table 3: Inference times on test set. The size column shows the possible prune states representing
the number of nodes in each layer of the neural network, each state 50% smaller than the last. Then
for each dataset we provide the inference time on the test set in seconds followed by the percentage
improvement from [1600, 800] in parentheses.

Size Alcohol | Games | Wine | Chocol. | Poker | Titanic | Health | Susy
1600, 00 0.06s 0.82s 0.08s 0.11s | 213.77s | 0.06s 4.22s | 33.83s
(.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00)

$00, 400 0.06s 0.7s 0.08s 0.1s 220.94s | 0.06s 3.79s | 24.12s
(.04) (.145) | (.087) | (.077) (-.034) | (.048) | (.101) | (.287)

400, 200 0.06s 0.7s 0.07s 0.1s 188.36s | 0.05s 371s | 21.54s
(.038) (.153) | (.101) (.09) (.119) (.17) (.12) (.363)

200, 100 0.05s 0.68s 0.09s 0.1s 166.78s | 0.05s 4.03s | 22.75s
(.105) (.175) | (-.083) | (.093) (22) (.159) | (.044) | (.328)

100, 50 0.05s 0.68s 0.07s 0.1s 154.82s | 0.05s 4.04s | 21.94s
(.11) (.169) | (.118) | (.098) (:276) (177) | (041) | (.352)

50,25 0.05s 0.7s 0.07s 0.1s 153.34s | 0.05s 4.03s | 20.55s
(.11) (.143) | (.136) | (.109) (.283) (.169) | (.045) | (.393)

25,13 0.05s 0.7s 0.08s 0.1s 132.77s | 0.06s 4.09s 19.3s
(.111) (.146) D (.124) (.379) (.139) (.03) (43)

13.7 0.05s 0.68s 0.07s 0.1s 105.15s | 0.06s 4.06s 19.7s
’ (.118) (.169) | (.143) (.11) (.508) (.109) | (.037) | (418)
73 0.05s 0.68s 0.07s 0.1s 105.67s | 0.05s 4.03s | 20.57s

’ (.122) (.174) | (.123) (.12) (.506) (.184) | (.044) | (.392)
31 0.06s 0.68s 0.08s 0.1s 106.74s | 0.05s 3.65s | 22.04s

’ (.044) (.175) | (.085) (1) (.501) (.184) | (.135) | (.349)
L1 0.05s 0.68s 0.07s 0.1s 103.05s | 0.05s 3.59s | 20.54s

’ (.083) (.175) | (.156) | (.145) (.518) (.156) | (.148) | (.393)

Table 2 and Table 3 show the time taken to run the tabular models. The first table contains the
training times averaged over all epochs while the second contains the inference time on the test set.
The tables present the number of seconds taken and the reduction of time in percentage compared
to the largest model. The trend shows that a smaller model can lead to faster training and faster
inference until we reach extremely small models of a few nodes which show some noise of a few
milliseconds. The small datasets of a few hundred samples don’t provide much insight, but the larger
datasets show a better downtrend. The computations were made on a 2 CPU systems for all tests, no
use of a GPU.

Table 4 highlights our best performing models accuracy-wise. In bold are the models with the best
accuracy. The table highlights the RMSE or F1, the size of the model, the difference in percentage
compared to the original model, and the pruning mode that generated the result. Iterative on the
largest model (approach 1) has the best likelihood of generating a better model with 5/8 datasets
improving. Iterative on the best performing model (approach 2) has one best case tied with approach
1 for the poker dataset, but it happens that the largest model was the best performing model, so both
approaches generated the same result. Oneshot had one case of generating a best performing model
for the smallest dataset in our experiments. There were two datasets, Wine and Chocolate, which
could not be pruned further without some loss in accuracy, but they can be pruned extremely small
with some degradation in accuracy.

We compare the tabular models to other models in Table 5 and found that even the original model has
the best performing accuracy for all but one result. In this case the Health dataset using SVR resulted
in a better accuracy than the original model, but not better than our pruned models. All comparisons
shown are to the original tabular model. The table shows the following models: K Nearest Neigh-
bors (KNN), Linear Regression (LR), Epsilon-Support Vector Regression (SVR), Gradient Boosting
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Table 4: Comparison of accuracy (RMSE/F1) for each dataset between the original tabular models,
and iterative/oneshot modes. First result is the best performing original models, second result is best
performing iterative when pruning the best original model, third result is best performing iterative
when pruning the largest model [1600, 800], and the final result is the best performing oneshot
model. Results are shown in RMSE/F1 depending on the dataset along with the model size, then we
include the difference in percentage along with the pruning mode for the model. Bold is marked as
best performing accuracy.

Dataset Best Iterative Iterative Oneshot
Original | (from best original) (from [1600, 800])
Acc Acc Diff % Acc Diff % Acc Diff %
Size Size Mode Size Mode Size Mode
Alcohol 0.90356 | 0.89509 | +0.937% | 0.89941 | +0.459% | 0.89357 | +1.106%
7,3 1,1 L1 1,1 LN 1,1 LN/Rand
Games 0.30398 | 0.30136 | +0.862% | 0.26265 | +13.596% | 0.45927 | -51.086%
25,13 13,7 L1 100, 50 LN 1,1 Rand
Wine 0.59206 | 0.59935 | -1.231% | 0.59863 -1.11% 0.61947 -4.63%
100, 50 13,7 L1 25,13 LN 1,1 Rand
Chocol. 0.46411 | 0.48331 | -4.137% | 0.48291 -4.051% | 0.48117 | -3.676%
200,100 1,1 All 200,100 LN 1,1 LI/LN
Poker 0.56241 | 0.53551 | +4.783% | 0.53551 | +4.783% | 0.76128 | -35.36%
1600,800 | 400,200 L1 400,200 L1 1,1 L1
Titanic 0.78571 | 0.78571 | +0.000% | 0.7931 +0.941% | 0.78333 | -0.303%
13,7 7,3 LN 13,7 L1 1,1 L1/LN
Health 0.82263 | 0.82322 | +0.072% | 0.82428 | +0.201% | 0.82242 | -0.026%
800,400 7,3 LN 200,100 Rand 1,1 LN
Susy 0.77080 | 0.77071 | -0.012% | 0.77109 | +0.038% | 0.75316 | -2.289%
200,100 100,50 Rand 200,100 L1 1,1 L1/LN

Regressor (GBR), Decision Tree (DT) and Random Forest (RF). We also used the equivalent clas-
sifier version of these models for the classification tasks. All models were tested on the exact same
train, validation and test sets and we also preprocessed the data using in the same way converting
text/categorical features to values, normalizing continuous features and filling in missing values.
KNN was optimized for K using the validation set, GBR and RF used 100 estimators and SVR used
the RBF kernel as defaults selected by scikit-learn. Note that Susy has KNN and SVR missing, this
is because even with a 32 CPU machine and weeks of computation we couldn’t produce a result in
time, so we omitted them from the table.

In comparison with other approaches, some datasets do not have reported results such as Video
Games, Alcohol and Chocolate. The Titanic dataset is shown on kaggle to achieve 100% on the test
set using random forest and other approaches due to an extended features dataset derived from the
literature. Without using extended features, running the same model as in our best result (L1 iterative
[13, 7]) on kaggle’s test set gives us a score of 0.77511. Because of missing available comparisons,
we provide comparisons using exactly the same data split and preprocessing for all datasets using
several models in Table 5 as mentioned previously.

For the Red Wine dataset, Dahal et al. (2021) reports the following RMSE results: 0.63245 using a 3
layer neural network, 0.61163 using GBR, 0.62145 using SVM, and 0.62201 using ridge regression.
In this case we hold the best result with 0.59206 RMSE (+3.200%) using an original tabular model
sized at [100, 50].

Sekeroglu (2021) reports several F1 scores on the Health dataset: 0.80 using KNN, 0.77 using naive
bayes, 0.76 using LR, 0.81 using RF, 0.80 using MLP, 0.72 using SVM. Our best model using
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Table 5: Comparison of different models to the original tabular model in Table 4, top is RMSE/F1
depending on the dataset and bottom is the difference in percentage compared to the original tabular
model. In all but one case (Health SVR) the original tabular model outperforms all of these models.
Note that the pruned tabular models are not reflected in these results and the difference is only
computed for original.

Dataset KNN LR SVR GBR DT RF

Alcohol 0.94405 0.96838 0.94680 0.92735 1.08500 0.94940

-4.481% -7.174% -4.786% -2.633% -20.081% -5.073%

Games 1.0253 0.61135 0.98243 0.69862 0.70800 0.68026
-237.292% | -101.115% | -223.189% | -129.824% | -132.91% | -123.784%

Wine 0.65610 0.62515 0.59983 0.62044 0.81586 0.60776

-10.816% -5.589% -1.312% -4.793% -37.800% -2.652%

Chocolate 0.51295 0.51541 0.50163 0.50100 0.63895 0.48868

-10.523% -11.053% -8.084% -7.949% -37.672% -5.294%

Poker 0.73195 0.77344 0.74685 0.71312 1.06652 0.67302
-30.145% -37.522% -32.795% -26.797% | -89.634% | -19.667%

Titanic 0.68852 0.73504 0.50000 0.73214 0.68421 0.74380

-12.370% -6.449% -36.363% -6.818% -12.918% -5.334%

Health 0.79414 0.82106 0.82367 0.82137 0.71185 0.80276

-3.463% -0.191% +0.126% -0.153% -13.467% -2.415%

Susy 0.68483 0.76511 0.69232 0.76648

-11.153% -0.738% -10.182% -0.560%

random iterative pruning (approach 1) and a size of [200, 100] achieves an F1 score of 0.82428
(+1.763%).

Table 6: Best models selected by size with less than 2% divergence in accuracy of the original
model. For each dataset (first column), we noted the size of the original model in the second col-
umn. Then we show the smallest possible model with <2% divergence in accuracy for each of the
original, iterative on best original, iterative on [1600,800], and finally oneshot. The table shows the
percentage difference in RMSE or F1, and P the prune rate compared to original. If the difference in
accuracy is >2%, then that was the best performing model accuracy-wise and we could not produce
a valid smaller model using that approach. Bold is the smallest model which doesn’t exceed the 2%
divergence in accuracy rule.

. Original Iterative Iterative
Dataset Orig. <2% <2% Oneshot
<2% (best orig.) ([1600,800])

Size Diff (P) Diff (P) Diff (P) Diff (P)
Alcohol 7,3 -0.923% (.600) | +0.937% (.800) | +0.459% (.800) | +1.106% (.800)
Games 25,13 -0.158% (.737) | +0.862% (.474) | +4.168% (-.974) | -51.086% (.947)
Wine 100,50 | 0.000% (.000) | -1.231% (.867) | -1.110% (.747) | -4.630% (.987)
Chocol. | 200,100 | 0.000% (.000) | -4.137% (.993) | -4.441% (.993) | -3.676% (.993)
Poker | 1600,800 | -0.768% (.969) | -0.349% (.984) | -0.349% (.984) | -35.360% (.999)
Titanic 13,7 0.000% (.000) | -1.754% (.800) | -0.303% (.900) | -0.303% (.900)
Health | 800,400 | -0.085% (.997) | -0.188% (.998) | -0.287% (.998) | -0.026%(.998)
Susy 200,100 | -1.758% (.987) | -0.381% (.987) | -0.397% (.987) | -2.289% (.993)

Museba et al. (2021) reports accuracy as their metric and achieve the following results on the Poker
dataset: 0.7687 using the Heterogeneous Dynamic Ensemble Selection based on Accuracy and
Diversity (HDES-AD) approach, and 0.9068 using their HDES-ADP variant. They also report a
comparison to Diversity for Dealing with Drifts (DDD) Minku & Yao (2011) with 0.7867, Online
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Accuracy Updated Ensemble (OAUE) Brzezinski & Stefanowski (2014) with 0.7325, and Active
Fuzzy Weighting Ensemble (AFWE) Dong et al. (2018) with 0.7126. These approaches all use
techniques to train ensembles of models and in particular Museba et al. (2021) generates models
based on diversity and accuracy. We used RMSE instead of accuracy, but reran our models using F1
to optimize the models for this comparison. We achieved 0.87915 F1, 0.88360 accuracy (-2.558%)
using L1 iterative [800, 400] (approach 1), and a similar score with a smaller model 0.87958 FI1,
0.88462 accuracy (-2.446%) using Random iterative [400, 200] (approach 1).

Azhari et al. (2021) uses a 70/30 train-test split on the Susy dataset at random. We used the recom-
mended test set provided for our results of 10% in size using the final 500k samples in the list and a
validation set of 10%. They report accuracy as their metric with the following scores: 0.7884 using
LR, 0.774 using RF, 0.7546 using DT, 0.793 using Gradient Boosted Tree (GBT). We achieved a
better result of 0.77109 F1 using L1 iterative [200, 100] (approach 1), and an accuracy of 0.80285
(+1.242%).

Finally as our last result, we show a comparison of model size to the original tabular model by
selecting the smallest model we can with less than 2% divergence in RMSE or F1. We do the
same with the original models, so we select the best size for original with less than 2% divergence
in accuracy from the best performing RMSE/F1 original model. Then we apply the same rule to
iterative and finally oneshot. The results are shown in Table 6 highlighting in bold the smallest
model following the described conditions. We show the original model size, then we present the
difference in accuracy of other models and the prune rate from the same original model. In 7 out of
8 datasets we can generate a smaller model with minimal affect to RMSE/F1 including original with
selection. In 6 of 8 datasets we outperform original with selection for 2% divergence generating
models over 85% smaller and many over 98% smaller.

6 CONCLUSION AND FUTURE WORK

In conclusion, we presented two approaches to pruning tabular neural networks, iterative and
oneshot, based on the lottery ticket hypothesis using structured node pruning. The results are pre-
sented for 8 tabular datasets of different sizes and feature sets. We improved accuracy in 6 of the
8 datasets when considering accuracy alone. We also show up to 85% reduction in nodes in 6 of 8
datasets considering model size with limited affect to RMSE/F1 and over 98% reduction for many
of them. We show that the tabular models outperform several other tabular models where compar-
isons weren’t available such as KNN, RF, SVR, DT, LR and GBR. Finally, when comparing to other
papers, we show an improvement of +3.200% in RMSE for the Wine dataset, +1.763% in F1 for the
Health dataset and +1.242% in accuracy for the largest dataset of 5 million samples, Susy.

We found that the iterative approach while pruning a large model obtains the majority of top results
compared to pruning better but smaller models, or in comparison to oneshot pruning. We go beyond
just masking weights and implement a structured pruning approach reducing the model architecture
to layer sizes as low as [1, 1] while improving accuracy in comparison to large model sizes like
[1600, 800] for the alcohol dataset. Finally, for each dataset, we show the advantage in training and
inference time of structured pruning at each pruning state. Future work will be focused on pruning
layers once the size of a layer reaches one node, and other focuses will be on feature selection using
the lottery ticket hypothesis where pruning nodes responsible for certain features will result in the
removal of that feature.

We asked the question if these smaller networks perform just as well as the larger ones, could one
not train the smaller network architecture to begin with?”, and we believe it is clear that given the
right set of initial weights for the network, a smaller, faster and better network can be trained to
begin with. We show the existence of these weights through iterations of pruning, so perhaps there
exists an approach to initializing the network as a function of the data using lottery weights.
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