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Abstract
We present PDLP, a practical first-order method for linear programming (LP)
that can solve to the high levels of accuracy that are expected in traditional LP
applications. In addition, it can scale to very large problems because its core
operation is matrix-vector multiplications. PDLP is derived by applying the primal-
dual hybrid gradient (PDHG) method, popularized by Chambolle and Pock (2011),
to a saddle-point formulation of LP. PDLP enhances PDHG for LP by combining
several new techniques with older tricks from the literature; the enhancements
include diagonal preconditioning, presolving, adaptive step sizes, and adaptive
restarting. PDLP improves the state of the art for first-order methods applied to
LP. We compare PDLP with SCS, an ADMM-based solver, on a set of 383 LP
instances derived from MIPLIB 2017. With a target of 10−8 relative accuracy
and 1 hour time limit, PDLP achieves a 6.3x reduction in the geometric mean of
solve times and a 4.6x reduction in the number of instances unsolved (from 227
to 49). Furthermore, we highlight standard benchmark instances and a large-scale
application (PageRank) where our open-source prototype of PDLP, written in Julia,
outperforms a commercial LP solver.

1 Introduction
First-order methods (FOMs), which use gradient and not Hessian information, are now applied as
standard practice in many areas of optimization [12]. A known weakness of FOMs is the tailing-off
effect, where FOMs quickly find moderately accurate solutions, but progress towards an optimal
solution slows down over time. While moderately accurate solutions are often sufficient for large
machine learning applications, other applications traditionally demand higher precision. One such
area is Linear Programming (LP), the focus of this work.

LP is a fundamental class of optimization problems in applied mathematics, operations research,
and computer science with a huge range of applications, including mixed-integer programming,
scheduling, network flow, chip design, budget allocation, and many others [17, 22, 65, 69]. Software
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for solving LP problems, called LP solvers, originated in the earliest days of computing, predating the
invention of operating systems [55]. The state-of-the-art methods for LP, namely Dantzig’s simplex
method [22,23] and interior-point (or barrier) methods [51], are quite mature and reliable at delivering
highly accurate solutions. These widely successful methods have left little room for FOMs to make
inroads. Furthermore, practitioners who use LP solvers are not accustomed to reasoning about the
trade-off between accuracy and computing times typically intrinsic to FOMs.

In this paper, we provide evidence that, if properly enhanced, FOMs can obtain high quality solutions
to LP problems quickly. Indeed, there’s reason to expect this, as authors have developed FOMs for
LP with linear rates of convergence [24, 32, 47, 70, 71]. On the other hand, the linear rates depend on
potentially loose and hard-to-compute constants; hence, tailing off may still be observed in practice.
To our knowledge, ours is the first work to combine both theoretical enhancements with practical
heuristics, demonstrating their combined effectiveness with extensive computational experiments
on standard benchmark instances. In fact, our experiments will expose a substantial gap between
algorithms presented in the literature and what’s needed to obtain good performance.

Starting from a baseline primal-dual hybrid gradient (PDHG) method [19] applied to a saddle point
formulation of LP, we develop a series of algorithmic improvements. These enhancements include
adaptive restarting [7], dynamic primal-dual step size selection [36, 37], presolving techniques [1],
and diagonal preconditioning (data equilibration) [33]. Most of these enhancements, while inspired by
existing literature, are novel. We name our collection of enhancements PDLP (PDHG for LP).

The impact of these improvements is substantial. For example, on 383 LP instances derived from the
MIPLIB 2017 collection [34], our implementation of a baseline version of PDHG solved only 50
problems to 10−8 relative accuracy given a limit of approximately 100,000 iterations per problem.
By contrast, PDLP solves 283 of the 383 problems under the same conditions. We demonstrate that
PDLP outperforms FOM baselines and, in a small number of cases, obtains performance competitive
with a commercial LP solver.

Although not the focus of this paper, we believe that our results open the door to a new set of
possibilities and computational trade-offs when solving LP problems. PDLP has the potential to solve
extremely large scale instances where the simplex method and interior-point methods are unable
to run because of their reliance on matrix factorization. Since PDLP uses matrix-vector operations
at its core, it can effectively run on multi-threaded CPUs, GPUs [68], or distributed clusters [26].
Furthermore, a GPU implementation of PDLP could efficiently solve batches of similar problems, a
setup that has already been successfully applied with other optimization algorithms in applications
like strong branching [46] and training neural networks that contain optimization layers [5].

Outline. The remainder of this section focuses on related work. Section 2 introduces LP and
PDHG. Section 3 describes the set of enhancements that define PDLP. Section 4 presents numerical
experiments, and Section 5 concludes and outlines future directions.

1.1 Literature review
PDHG PDHG was first developed by Zhu and Chan [72], with subsequent analysis and extension by
a number of authors [3,18,19,21,27,38,60]. PDHG is closely related to the Arrow-Hurwicz method [8].
PDHG is a form of operator-splitting [11, 64] and can be interpreted as a variant of the alternating
directions method of multipliers (ADMM) and Douglas-Rachford splitting (DRS) [16, 25, 56], which
themselves are both instantiations of the proximal point method [25, 58, 62]. As opposed to ADMM
or DRS, PDHG is ‘matrix-free’ in that the data matrix is only used for matrix-vector multiplications.
This allows PDHG to scale to problems even larger than those tackled by these other techniques, and
to make better use of parallel and distributed computation.

FOM-based solvers Recent interest in large-scale cone programming has sparked the development
several first-order solvers based on competing methods. ProxSDP [66] is a solver for semidefinite
programming based on PDHG. Solvers based on Nesterov’s accelerated gradients [49] include TFOCS
[14], and FOM which is a suite of solvers employing both gradient and proximal algorithms [13].
Solvers based on operator splitting techniques like ADMM include SCS [52–54], OSQP [67], POGS
[28], and COSMO [30]. Of these both SCS and POGS offer a matrix-free implementation where the
linear system, that arises from the proximal operator used in ADMM, is solved using the conjugate
gradient method. However, we shall show experimentally that our method can be significantly faster
and more robust than this approach. Finally, [4] considers applying a truncated semismooth Newton
method to the system of equations defining a fixed point of the SCS operator.
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FOMs for LP Lan, Lu and Monteiro [40] and Renegar [61] develop FOMs for LP as a special
case of semidefinite programming, with sublinear convergence rates. The FOM-based solvers above
all apply to more general problem classes like cone programming or quadratic programming. In
contrast, some of the enhancements that constitute PDLP are specialized, either in theory or practice,
for LP (namely restarts [7] and presolving). A number of authors [24, 32, 47, 70, 71] have proposed
linearly convergent FOMs for LP; to our knowledge, none have been subject of a comprehensive
computational study. ECLIPSE [10] solves huge-scale industrial LP problems by accelerated gradient
descent, without presenting comparisons on standard test problems. Lin et al. [42] propose an
ADMM-based interior point method. In contrast with PDLP which solves to high accuracy (i.e.,
10−8 relative error), [42] perform experiments with 10−3 and 10−5 relative error. SNIPAL [41]
is a semismooth Newton method based on the proximal augmented Lagrangian. SNIPAL has fast
asymptotic convergence, yet, to get good performance, the authors use ADMM for warm-starts. Given
PDLP’s favorable comparisons with SCS, it’s plausible that PDLP could provide a more effective
warm-start. Finally, Pock and Chambolle [59] apply PDHG with diagonal preconditioning to a
limited set of test LP problems and Applegate et al. [6] show how to extract infeasibility certificates
when applying PDHG to LP.

2 Preliminaries
In this section, we introduce the notation we use throughout the paper, summarize the LP formulations
we solve, and introduce the baseline PDHG algorithm.

Notation. Let R denote the set of real numbers, R+ the set of nonnegative real numbers, and R−
the set of nonpositive real numbers. Let N denote the set of natural numbers (starting from one).
Let ‖ · ‖p denote the `p norm for a vector, and let ‖ · ‖2 denote the spectral norm for a matrix. For
a vector v ∈ Rn, we use v+ and v− for their positive and negative parts, i.e., v+

i = max{0, vi}
and v−i = min{0, vi}. The symbol v1:m denotes the vector with the first m components of v. The
symbols Ki,· and K·,j correspond to the ith column and jth row of the matrix K, respectively. The
symbol 1 denotes the vector of all ones. Given a convex set X , we use projX to denote the map that
projects onto X.

Linear Programming. We solve primal-dual LP problems of the form:

minimize
x∈Rn

c>x

subject to: Gx ≥ h
Ax = b

l ≤ x ≤ u

maximize
y∈Rm1+m2 ,λ∈Rn

q>y + l>λ+ − u>λ−

subject to: c−K>y = λ

y1:m1
≥ 0

λ ∈ Λ ,

(1)

where G ∈ Rm1×n, A ∈ Rm2×n, c ∈ Rn, h ∈ Rm1 , b ∈ Rm2 , l ∈ (R∪{−∞})n, u ∈ (R∪{∞})n,
K> =

(
G>, A>

)
, q> :=

(
h>, b>

)
, and

Λ = Λ1 × · · · × Λn Λi :=


{0} li = −∞, ui =∞,
R− li = −∞, ui ∈ R
R+ li ∈ R, ui =∞
R otherwise

is the set of variables λ such that the dual objective is finite. This pair of primal-dual problems is
equivalent to the saddle-point problem:

min
x∈X

max
y∈Y
L(x, y) := c>x− y>Kx+ q>y (2)

with X := {x ∈ Rn : l ≤ x ≤ u}, and Y := {y ∈ Rm1+m2 : y1:m1
≥ 0}.

PDHG. When specialized to (2), the PDHG algorithm takes the form:

xk+1 = proj
X

(xk − τ(c−K>yk))

yk+1 = proj
Y

(yk + σ(q −K(2xk+1 − xk)))
(3)
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where τ, σ > 0 are primal and dual step sizes, respectively. PDHG is known to converge to an optimal
solution when τσ‖K‖22 ≤ 1 [20, 21]. We reparameterize the step sizes by

τ = η/ω and σ = ωη with η ∈ (0,∞) and ω ∈ (0,∞). (4)

We call ω ∈ (0,∞) the primal weight, and η ∈ (0,∞) the step size. Under this reparameterization
PDHG converges for all η ≤ 1/‖K‖2. This allows us to control the scaling between the primal and
dual iterates with a single parameter ω. We use the term primal weight to describe ω because it
weights the primal variables in the following norm:

‖z‖ω :=

√
ω‖x‖22 +

‖y‖22
ω

.

This norm plays a role in the theory for PDHG [20] and later algorithmic discussions.

For the baseline PDHG algorithm that we use for comparisons, we consider two simple choices for
η and ω. For the step size, set η = 0.9/‖K‖2 where ‖K‖2 is estimated via power iteration, and
for the primal weight we set ω = 1; this is similar to the default parameters in the standard PDHG
implementation in ODL [2].

3 Practical algorithmic improvements
In this section, we detail these enhancements, and defer further experimental testing of them to
Section 4 and ablation studies to Appendix C. While our enhancements are inspired by theory, our
focus is on practical performance. The algorithm as a whole has no convergence guarantee, although
some individual enhancements do; see Section 3.6 for further discussion.

Algorithm 1 presents pseudo-code for PDLP after preprocessing steps. We modify the step sizes (Sec-
tion 3.1), add restarts (Section 3.2), and dynamically update the primal weights (Section 3.3). Before
running Algorithm 1 we apply presolve (Section 3.4) and diagonal preconditioning (Section 3.5).
There are some minor differences between the pseudo-code and the actual code. In particular, we only
evaluate the restart or termination criteria (Line 10) every 40 iterations. This reduces the associated
overheads with minimal impact on the total number of iterations. We also check the termination
criteria before beginning the algorithm or if we detect a numerical error.

Algorithm 1: PDLP (after preconditioning and presolve)

1 Input: An initial solution z0,0;
2 Initialize outer loop counter n← 0, total iterations k ← 0, step size η̂0,0 ← 1/‖K‖∞, primal

weight ω0 ← InitializePrimalWeight(c, q);
3 repeat
4 t← 0;
5 repeat
6 zn,t+1, ηn,t+1, η̂n,t+1 ← AdaptiveStepOfPDHG(zn,t, ωn, η̂n,t, k) ;
7 z̄n,t+1 ← 1∑t+1

i=1 η
n,i

∑t+1
i=1 η

n,izn,i ;

8 zn,t+1
c ← GetRestartCandidate(zn,t+1, z̄n,t+1, zn,0) ;

9 t← t+ 1, k ← k + 1 ;
10 until restart or termination criteria holds;
11 restart the outer loop. zn+1,0 ← zn,tc , n← n+ 1;
12 ωn ←PrimalWeightUpdate(zn,0, zn−1,0, ωn−1) ;
13 until termination criteria holds;
14 Output: zn,0.

3.1 Step size choice
The convergence analysis [20, Equation (15)] of PDHG (equation (3)) relies on a small constant step
size

η ≤ ‖zk+1 − zk‖2ω
2(yk+1 − yk)>K(xk+1 − xk)

(5)
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Algorithm 2: One step of PDHG using our step size heuristic
1 Function AdaptiveStepOfPDHG (zn,t, ωn, η̂n,t, k):
2 (x, y)← zn,t, η ← η̂n,t ;
3 for i = 1, . . . ,∞ do
4 x′ ← projX(x− η

ωn (c−K>y)) ;
5 y′ ← projY (y + ηωn(q −K(2x′ − x))) ;

6 η̄ ← ‖(x′−x,y′−y)‖2ωn

2(y′−y)>K(x′−x)
;

7 η′ ← min
(
(1− (k + 1)−0.3)η̄, (1 + (k + 1)−0.6)η

)
;

8 if η ≤ η̄ then
9 return (x′, y′), η, η′

10 end
11 η ← η′ ;
12 end

where zk = (xk, yk). Classically one would ensure (5) by picking η = 1
‖K‖2 . This is overly pes-

simistic and requires estimation of ‖K‖2. Instead our AdaptiveStepOfPDHG adjusts η dynamically
to ensure that (5) is satisfied. If (5) isn’t satisfied, we abort the step; i.e., we reduce η, and try again.
If (5) is satisfied we accept the step. This is described in Algorithm 2. Note that in Algorithm 2
η̄ ≥ 1

‖K‖2 holds always, and from this one can show the resulting step size η ≥ 1−o(1)
‖K‖2 holds as

k →∞.

Our step size routine compares favorably in practice with the line search by Malitsky and Pock [43]
(See Appendix C.1).

3.2 Adaptive restarts
In PDLP, we adaptively restart the PDHG algorithm in each outer iteration. The key to our restarts at
the n-th outer iteration is the normalized duality gap at z which for any radius r ∈ (0,∞) is defined
by

ρnr (z) :=
1

r
maximize

(x̂,ŷ)∈{ẑ∈Z:‖ẑ−z‖ωn≤r}
{L(x, ŷ)− L(x̂, y)},

introduced by [7]. Unlike the standard duality gap

maximize
(x̂,ŷ)∈Z

{L(x, ŷ)− L(x̂, y)},

the normalized duality gap is always a finite quantity. Furthermore, for any value of r and ωn, the
normalized duality gap ρnr (z) is 0 if and only if the solution z is an optimal solution to (2) [7]; thus, it
provides a valid metric for measuring progress towards the optimal solution. The normalized duality
gap is computable in linear time [7]. For brevity, define µn(z, zref) as the normalized duality gap at z
with radius ‖z − zref‖ωn , i.e.,

µn(z, zref) := ρn‖z−zref‖ωn (z),

where zref is a user-chosen reference point.

Choosing the restart candidate. To choose the restart candidate zn,t+1
c we call

GetRestartCandidate(zn,t+1, z̄n,t+1, zn,0) :=

{
zn,t+1 µn(zn,t+1, zn,0) < µn(z̄n,t+1, zn,0)

z̄n,t+1 otherwise .

This choice is justified in Remark 5 of [7].

Restart criteria. We define three parameters: βsufficient ∈ (0, 1), βnecessary ∈ (0, βsufficient) and
βartificial ∈ (0, 1). In PDLP we use βsufficient = 0.9, βnecessary = 0.1, and βartificial = 0.5. The algorithm
restarts if one of three conditions holds:

(i) (Sufficient decay in normalized duality gap) µn(zn,t+1
c , zn,0) ≤ βsufficientµn(zn,0, zn−1,0) ,

(ii) (Necessary decay + no local progress in normalized duality gap)

µn(zn,t+1
c , zn,0) ≤ βnecessaryµn(zn,0, zn−1,0) and µn(zn,t+1

c , zn,0) > µn(zn,tc , zn,0) ,
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(iii) (Long inner loop) t ≥ βartificialk .

The motivation for (i) is presented in [7]; it guarantees the linear convergence of restarted PDHG
on LP problems. The second condition in (ii) is inspired by adaptive restart schemes for accelerated
gradient descent where restarts are triggered if the function value increases [57]. The first inequality in
(ii) provides a safeguard for the second one, preventing the algorithm restarting every inner iteration
or never restarting. The motivation for (iii) relates to the primal weights (Section 3.3). In particular,
primal weight updates only occur after a restart, and condition (iii) ensures that the primal weight will
be updated infinitely often. This prevents a bad choice of primal weight in earlier iterations causing
progress to stall for a long time.

3.3 Primal weight updates
The primal weight is initialized using

InitializePrimalWeight(c, q) :=

{
‖c‖2
‖q‖2 ‖c‖2, ‖q‖2 > εzero

1 otherwise

where εzero is a small nonzero tolerance. This primal weight update scheme guarantees scale in-
variance. In particular, in Appendix A we consider PDHG with εzero = 0, η = 0.9/‖K‖2 and
ω = InitializePrimalWeight(c, q). In this simplified setting, we prove that if we multiply the
objective, constraints, or the right hand side and variable bounds by a scalar then the iterate behaviour
remain identical (up to a scaling factor).

Algorithm 3: Primal weight update

1 Function PrimalWeightUpdate(zn,0, zn−1,0, ωn−1):
2 ∆n

x = ‖xn,0 − xn−1,0‖2, ∆n
y = ‖yn,0 − yn−1,0‖2 ;

3 if ∆n
x > εzero and ∆n

y > εzero then
4 return exp

(
θ log

(
∆n

y

∆n
x

)
+ (1− θ) log

(
ωn−1

))
5 else
6 return ωn−1 ;
7 end

Algorithm 3 aims to choose the primal weight ωn such that distance to optimality in the primal and
dual is the same, i.e., ‖(xn,t − x?,0)‖ωn ≈ ‖(0, yn,t − y?)‖ωn . By definition of ‖ · ‖ω ,

‖(xn,t − x?,0)‖ωn = ωn‖xn,t − x?‖2, ‖(0, yn,t − y?)‖ωn =
1

ωn
‖yn,t − y?‖2.

Setting these two terms equal yields ωn = ‖yn,t−y?‖2
‖xn,t−x?‖2 . Of course, the quantity ‖y

n,t−y?‖2
‖xn,t−x?‖2 is unknown

beforehand, but we attempt to estimate it using ∆n
y/∆

n
x . However, the quantity ∆n

y/∆
n
x can change

wildly from one restart to another, causing ωn to oscillate. To dampen variations in ωn, we first move
to a log-scale where the primal weight is symmetric, i.e., log(1/ωn) = − log(ωn), and perform a
exponential smoothing with parameter θ ∈ [0, 1]. In PDLP, we use θ = 0.5.

There are several important differences between our primal weight heuristic and literature [36, 37].
For example, [36,37] make relatively small changes to the primal weights at each iteration, attempting
to balance the primal and dual residual. These changes have to be diminishingly small because, in our
experience, PDHG may be unstable if they are too big. In contrast, in our method the primal weight
is only updated during restarts, which in practice allows for much larger changes without instability
issues. Moreover, our scheme tries to balance the weighted distance traveled in the primal and dual
rather than the residuals [36, 37].

3.4 Presolve
Presolving refers to transformation steps that simplify the input problem before starting the opti-
mization solver. These steps span from relatively easy transformations such as detecting inconsistent
bounds, removing empty rows and columns of K, and removing variables whose lower and upper
bounds are equal, to more complex operations such as detecting duplicate rows in K and tightening
bounds. Presolve is a standard component of traditional LP solvers [44]. We are not aware of presolve
being combined with PDHG for LP. However, [41, 42] combine presolve with other FOMs.
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As an experiment to measure the impact of presolve, we used PaPILO [29], an open-source presolving
library. For technical reasons, it was easier to use PaPILO as a standalone executable than as a library.
We simulate its effect by simply solving the preprocessed instances. Convergence criteria are
evaluated with respect to the presolved instance, not the original problem.

3.5 Diagonal Preconditioning
Preconditioning is a popular heuristic in optimization for improving the convergence of FOMs. To
avoid factorizations, we only consider diagonal preconditioners. Our goal is to rescale the constraint
matrix K = (G,A) to K̃ = (G̃, Ã) = D1KD2 with positive diagonal matrices D1 and D2, so that
the resulting matrix K̃ is “well balanced”. Such preconditioning creates a new LP instance that
replaces A,G, c, b, h, u, and l in (1) with G̃, Ã, x̂ = D−1

2 x, c̃ = D2c, (b̃, h̃) = D1(b, h), ũ = D−1
2 u

and l̃ = D−1
2 l. Common choices for D1 and D2 include:

• No scaling: Solve the original LP instance (1) without additional scaling, namely D1 = D2 = I .

• Pock-Chambolle [59]: Pock and Chambolle proposed a family of diagonal preconditioners3 for
PDHG parameterized by α, where the diagonal matrices are defined by (D1)jj =

√
‖Kj,·‖2−α

for j = 1, ...,m1 +m2 and (D2)ii =
√
‖K·,i‖α for i = 1, ..., n. We use α = 1 in PDLP (we also

tested α = 0 and α = 2). This is the baseline diagonal preconditioner in the PDHG literature.

• Ruiz [63]: Ruiz scaling is a popular algorithm in numerical linear algebra to equilibrate matrices.
In an iteration of Ruiz scaling, the diagonal matrices are defined as (D1)jj =

√
‖Kj,·‖∞ for

j = 1, ...,m1+m2 and (D2)ii =
√
‖K·,i‖∞ for i = 1, ..., n. Ruiz [63] shows that if this rescaling

is applied iteratively, the infinity norm of each row and each column converge to 1.

For the default PDLP settings, we apply a combination of Ruiz rescaling [63] and the preconditioning
technique proposed by Pock and Chambolle [59]. In particular, we apply 10 iterations of Ruiz scaling
and then apply the Pock-Chambolle scaling. To illustrate the effectiveness of our proposed scaling
technique, we compare it against these three common techniques in Appendix C.5.

3.6 Theoretical guarantees for the above enhancements
While PDLP’s enhancements are motivated by theory, some of them may not preserve theoretical
guarantees as discussed below:

• We do not have a proof of convergence for the adaptive step size rule (Section 3.1).

• One can show our restart criteria (Section 3.2) preserve convergence guarantees by modifying
the proof of [7] to a more general setting.

• Primal weight updates (Section 3.3) do not readily preserve convergence guarantees, but we
conjecture that a proof of convergence is possible if they are updated infrequently.

• Presolve (Section 3.4) and diagonal preconditioning (Section 3.5) preserve theoretical
guarantees because they can be viewed as applying PDHG to an LP instance with different
data.

4 Numerical experiments

Our numerical experiments study the effectiveness of PDLP primarily with respect to traditional LP
applications and benchmark sets. Section 4.1 describes the setup for the experiments. Section 4.2
demonstrates PDLP’s improvements over baseline PDHG. Section 4.3 compares PDLP with other
FOMs. Section 4.4 highlights benchmark instances where PDLP outperforms a commercial LP solver.
Finally, Section 4.5 illustrates the ability of PDLP to scale to a large application where barrier and
simplex-based solvers run out of memory. The supplemental materials contain extensive ablation
studies and additional instructions for reproducing the experiments.

3Diagonal preconditioning is equivalent to changing to a weighted `2 norm in the proximal step of PDHG
(weight defined by D2 and D1 for the primal and dual respectively). Pock and Chambolle use this weighted
norm perspective.
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4.1 Experimental setup
Optimality termination criteria. PDLP terminates with an approximately optimal solution when
the primal-dual iterates x ∈ X , y ∈ Y , λ ∈ Λ, satisfy:∣∣q>y + l>λ+ − u>λ− − c>x

∣∣ ≤ ε(1 +
∣∣q>y + l>λ+ − u>λ−

∣∣+
∣∣c>x∣∣) (6a)∥∥∥∥( Ax− b

(h−Gx)+

)∥∥∥∥
2

≤ ε(1 + ‖q‖2) (6b)

‖c−K>y − λ‖2 ≤ ε(1 + ‖c‖2) (6c)

where ε ∈ (0,∞) is the termination tolerance. Note that if (6) is satisfied with ε = 0, then by
LP duality we have found an optimal solution [35]. Indeed, (6a) is the duality gap, (6b) is primal
feasibility, and (6c) is dual feasibility. We use these criteria to be consistent with those of SCS [54].
The PDHG algorithm does not explicitly include a reduced costs variable λ. Therefore, to evaluate
the optimality termination criteria we compute λ = projΛ(c−K>y). All instances considered have
an optimal primal-dual solution. We use ε = 10−8 as a benchmark for high-quality solutions and
ε = 10−4 for moderately accurate solutions.

Benchmark datasets. We use three datasets to compare algorithmic performance. One is the LP
benchmark dataset of 56 problems, formed by merging the instances from “Benchmark of Simplex
LP Solvers”, “Benchmark of Barrier LP solvers”, and “Large Network-LP Benchmark” from [45].
We also created a larger benchmark of 383 instances curated from LP relaxations of mixed-integer
programming problems from the MIPLIB2017 collection [34] (see Appendix B) that we label MIP
Relaxations. MIP Relaxations was used extensively during algorithmic development, e.g., for
hyperparameter choices; we held out LP benchmark as a test set. Finally, we also performed some
experiments on the Netlib LP benchmark [31], an historically important benchmark that is no longer
state of the art for large-scale LP.

Software. PDLP is implemented in an open-source Julia [15] module available at https:
//github.com/google-research/FirstOrderLp.jl. The module also contains a baseline im-
plementation of the extragradient method with many of the same enhancements as PDLP (labeled
‘Enh. Extragradient’). We compare with two external packages: SCS [54] version 2.1.3, an open-
source generic cone solver based on ADMM, and Gurobi version 9.0.1, a state-of-the-art commercial
LP solver. SCS supports two modes for solving the linear system that arises at each iteration, a direct
method based on a cached LDL factorization (which is the default ‘SCS’) and an indirect method
based on the conjugate gradient method (which we label ‘SCS (matrix-free)’). All solvers are run
single-threaded. SCS and Gurobi are provided the same presolved instances as PDLP.

Computing environment. We used two computing environments for our experiments: 1)
e2-highmem-2 virtual machines (VMs) on Google Cloud Platform (GCP). Each VM provides
two virtual CPUs and 16GB RAM. 2) A dedicated workstation with an Intel Xeon E5-2669 v3 proces-
sor and 128 GB RAM. This workstation has a license for Gurobi that permits at most one concurrent
solve. Total compute time on GCP for all preliminary and final experiments was approximately
72, 000 virtual CPU hours.

Initialization. All first-order methods use all-zero vectors as the initial starting points.

Metrics. We use the term KKT passes to refer to the number of matrix multiplications by both K
and K>. Given that the most expensive operation in our algorithm is matrix-vector multiplication,
this metric is less noisy than runtime for comparing performance between matrix-free solvers.
SGM10 stands for shifted geometric mean with shift 10, which is computed by adding 10 to all data
points, taking the geometric mean, and then subtracting 10. Unsolved instances are assigned values
corresponding to the limits specified in the next paragraph.

Time and KKT pass limits. For Section 4.2 we impose a limit on the KKT passes of 100, 000.
For Section 4.3 we impose a time limit of 1 hour.

4.2 Impact of PDLP’s improvements
The y-axes of Figure 1 display the SGM10 of the KKT passes normalized by the value for baseline
PDHG. We can see, with the exception of presolve for LP benchmark at tolerance 10−4, each of our
modifications described in Section 3 improves the performance of PDHG.
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Figure 1: Summary of relative impact of PDLP’s improvements
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Figure 2: Number of problems solved for MIP Relaxations (top), LP benchmark (middle), and
Netlib (bottom) datasets.

4.3 Comparison with other first-order baselines

We compared PDLP with several other first-order baselines: SCS [54], in both direct (default) mode
and matrix-free mode, and our enhanced implementation of the extragradient method [39, 48]. For
SCS in matrix-free mode, we include the KKT passes from the conjugate gradient solves; for SCS in
direct mode there is no reasonable measure of KKT passes for the factorization and direct solve, so
we only measure running time. The comparisons are summarized in Figure 2.

4.4 PDLP versus simplex and barrier

In this section, we test the performance of PDLP against the three methods available in Gurobi:
barrier, primal simplex, and dual simplex. By default when provided multiple threads, Gurobi runs
these three methods concurrently and terminates when the first method completes. We used default
termination for Gurobi and set ε = 10−8 for PDLP. We ran experiments with instances from the MIP
Relaxations and LP benchmark. Although, for most instances, Gurobi outperforms PDLP, we
found problems for which PDLP exhibits moderate to significant gains. Table 1 gives examples of
instances where our prototype implementation is within a factor of two of the best of the three Gurobi
methods. While further improvements are needed for PDLP to truly compete with the portfolio of
methods that Gurobi offers, we interpret these results as evidence that PDLP itself could be of value
in this portfolio.
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Table 1: Instances from MIP Relaxations (top) and LP benchmark (bottom) where PDLP is
within a factor of 2 of the best of all Gurobi methods. Time to solve in seconds.

Instance PDLP Gurobi Barrier Gurobi Primal Simp. Gurobi Dual Simp.

ex9 1.6 102.6 181.3 47.6
genus-sym-g62-2 2.1 10.7 6.7 33.2
highschool1-aigio 72.6 243.8 >3600 >3600
neos-578379 1.4 0.7 1.7 1.8
rwth-timetable 1870.3 >3600 >3600 >3600

ex10 4.9 63.1 16.8 7.9
nug08-3rd 2.2 3.2 2219.2 24.1
savsched1 35.9 25.9 56.0 261.3

Table 2: Solve time for PageRank instances. Gurobi barrier has crossover disabled, 1 thread. PDLP
and SCS solve to 10−8 relative accuracy. SCS is matrix-free. Baseline PDHG is unable to solve any
instances. Presolve not applied. OOM = Out of Memory. The number of nonzero coefficients per
instance is 8× (# nodes)− 18.

# nodes PDLP SCS Gurobi Barrier Gurobi Primal Simp. Gurobi Dual Simp.

104 7.4 sec. 1.3 sec. 36 sec. 37 sec. 114 sec.
105 35 sec. 38 sec. 7.8 hr. 9.3 hr. >24 hr.
106 11 min. 25 min. OOM >24 hr. -
107 5.4 hr. 3.8 hr. - - -

4.5 Large-scale application: PageRank
Nesterov [50, equation (7.3)] gives an LP formulation of the standard “PageRank” problem. Although
the LP formulation is not the best approach to computing PageRank, it is a source of very large
instances. For a random scalable collection of PageRank instances, we used Barabási-Albert [9]
preferential attachment graphs with approximately three edges per node; see Appendix D for details.
The results are summarized in Table 2.

5 Conclusions and future work
We find our experimental results encouraging for the application of FOMs like PDHG to LP. At
a minimum, they provide evidence against the claim that FOMs are useful only when moderately
accurate solutions are desired. The practical success of our heuristics that lack theoretical guarantees
provides fresh motivation for theoreticians to study these methods. It is important, as well, to
understand what drives the difficulty of some instances and how they could be transformed to solve
more quickly. We hope the community will use the benchmarks and baselines released with this
work as a starting point for further investigating new FOMs for LP. With additional algorithmic and
implementation refinements, we believe that PDLP or similar approaches could become part of the
standard toolkit for linear programming.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Our comparisons with baselines
show that PDLP is not always the best, hence demonstrating its limitations. We also
note which of our heuristics are lacking theoretical guarantees.

(c) Did you discuss any potential negative societal impacts of your work? [No] As a purely
algorithmic paper, we do not believe such a discussion is relevant. Linear programming
is a mature area whose societal impact is well understood.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] The only
theoretical result appear in the appendix (Proposition 1).

(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] Code,
data, and instructions needed to reproduce the main experimental results are publicly
released in an open source repository at https://github.com/google-research/
FirstOrderLp.jl. Additional instructions are included in the supplementary materi-
als.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] We discussed that we used MIP Relaxations to build our algorithm
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and LP benchmark and Netlib as held out evaluation sets. We run a large ablation
study to justify algorithmic decisions and most hyperparameter settings.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We used large datasets that would have been computa-
tional intensive to run multiple times. When possible, we use the “KKT pass” metric
that’s reproducible and not subject to measurement noise. Only the PageRank instances
use a random seed, and these are too large to run multiple times because we have a
single concurrent license for Gurobi.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We use LP
Benchmark, MIP Relaxations, and Netlib datasets. We cite the sources for the
datasets.

(b) Did you mention the license of the assets? [No] Although these datasets are widely
used in the community, we were unable to find explicit licenses.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We include our code and data processing scripts in the supplemental material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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