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Abstract

3D-related inductive biases like translational invariance and rotational equivariance1

are indispensable to graph neural networks operating on 3D atomistic graphs2

such as molecules. Inspired by the success of Transformers in various domains,3

we study how to incorporate these inductive biases into Transformers. In this4

paper, we present Equiformer, a graph neural network leveraging the strength5

of Transformer architectures and incorporating SE(3)/E(3)-equivariant features6

based on irreducible representations (irreps). Irreps features encode equivariant7

information in channel dimensions without complicating graph structures. The8

simplicity enables us to directly incorporate them by replacing original operations9

with equivariant counterparts. Moreover, to better adapt Transformers to 3D graphs,10

we propose a novel equivariant graph attention, which considers both content and11

geometric information such as relative position contained in irreps features. To12

improve expressivity of the attention, we replace dot product attention with multi-13

layer perceptron attention and include non-linear message passing. We benchmark14

Equiformer on two quantum properties prediction datasets, QM9 and OC20. For15

QM9, among models trained with the same data partition, Equiformer achieves16

best results on 11 out of 12 regression tasks. For OC20, under the setting of17

training with IS2RE data and optionally IS2RS data, Equiformer improves upon18

state-of-the-art models.19

1 Introduction20

Machine learned models can accelerate the prediction of quantum properties of atomistic systems21

like molecules by learning approximations of ab initio calculations [29, 87, 37, 25, 4, 10, 49, 76, 69,22

54, 51]. In particular, graph neural networks (GNNs) have gained increasing popularity due to their23

performance. By modeling atomistic systems as graphs, GNNs naturally treat the set-like nature of24

collections of atoms, encode the interaction between atoms in node features and update the features25

by passing messages between nodes. One factor contributing to the success of neural networks is the26

ability to incorporate inductive biases that exploit the symmetry of data. Take convolutional neural27

networks (CNNs) for 2D images as an example: Patterns in images should be recognized regardless28

of their positions, which motivates the inductive bias of translational equivariance. As for atomistic29

graphs, where each atom has its coordinate in 3D Euclidean space, we consider inductive biases related30

to 3D Euclidean group E(3), which include equivariance to 3D translation, 3D rotation, and inversion.31

Concretely, some properties like energy of an atomistic system should be constant regardless of32

how we shift the system; others like force should be rotated accordingly if we rotate the system. To33

incorporate these inductive biases, equivariant and invariant neural networks have been proposed. The34

former leverages geometric tensors like vectors for equivariant node features [71, 79, 43, 23, 4, 5, 51],35

and the latter augments graphs with invariant information such as distances and angles extracted from36

3D graphs [63, 26, 25, 48, 67, 42].37
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A parallel line of research focuses on applying Transformer networks [77] to other domains like38

computer vision [9, 16, 72] and graph [18, 44, 84, 65] and has demonstrated widespread success.39

However, as Transformers were developed for sequence data [15, 3, 7], it is crucial to incorporate40

domain-related inductive biases. For example, Vision Transformer [16] shows that adopting a pure41

Transformer to image classification cannot generalize well and achieves worse results than CNNs42

when trained on only ImageNet [60] since it lacks inductive biases like translational invariance. Note43

that ImageNet contains over 1.28M images and the size is already larger than that of many quantum44

properties prediction datasets [59, 56, 10]. Therefore, this highlights the necessity of including correct45

inductive biases when applying Transformers to the domain of 3D atomistic graphs.46

In this work, we present Equiformer, an equivariant graph neural network utilizing SE(3)/E(3)-47

equivariant features built from irreducible representations (irreps) and equivariant attention mecha-48

nisms to combine the 3D-related inductive bias with the strength of Transformer. Irreps features49

encode equivariant information in channel dimensions without complicating graph structures. The50

simplicity enables us to directly incorporate them into Transformers through replacing original51

operations with equivariant counterparts and introducing an additional equivariant operation called52

tensor product. Moreover, we propose a novel equivariant graph attention, which considers both53

content and geometric information such as relative position. Equivariant graph attention improves54

upon typical attention in Transformers by replacing dot product attention with theoretically stronger55

multi-layer perceptron attention and including non-linear message passing. With these innovations,56

Equiformer demonstrates the possibility of generalizing Transformers to 3D atomistic graphs and57

achieves competitive results on two quantum properties prediction datasets, QM9 [59, 56] and58

OC20 [10]. For QM9, compared to models trained with the same data partition, Equiformer achieves59

the best results on 11 out of 12 regression tasks. For OC20, under the setting of training with IS2RE60

data and optionally IS2RS data, Equiformer improves upon state-of-the-art models.61

2 Related Works62

Here, we focus on equivariant neural networks and discuss other works in Sec. B in appendix.63

Equivariant GNNs. Equivariant neural networks [71, 43, 79, 23, 50, 73, 4, 38, 64, 62, 76, 5, 70,64

46, 51] operate on geometric tensors like type-L vectors to achieve equivariance. The central idea65

is to use functions of geometry built from spherical harmonics and irreps features to achieve 3D66

rotational and translational equivariance as proposed in Tensor Field Network (TFN) [71], which67

generalizes 2D counterparts [81, 12, 13] to 3D Euclidean space [71, 79, 43]. Previous works differ68

in equivariant operations used in their networks. TFN [71] and NequIP [4] use graph convolution69

with linear messages, with the latter utilizing extra equivariant gate activations [79]. SEGNN [5]70

introduces non-linear messages [29, 61] for irreps features, and the non-linear messages use the same71

gate activation and improve upon linear messages. SE(3)-Transformer [23] adopts an equivariant72

version of dot product (DP) attention [77, 39] with linear messages, and the attention can support73

vectors of any degree (type) L. Subsequent works on equivariant Transformers [70, 46] follow the74

practice of DP attention and linear messages but use more specialized architectures considering75

only type-0 and type-1 vectors. The proposed Equiformer incorporates all the advantages through76

combining MLP attention with non-linear messages and supporting vectors of any type. Compared to77

TFN [71], NequIP [4], SEGNN [5], and SE(3)-Transformer [23], the proposed combination of MLP78

attention and non-linear messages is more expressive than pure linear or non-linear messages and79

pure MLP or dot product attention. Compared to other equivariant Transformers [70, 46], in addition80

to being more expressive, the proposed attention mechanism can support vectors of higher degrees81

and involve higher order tensor product interactions, which can lead to better performance [4, 5].82

3 Background83

3.1 E(3) Equivariance84

Atomistic systems are often described using coordinate systems. For 3D Euclidean space, we can85

freely choose coordinate systems and change between them via the symmetries of 3D space: 3D86

translation, rotation and inversion ( r⃗ → −r⃗ ). The groups of 3D translation, rotation and inversion87

form Euclidean group E(3), with the first two forming SE(3), the second being SO(3), and the88

last two forming O(3). The laws of physics are invariant to the choice of coordinate systems and89

therefore properties of atomistic systems are equivariant, e.g., when we rotate our coordinate system,90

quantities like energy remain the same while others like force rotate accordingly. Formally, a function91

f mapping between vector spaces X and Y is equivariant to a group of transformation G if for any92
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input x ∈ X , output y ∈ Y and group element g ∈ G, we have f(DX(g)x) = DY (g)f(x), where93

DX(g) and DY (g) are transformation matrices parametrized by g in X and Y .94

Incorporating equivariance into neural networks as inductive biases is crucial as this enables generaliz-95

ing to unseen data in a predictable manner. For example, 2D convolution f is equivariant to the group96

of 2D translation, and thus, CNNs can identify patterns at any location even if they have never seen97

the patterns at that specific location before. For 3D atomistic graphs, we consider the group of E(3).98

Features and learnable functions should be E(3)-equivariant to geometric transformation acting99

on position r⃗. In this work, following previous works [71, 43, 79] implemented in e3nn [28], we100

achieve SE(3)/E(3)-equivariance by using equivariant features based on vector spaces of irreducible101

representations and equivariant operations like tensor product for learnable functions.102

3.2 Irreducible Representations103

A group representation [17, 85] defines the transformation matrices DX(g) of group elements g that104

act on a vector space X . For 3D Euclidean group E(3), two examples of vector spaces with different105

transformation matrices are scalars and Euclidean vectors in R3, i.e., vectors change with rotation106

while scalars do not. To address translation symmetry, we simply operate on relative positions. Below107

we focus our discussion on O(3). The transformation matrices of rotation and inversion are separable108

and commute, and we first discuss irreducible representations of SO(3).109

Any group representation of SO(3) on a given vector space can be decomposed into a concatenation110

of provably smallest transformation matrices called irreducible representations (irreps). Specifically,111

for group element g ∈ SO(3), there are (2L+1)-by-(2L+1) irreps matrices DL(g) called Wigner-D112

matrices acting on (2L+ 1)-dimensional vector spaces, where degree L is a non-negative integer. L113

can be interpreted as an angular frequency and determines how quickly vectors change when rotating114

coordinate systems. DL(g) of different L act on independent vector spaces. Vectors transformed by115

DL(g) are type-L vectors, with scalars and Euclidean vectors being type-0 and type-1 vectors. It is116

common to index elements of type-L vectors with an index m called order, where −L ≤ m ≤ L.117

The group of inversion Z2 only has two elements, identity and inversion, and two irreps, even e and118

odd o. Vectors transformed by irrep e do not change sign under inversion while those by irrep o do.119

We create irreps of O(3) by simply multiplying those of SO(3) and Z2, and we introduce parity p to120

type-L vectors to denote how they transform under inversion. Therefore, type-L vectors in SO(3) are121

extended to type-(L, p) vectors in O(3), where p is e or o. In the following, we use type-L vectors122

for the ease of discussion, but we can generalize to type-(L, p) vectors, unless otherwise stated.123

Irreps Features. We concatenate multiple type-L vectors to form SE(3)-equivariant irreps features.124

Concretely, irreps feature f has CL type-L vectors, where 0 ≤ L ≤ Lmax and CL is the number of125

channels for type-L vectors. We index irreps features f by channel c, degree L, and order m and126

denote as f (L)
c,m. Different channels of type-L vectors are parametrized by different weights but are127

transformed with the same Wigner-D matrix DL(g). Regular scalar features correspond to including128

only type-0 vectors. This can generalize to E(3) by including inversion and extending L to (L, p).129

Spherical Harmonics. Euclidean vectors r⃗ in R3 can be projected into type-L vectors f (L) by using130

spherical harmonics (SH) Y (L): f (L) = Y (L)( r⃗
||r⃗|| ). SH are E(3)-equivariant with DL(g)f

(L) =131

Y (L)( D1(g)r⃗
||D1(g)r⃗|| ). SH of relative position r⃗ij generates the first set of irreps features. Equivariant132

information propagates to other irreps features through equivariant operations like the tensor product.133

3.3 Tensor Product134

We use tensor products to interact different type-L vectors and first discuss the tensor product for135

SO(3). The tensor product denoted as ⊗ uses Clebsch-Gordan coefficients to combine type-L1136

vector f (L1) and type-L2 vector g(L2) and produces type-L3 vector h(L3) as follows:137

h(L3)
m3

= (f (L1) ⊗ g(L2))m3
=

L1∑
m1=−L1

L2∑
m2=−L2

C
(L3,m3)
(L1,m1)(L2,m2)

f (L1)
m1

g(L2)
m2

(1)

where m1 denotes order and refers to the m1-th element of f (L1). Clebsch-Gordan coefficients138

C
(L3,m3)
(L1,m1)(L2,m2)

are non-zero only when |L1 − L2| ≤ L3 ≤ |L1 + L2| and thus restrict output139

vectors to be of certain types. For efficiency, we discard vectors with L > Lmax, where Lmax is140
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Figure 1: Architecture of Equiformer. We embed input 3D graphs with atom and edge-degree
embeddings and process them with Transformer blocks, consisting of equivariant graph attention and
feed forward networks. In this figure, “⊗” denotes multiplication, “⊕” denotes addition, and “DTP”
stands for depth-wise tensor product.

∑
within a circle denotes summation over all neighbors. Gray

cells indicate intermediate irreps features.

a hyper-parameter, to prevent vectors of increasingly higher dimensions. The tensor product is an141

equivariant operation, with (DL1(g
′)f (L1))⊗ (DL2(g

′)g(L2)) = DL3(g
′)h(L3) for g′ ∈ SO(3).142

We call each distinct non-trivial combination of L1 ⊗ L2 → L3 a path. Each path is independently143

equivariant, and we can assign one learnable weight to each path in tensor products, which is similar144

to typical linear layers. We can generalize Eq. 1 to irreps features and include multiple channels145

of vectors of different types through iterating over all paths associated with channels of vectors. In146

this way, weights are indexed by (c1, l1, c2, l2, c3, l3), where c1 is the c1-th channel of type-l1 vector147

in input irreps feature. We use ⊗w to represent tensor product with weights w. Weights can be148

conditioned on quantities like relative distances. Please refer to Sec. A.4 in appendix for discussion149

on inversion in tensor products and Sec. D.1 and E.1 for additional results of including inversion.150

4 Equiformer151

We incorporate SE(3)/E(3)-equivariant irreps features into Transformers [77] and use equivariant152

operations. To better adapt Transformers to 3D graph structures, we propose equivariant graph153

attention. The overall architecture of Equiformer is illustrated in Fig. 1.154

4.1 Equivariant Operations for Irreps Features155

Here we discuss equivariant operations used in Equiformer that serve as building blocks for equivariant156

graph attention and other modules. They include the equivariant version of the original operations in157

Transformers and the depth-wise tensor product as illustrated in Fig. 2.158

Linear. Linear layers are generalized to irreps features by transforming different type-L vectors159

separately. Specifically, we apply separate linear operations to each group of type-L vectors. We160

remove bias terms for non-scalar features with L > 0 as biases do not depend on inputs, and therefore,161

including biases for type-L vectors with L > 0 can break equivariance.162

Layer Normalization. Transformers adopt layer normalization (LN) [2] to stabilize training. Given163

input x ∈ RN×C , with N being the number of nodes and C the number of channels, LN calculates164

the linear transformation of normalized input as LN(x) =
(

x−µC

σC

)
◦ γ + β, where µC , σC ∈165

RN×1 are mean and standard deviation of input x along the channel dimension, γ, β ∈ R1×C are166

learnable parameters, and ◦ denotes element-wise product. By viewing standard deviation as the167

root mean square value (RMS) of L2-norm of type-L vectors, LN can be generalized to irreps168

features. Specifically, given input x ∈ RN×C×(2L+1) of type-L vectors, the output is LN(x) =169
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Figure 2: Equivariant operations used in Equiformer. (a) Each gray line between input and
output irreps features contains one learnable weight. (b) “RMS” denotes the root mean square value
along the channel dimension. For simplicity, we have removed multiplying by γ here. (c) Gate
layers are equivariant activation functions where non-linearly transformed scalars are used to gate
non-scalar irreps features. (d) The left two irreps features correspond to two input irreps features,
and the rightmost one is the output irreps feature. The two gray lines connecting two vectors in
the input irreps features and one vector in the output irreps feature form a path and contain one
learnable weight. An alternative visualization of depth-wise tensor products can be found in Fig. 3 in
appendix. We only show SE(3)-equivariant operations here, and they can be directly generalized to
E(3)-equivariant features.(

x
RMSC(norm(x))

)
◦γ, where norm(x) ∈ RN×C×1 calculates the L2-norm of each type-L vectors in x,170

and RMSC(norm(x)) ∈ RN×1×1 calculates the RMS of L2-norm with mean taken along the channel171

dimension. We remove mean and biases for type-L vectors with L ̸= 0 following linear layers.172

Gate. We use the gate activation [79] for equivariant activation function as shown in Fig. 2(c).173

Typical activation functions are applied to type-0 vectors. For vectors of higher L, we multiply them174

with non-linearly transformed type-0 vectors for equivariance. Specifically, given input x containing175

non-scalar CL type-L vectors with 0 < L ≤ Lmax and (C0 +
∑Lmax

L=1 CL) type-0 vectors, we apply176

SiLU [19, 55] to the first C0 type-0 vectors and sigmoid function to the other
∑Lmax

L=1 CL type-0177

vectors to obtain non-linear weights and multiply each type-L vector with corresponding non-linear178

weights. After the gate activation, the number of channels for type-0 vectors is reduced to C0.179

Depth-wise Tensor Product. The tensor product defines interaction between vectors of different L.180

To improve its efficiency, we use the depth-wise tensor product (DTP), which restricts one type-L181

vector in output irreps features depends only on one type-L′ vector in input irreps features, where L182

can be equal to or different from L′. This is similar to depth-wise convolution [34], where one output183

channel depends on only one input channel. Weights w in the DTP can be input-independent or184

conditioned on relative distances, and the DTP between two tensors x and y is denoted as x⊗DTP
w y.185

4.2 Equivariant Graph Attention186

Self-attention [77, 78, 23, 39, 84, 6] transforms features sent from one spatial location to another187

with input-dependent weights. We use the notion from Transformers [77] and message passing188

networks [29, 61, 62, 5] and define message mij sent from node j to node i as follows:189

mij = aij × vij (2)

where attention weights aij depend on features on node i and its neighbors N (i) and values vij190

are transformed with input-independent weights. In Transformers and Graph Attention Networks191

(GAT) [78, 6], vij depends only on node j. In message passing networks [29, 61, 62, 5], vij depends192

on features on nodes i and j with constant aij . The proposed equivariant graph attention adopts193

tensor products to incorporate content and geometric information and utilizes multi-layer perceptron194

attention for aij and non-linear message passing for vij as illustrated in Fig. 1(b).195

Incorporating Content and Geometric Information. Given features xi and xj on target node196

i and source node j, we combine the two features with two linear layers to obtain initial message197

xij = Lineardst(xi) + Linearsrc(xj). xij is passed to a DTP layer and a linear layer to consider198

geometric information like relative position contained in different type-L vectors in irreps features:199

x′
ij = xij ⊗DTP

w(||r⃗ij ||) SH(r⃗ij) and fij = Linear(x′
ij) (3)
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where x′
ij is the tensor product of xij and spherical harmonics embeddings (SH) of relative position200

r⃗ij , with weights parametrized by ||r⃗ij ||. fij considers semantic and geometric features on source201

and target nodes in a linear manner and is used to derive attention weights and non-linear messages.202

Multi-Layer Perceptron Attention. Attention weights aij capture how each node interacts with203

neighboring nodes. aij are invariant to geometric transformation [23], and therefore, we only204

use type-0 vectors (scalars) of message fij denoted as f
(0)
ij for attention. Note that f (0)

ij encodes205

directional information, as they are generated by tensor products of type-L vectors with L ≥ 0.206

Inspired by GATv2 [6], we adopts multi-layer perceptron attention (MLPA) instead of dot product207

attention (DPA) used in Transformers [77, 39]. In contrast to dot product, MLPs are universal208

approximators [33, 32, 14] and can theoretically capture any attention patterns [6]. Similar to209

GAT [78, 6], given f
(0)
ij , we uses one leaky ReLU layer and one linear layer for aij :210

zij = a⊤LeakyReLU(f
(0)
ij ) and aij = softmaxj(zij) =

exp(zij)∑
k∈N (i) exp(zik)

(4)

where a is a learnable vectors of the same dimension as f (0)
ij and zij is a single scalar. The output of211

attention is the sum of value vij multipled by corresponding aij over all neighboring nodes j ∈ N (i),212

where vij can be obtained by linear or non-linear transformations of fij as discussed below.213

Non-Linear Message Passing. Values vij are features sent from one node to another, transformed214

with input-independent weights. We first split fij into f
(L)
ij and f

(0)
ij , where the former consists215

of type-L vectors with 0 ≤ L ≤ Lmax and the latter consists of scalars only. Then, we perform216

non-linear transformation to f
(L)
ij to obtain non-linear message:217

µij = Gate(f (L)
ij ) and vij = Linear([µij ⊗DTP

w SH(r⃗ij)]) (5)

We apply gate activation to f
(L)
ij to obtain µij . We use one DTP and a linear layer to enable interaction218

between non-linear type-L vectors, which is similar to how we transform xij into fij . Weights w219

here are input-independent. We can also use f
(L)
ij directly as vij for linear messages.220

Multi-Head Attention. Following Transformers [77], we can perform h parallel equivariant graph221

attention functions given fij . The h different outputs are concatenated and projected with a linear222

layer, resulting in the final output yi as illustrated in Fig. 1(b). Note that parallelizing attention223

functions and concatenating can be implemented with “Reshape”.224

4.3 Overall Architecture225

For completeness, we discuss other modules in Equiformer here.226

Embedding. This module consists of atom embedding and edge-degree embedding. For the former,227

we use a linear layer to transform one-hot encoding of atom species. For the latter, as depicted in228

the right branch in Fig. 1(c), we first transform a constant one vector into messages encoding local229

geometry with two linear layers and one intermediate DTP layer and then use sum aggregation to230

encode degree information [83, 65]. The DTP layer has the same form as that in Eq. 3. We scale231

the aggregated features by dividing with the squared root of average degrees in training sets so that232

standard deviation of aggregated features would be close to 1. The two embeddings are summed to233

produce final embeddings of input 3D graphs.234

Radial Basis and Radial Function. Relative distances ||r⃗ij || parametrize weights in some DTP235

layers. To reflect subtle changes in ||r⃗ij ||, we represent distances with Gaussian radial basis with236

learnable mean and standard deviation [63, 67, 42, 65] or radial Bessel basis [26, 25]. We transform237

radial basis with a learnable radial function to generate weights for those DTP layers [63, 23, 4]. The238

function consists of two MLPs with layer normalization [2] and SiLU [19, 55] and a final linear layer.239

Feed Forward Network. Similar to Transformers, we use two equivariant linear layers and an240

intermediate gate activation for the feed forward networks in Equiformer.241

Output Head. The last feed forward network transforms features on each node into a scalar. We242

perform sum aggregation over all nodes to predict scalar quantities like energy. Similar to edge-degree243

embedding, we divide the aggregated scalars with the squared root of average numbers of atoms.244
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Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE
Methods Units bohr3 meV meV meV D cal/mol K meV meV bohr3 meV meV meV

NMP [29] .092 69 43 38 .030 .040 19 17 .180 20 20 1.50
SchNet [63]† .235 63 41 34 .033 .033 14 14 .073 19 14 1.70
Cormorant [1] .085 61 34 38 .038 .026 20 21 .961 21 22 2.03
LieConv [21] .084 49 30 25 .032 .038 22 24 .800 19 19 2.28
DimeNet++ [25]† .044 33 25 20 .030 .023 8 7 .331 6 6 1.21
TFN [71]‡ .223 58 40 38 .064 .101 - - - - - -
SE(3)-Transformer [23] .142 53 35 33 .051 .054 - - - - - -
EGNN [62] .071 48 29 25 .029 .031 12 12 .106 12 11 1.55
SphereNet [48]† .046 32 23 18 .026 .021 8 6 .292 7 6 1.12
SEGNN [5] .060 42 24 21 .023 .031 15 16 .660 13 15 1.62
EQGAT [46] .063 44 26 22 .014 .027 12 13 .257 13 13 1.50

Equiformer .056 33 17 16 .014 .025 10 10 .227 11 10 1.32

Table 1: MAE results on QM9 testing set. † denotes using different training, validation, testing data
partitions as mentioned in SEGNN [5]. ‡ denotes results from SE(3)-Transformer [23].

Energy MAE (eV) ↓ EwT (%) ↑
Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

SchNet [63]† 0.6465 0.7074 0.6475 0.6626 0.6660 2.96 2.22 3.03 2.38 2.65
DimeNet++ [25]† 0.5636 0.7127 0.5612 0.6492 0.6217 4.25 2.48 4.40 2.56 3.42
GemNet-T [42]† 0.5561 0.7342 0.5659 0.6964 0.6382 4.51 2.24 4.37 2.38 3.38
SphereNet [48] 0.5632 0.6682 0.5590 0.6190 0.6024 4.56 2.70 4.59 2.70 3.64
(S)EGNN [5] 0.5497 0.6851 0.5519 0.6102 0.5992 4.99 2.50 4.71 2.88 3.77
SEGNN [5] 0.5310 0.6432 0.5341 0.5777 0.5715 5.32 2.80 4.89 3.09 4.03

Equiformer 0.5088 0.6271 0.5051 0.5545 0.5489 4.88 2.93 4.92 2.98 3.93

Table 2: Results on OC20 IS2RE validation set. † denotes results reported by SphereNet [48].

Energy MAE (eV) ↓ EwT (%) ↑
Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

CGCNN [82] 0.6149 0.9155 0.6219 0.8511 0.7509 3.40 1.93 3.10 2.00 2.61
SchNet [63] 0.6387 0.7342 0.6616 0.7037 0.6846 2.96 2.33 2.94 2.21 2.61
DimeNet++ [25] 0.5621 0.7252 0.5756 0.6613 0.6311 4.25 2.07 4.10 2.41 3.21
SpinConv [67] 0.5583 0.7230 0.5687 0.6738 0.6310 4.08 2.26 3.82 2.33 3.12
SphereNet [48] 0.5625 0.7033 0.5708 0.6378 0.6186 4.47 2.29 4.09 2.41 3.32
SEGNN [5] 0.5327 0.6921 0.5369 0.6790 0.6101 5.37 2.46 4.91 2.63 3.84

Equiformer 0.5037 0.6881 0.5213 0.6301 0.5858 5.14 2.41 4.67 2.69 3.73

Table 3: Results on OC20 IS2RE testing set.

5 Experiment245

Our implementation is based on PyTorch [52] (Modified BSD license), PyG [20] (MIT license),246

e3nn [28] (MIT license), timm [80] (Apache-2.0 license), and ocp [10] (MIT license).247

5.1 QM9248

Dataset. The QM9 [59, 56] dataset (CC BY-NC SA 4.0 license) consisting of 134k small molecules,249

and the goal is to predict their quantum properties such as energy. We follow the data partition used250

by Cormorant [1], which has 100k, 18k and 13k molecules in training, validation and testing sets. We251

minimize mean absolute error (MAE) between prediction and normalized ground truth.252

Setting. Please refer to Sec. D in appendix for details on architecture and hyper-parameters.253

Result. We mainly compare with methods trained with the same data partition and summarize254

the results in Table 1. Equiformer achieves the best results on 11 out of 12 tasks among models255

trained with same data partition. The comparison to SEGNN [5], which uses irreps features as256

Equiformer, demonstrates the effectiveness of combining non-lienar messages with MLP attention.257

Additionally, Equiformer achieves better results for most of tasks when compared to other equivariant258

Transformers [23, 46], which suggests a better adaption of Transformers to 3D graphs. Besides, the259

different data partition as denoted by † in Table 1 has 10% more molecules in the training set and less260

data in the testing set, and this can benefit some tasks that are more dependent on data partitions.261

5.2 OC20262

Dataset. The Open Catalyst 2020 (OC20) dataset [10] (Creative Commons Attribution 4.0 License)263

consists of larger atomic systems, each composed of a small molecule called the adsorbate placed264

on a large slab called catalyst. The average number of atoms in a system is more than 70, and there265

are over 50 atom species. The goal is to understand interaction between adsorbates and catalysts266

through relaxation. An adsorbate is first placed on top of a catalyst to form initial structure (IS). The267

positions of atoms are updated with forces calculated by density function theory until the system is268
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Energy MAE (eV) ↓ EwT (%) ↑
Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

GNS [30] 0.54 0.65 0.55 0.59 0.5825 - - - - -
GNS + Noisy Nodes [30] 0.47 0.51 0.48 0.46 0.4800 - - - - -
Graphormer [65] 0.4329 0.5850 0.4441 0.5299 0.4980 - - - - -

Equiformer 0.4222 0.5420 0.4231 0.4754 0.4657 7.23 3.77 7.13 4.10 5.56
Equiformer + Noisy Nodes 0.4156 0.4976 0.4165 0.4344 0.4410 7.47 4.64 7.19 4.84 6.04

Table 4: Results on OC20 IS2RE validation set when IS2RS node-level auxiliary task is adopted
during training. “GNS” denotes the 50-layer GNS trained without Noisy Nodes data augmentation,
and “GNS + Noisy Nodes” denotes the 100-layer GNS trained with Noisy Nodes. “Equiformer +
Noisy Nodes” uses data augmentation of interpolating between initial structure and relaxed structure
and adding Gaussian noise as described by Noisy Nodes [30].

Energy MAE (eV) ↓ EwT (%) ↑
Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

GNS + Noisy Nodes [30] 0.4219 0.5678 0.4366 0.4651 0.4728 9.12 4.25 8.01 4.64 6.5
Graphormer [65]† 0.3976 0.5719 0.4166 0.5029 0.4722 8.97 3.45 8.18 3.79 6.1

Equiformer + Noisy Nodes 0.4171 0.5479 0.4248 0.4741 0.4660 7.71 3.70 7.15 4.07 5.66

Table 5: Results on OC20 IS2RE testing set when IS2RS node-level auxiliary task is adopted
during training. † denotes using ensemble of models trained with both IS2RE training and validation
sets. In contrast, we use the same single Equiformer model in Table 4, which is trained with only the
training set, for evaluation on the testing set.

stable and becomes relaxed structure (RS). The energy of RS, or relaxed energy (RE), is correlated269

with catalyst activity and therefore a metric for understanding their interaction. We focus on the task270

of initial structure to relaxed energy (IS2RE), which predicts relaxed energy (RE) given an initial271

structure (IS). There are 460k, 100k and 100k structures in training, validation, and testing sets,272

respectively. Performance is measured in MAE and energy within threshold (EwT), the percentage273

in which predicted energy is within 0.02 eV of ground truth energy. In validation and testing sets,274

there are four sub-splits containing in-distribution adsorbates and catalysts (ID), out-of-distribution275

adsorbates (OOD-Ads), out-of-distribution catalysts (OOD-Cat), and out-of-distribution adsorbates276

and catalysts (OOD-Both).277

Setting. We consider two training settings based on whether a node-level auxiliary task [30] is278

adopted. In the first setting, we minimize MAE between predicted energy and ground truth energy279

without any node-level auxiliary task. In the second setting, we incorporate the task of initial structure280

to relaxed structure (IS2RS) as a node-level auxiliary task [30]. In addition to predicting energy, we281

predict node-wise vectors indicating how each atom moves from initial structure to relaxed structure.282

Please refer to Sec. E in appendix for details on Equiformer architecture and hyper-parameters.283

IS2RE Result without Node-Level Auxiliary Task. We summarize the results under the first284

setting in Table 2 and Table 3. Compared with state-of-the-art models like SEGNN [5] and285

SphereNet [48], Equiformer consistently achieves the lowest MAE for all the four sub-splits in286

validation and testing sets. Note that energy within threshold (EwT) considers only the percentage of287

predictions close enough to ground truth and the distribution of errors, and therefore improvement288

in average errors (MAE) would not necessarily reflect that in error distributions (EwT). Similar289

phenomena can be observed in Table 3, where for “OOD Both” sub-split, SphereNet [48] achieves290

lower MAE yet lower EwT than SEGNN [5]. We also note that models in Table 2 and 3 are trained291

by minimizing MAE and therefore comparing MAE in validation and testing sets could mitigate the292

discrepancy between training objectives and evaluation metrics and that OC20 leaderboard ranks the293

relative performance of models mainly according to MAE.294

IS2RE Result with IS2RS Node-Level Auxiliary Task. We report the results on validation and295

testing sets under the second setting in Table 4 and Table 5. As of May 20, 2022, Equiformer296

achieves the best results on IS2RE task when only IS2RE and IS2RS data are used. We note that297

the proposed Equiformer in Table 5 achieves competitive results even with much less computation.298

Specifically, training “Equiformer + Noisy Nodes” takes about 24 GPU-days when A6000 GPUs are299

used. The training time of “GNS + Noisy Nodes” [30] is 56 TPU-days. “Graphormer” [65] uses300

ensemble of 31 models and requires 372 GPU-days to train all models when A100 GPUs are used.301

The comparison to GNS demonstrates the improvement from invariant message passing networks to302

equivariant Transformers. Compared to Graphormer [65], Equiformer demonstrates the effectiveness303

of equivariant features and the proposed equivariant graph attention. Note that Equiformer, with304
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Methods

Non-linear
message passing

MLP
attention

Dot product
attention

Task α ∆ε εHOMO εLUMO µ Cν

Index Unit bohr3 meV meV meV D cal/mol K

1 ✓ ✓ .056 33 17 16 .014 .025
2 ✓ .061 34 18 17 .015 .025
3 ✓ .060 34 18 18 .015 .026

Table 6: Ablation study results on QM9.

Methods Energy MAE (eV) ↓
Non-linear

message passing
MLP

attention
Dot product

attentionIndex ID OOD Ads OOD Cat OOD Both Average

1 ✓ ✓ 0.5088 0.6271 0.5051 0.5545 0.5489
2 ✓ 0.5168 0.6308 0.5088 0.5657 0.5555
3 ✓ 0.5386 0.6382 0.5297 0.5692 0.5689

Methods EwT (%) ↑
Non-linear

message passing
MLP

attention
Dot product

attentionIndex ID OOD Ads OOD Cat OOD Both Average

1 ✓ ✓ 4.88 2.93 4.92 2.98 3.93
2 ✓ 4.59 2.82 4.79 3.02 3.81
3 ✓ 4.37 2.60 4.36 2.86 3.55

Table 7: Ablation study results on OC20 IS2RE validation set.

18 Transformer blocks, is relatively shallow as GNS trained with Noisy Nodes has 100 blocks and305

Graphormer has 48 Transformer blocks and that deeper networks can typically obtain better results306

when IS2RS auxiliary task is adopted [30].307

5.3 Ablation Study308

We conduct ablation studies on the improvements brought by MLP attention and non-linear messages309

in the proposed equivariant graph attention. We modify dot product (DP) attention [77, 23] so that it310

only differs from MLP attention in how attention weights aij are generated from fij . Please refer311

to Sec. C.3 in appendix for details on DP attention. For experiments on QM9 and OC20, unless312

otherwise stated, we follow the hyper-parameters used in previous experiments.313

Result on QM9. The comparison is summarized in Table 6. Non-linear messages improve upon314

linear messages when MLP attention is used. Similar to what is reported by GATv2 [6], the315

improvement of replacing DP attention with MLP attention is not very significant. We conjecture that316

DP attention with linear operations is expressive enough to capture common attention patterns as317

the numbers of nighboring nodes and atom species are much smaller than those in OC20. However,318

MLP attention is roughly 7% faster as it directly generates scalar features and attention weights from319

fij instead of producing additional key and query irreps features for attention weights.320

Result on OC20. We consider the setting of training without IS2RS auxiliary task and use a smaller321

learning rate 1.5 × 10−4 for DP attention as this improves the performance. We summarize the322

comparison in Table 7. Non-linear messages consistently improve upon linear messages. In contrast323

to the results on QM9, MLP attention achieves better performance than DP attention. We surmise324

this is because OC20 contains larger atomistic graphs with more diverse atom species and therefore325

requires more expressive attention mechanisms.326

6 Conclusion and Broader Impact327

In this work, we propose Equiformer, a graph neural network (GNN) combining the strengths of328

Transformers and equivariant features based on irreducible representations (irreps). With irreps329

features, we build upon existing generic GNNs and Transformer networks [77, 16, 84, 45, 47] by330

incorporating equivariant operations like tensor products. We further propose equivariant graph331

attention, which incorporates multi-layer perceptron attention and non-linear messages. Experiments332

on QM9 and OC20 demonstrate both the effectiveness of Equiformer and the advantage of equivariant333

graph attention over typical dot product attention.334

The broader impact lies in two aspects. First, Equiformer demonstrates the possibility of adapting335

Transformers to domains such as physics and chemistry, where data can be represented as 3D336

atomistic graphs. Second, Equiformer achieves more accurate approximations of quantum properties337

calculation. We believe there is much more to be gained by harnessing these abilities for productive338

investigation of molecules and materials relevant to application such as energy, electronics, and339

pharmaceuticals [10], than to be lost by applying these methods for adversarial purposes like creating340

hazardous chemicals. Additionally, there are still substantial hurdles to go from the identification of a341

useful or harmful molecule to its large-scale deployment.342
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Appendix615

A Additional Mathematical Background616

In this section, we provide additional mathematical background on group equivariance helpful for617

the discussion of the proposed method. Other works [71, 79, 43, 1, 23, 5] also provide similar618

background. We encourage interested readers to see these works [85, 17] for more in-depth and619

pedagogical presentations.620

A.1 Group Theory621

Definition of Groups. A group is an algebraic structure that consists of a set G and a binary622

operator ◦ : G×G → G and is typically denoted as G. Groups satisfy the following four axioms:623

1. Closure: g ◦ h ∈ G for all g, h ∈ G.624

2. Identity: There exists an identity element e ∈ G such that g ◦ e = e ◦ g = g for all g ∈ G.625

3. Inverse: For each g ∈ G, there exists an inverse element g−1 ∈ G such that g ◦ g−1 =626

g−1 ◦ g = e.627

4. Associativity: f ◦ g ◦ h = (f ◦ g) ◦ h = f ◦ (g ◦ h) for all f, g, h ∈ G.628

In this work, we focus on 3D rotation, translation and inversion. Relevant groups include:629

1. The Euclidean group in three dimensions E(3): 3D rotation, translation and inversion.630

2. The special Euclidean group in three dimensions SE(3): 3D rotation and translation.631

3. The orthogonal group in three dimensions O(3): 3D rotation and inversion.632

4. The special orthogonal group in three dimensions SO(3): 3D rotation.633

Group Representations. The actions of groups define transformations. Formally, a transformation634

acting on vector space X parametrized by group element g ∈ G is an injective function Tg : X → X .635

A powerful result of group representation theory is that these transformations can be expressed as636

matrices which act on vector spaces via matrix multiplication. These matrices are called the group637

representations. Formally, a group representation D : G → GL(N) is a mapping between a group638

G and a set of N × N invertible matrices. The group representation D(g) : X → X maps an639

N -dimensional vector space X onto itself and satisfies D(g)D(h) = D(g ◦ h) for all g, h ∈ G.640

How a group is represented depends on the vector space it acts on. If there exists a change of basis641

P in the form of an N × N matrix such that P−1D(g)P = D′(g) for all g ∈ G, then we say the642

two group representations are equivalent. If D′(g) is block diagonal, which means that g acts on643

independent subspaces of the vector space, the representation D(g) is reducible. A particular class644

of representations that are convenient for composable functions are irreducible representations or645

“irreps”, which cannot be further reduced. We can express any group representation of SO(3) as a646

direct sum (concatentation) of irreps [85, 17, 28]:647

D(g) = P−1

(⊕
i

Dli(g)

)
P = P−1

(
Dl0(g)

Dl1(g)
......

)
P (6)

where Dli(g) are Wigner-D matrices with degree li as metnioned in Sec. 3.2.648

A.2 Equivariance649

Definition of Equivariance and Invariance. Equivariance is a property of a function f : X → Y650

mapping between vector spaces X and Y . Given a group G and group representations DX(g) and651

DY (g) in input and output spaces X and Y , f is equivariant to G if DY (g)f(x) = f(DX(g)x) for652

all x ∈ X and g ∈ G. Invariance corresponds to the case where DY (g) is the identity I for all g ∈ G.653
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Equivariance in Neural Networks. Group equivariant neural networks are guaranteed to to make654

equivariant predictions on data transformed by a group. Additionally, they are found to be data-655

efficient and generalize better than non-symmetry-aware and invariant methods [4, 54, 22]. For656

3D atomistic graphs, we consider equivariance to the Euclidean group E(3), which consists of 3D657

rotation, translation and inversion. For translation, we operate on relative positions and therefore658

our networks are invariant to 3D translation. We achieve equivariance to rotation and inversion by659

representing our input data, intermediate features and outputs in vector spaces of O(3) irreps and660

acting on them with only equivariant operations.661

A.3 Equivariant Features Based on Vector Spaces of Irreducible Representations662

Irreps Features. As discussed in Sec. 3.2 in the main text, we use type-L vectors for SE(3)-663

equivariant irreps features1 and type-(L, p) vectors for E(3)-equivariant irreps features. Parity p664

denotes whether vectors change sign under inversion and can be either e (even) or o (odd). Vectors665

with p = o change sign under inversion while those with p = e do not. Scalar features correspond666

to type-0 vectors in the case of SE(3)-equivariance and correspond to type-(0, e) in the case of667

E(3)-equivariance whereas type-(0, o) vectors correspond to pseudo-scalars. Euclidean vectors668

in R3 correspond to type-1 vectors and type-(1, o) vectors whereas type-(1, e) vectors correspond669

to pseudo-vectors. Note that type-(L, e) vectors and type-(L, o) vectors are considered vectors of670

different types in equivariant linear layers and layer normalizations.671

Spherical Harmonics. Euclidean vectors r⃗ in R3 can be projected into type-L vectors f (L) by672

using spherical harmonics Y (L): f (L) = Y (L)( r⃗
||r⃗|| ) [68]. This is equivalent to the Fourier transform673

of the angular degree of freedom r⃗
||r⃗|| , which can be optionally weighted by ||r⃗||. In the case of674

SE(3)-equivariance, f (L) transforms in the same manner as type-L vectors. For E(3)-equivariance,675

f (L) behaves as type-(L, p) vectors, where p = e if L is even and p = o if L is odd.676

Vectors of Higher L and Other Parities. Although previously we have restricted concrete ex-677

amples of vector spaces of O(3) irreps to commonly encountered scalars (type-(0, e) vectors) and678

Euclidean vectors (type-(1, o) vectors), vector of higher L and other parities are equally physical. For679

example, the moment of inertia (how an object rotates under torque) transforms as a 3× 3 symmetric680

matrix, which has symmetric-traceless components behaving as type-(2, e) vectors. Elasticity (how681

an object deforms under loading) transforms as a rank-4 or 3× 3× 3× 3 symmetric tensor, which682

includes components acting as type-(4, e) vectors.683

A.4 Tensor Product684

Tensor Product for O(3). We use tensor products to interact different type-(L, p) vectors. We685

extend our discussion in Sec. 3.3 in the main text to include inversion and type-(L, p) vectors. The686

tensor product denoted as ⊗ uses Clebsch-Gordan coefficients to combine type-(L1, p1) vector687

f (L1,p1) and type-(L2, p2) vector g(L2,p2) and produces type-(L3, p3) vector h(L3,p3) as follows:688

h(L3,p3)
m3

= (f (L1,p1) ⊗ g(L2,p2))m3
=

L1∑
m1=−L1

L2∑
m2=−L2

C
(L3,m3)
(L1,m1)(L2,m2)

f (L1,p1)
m1

g(L2,p2)
m2

(7)

p3 = p1 × p2 (8)

The only difference of tensor products for O(3) as described in Eq. 7 from those for SO(3) described689

in Eq. 1 is that we additionally keep track of the output parity p3 as in Eq. 8 and use the following690

multiplication rules: e× e = e, o× o = e, and e× o = o× e = o. For example, the tensor product691

of a type-(1, o) vector and a type-(1, e) vector can result in one type-(0, o) vector, one type-(1, o)692

vector, and one type-(2, o) vector.693

1In SEGNN [5], they are also referred to as steerable features. We use the term “irreps features” to remain
consistent with e3nn [28] library.
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Clebsch-Gordan Coefficients. The Clebsch-Gordan coefficients for SO(3) are computed from694

integrals over the basis functions of a given irreducible representation, e.g., the real spherical695

harmonics, as shown below and are tabulated to avoid unnecessary computation.696

C
(L3,m3)
(L1,m1)(L2,m2)

= |L1m1;L2m2⟩ ⟨L3m3| =
∫

dΩY (L1)∗
m1

(Ω)Y (L2)∗
m2

(Ω)Y (L3)
m3

(Ω) (9)

For many combinations of L1, L2, and L3, the Clebsch-Gordan coefficients are zero. The gives rise697

to the following selection rule for non-trivial coefficients: −|L1 + L2| ≤ L3 ≤ |L1 + L2|.698

Examples of Tensor Products. Tensor products generally define the interaction between different699

type-(L, p) vectors in a symmetry-preserving manner and consist of common operations as follows:700

1. Scalar-scalar multiplication: scalar (L = 0, p = e) ⊗ scalar (L = 0, p = e) → scalar701

(L = 0, p = e).702

2. Scalar-vector multiplication: scalar (L = 0, p = e) ⊗ vector (L = 1, p = o) → vector703

(L = 1, p = o).704

3. Vector dot product: vector (L = 1, p = o) ⊗ vector (L = 1, p = o)→ scalar (L = 0, p =705

e).706

4. Vector cross product: vector (L = 1, p = o) ⊗ vector (L = 1, p = o) → pseudo-vector707

(L = 1, p = e).708

B Related Works709

B.1 Graph Neural Networks for 3D Atomistic Graphs710

Graph neural networks (GNNs) are well adapted to perform property prediction of atomic systems711

because they can handle discrete and topological structures. There are two main ways to represent712

atomistic graphs [74], which are chemical bond graphs, sometimes denoted as 2D graphs, and 3D713

spatial graphs. Chemical bond graphs use edges to represent covalent bonds without considering 3D714

geometry. Due to their similarity to graph structures in other applications, generic GNNs [31, 29, 41,715

83, 78, 6] can be directly applied to predict their properties [59, 56, 57, 36, 35]. On the other hand,716

3D spatial graphs consider positions of atoms in 3D spaces and therefore 3D geometry. Although717

3D graphs can faithfully represent atomistic systems, one challenge of moving from chemical bond718

graphs to 3D spatial graphs is to remain invariant or equivariant to geometric transformation acting719

on atom positions. Therefore, invariant neural networks and equivariant neural networks have been720

proposed for 3D atomistic graphs, with the former leveraging invariant information like distances and721

angles and the latter operating on geometric tensors like type-L vectors.722

B.2 Invariant GNNs723

Previous works [63, 82, 75, 26, 25, 53, 48, 67, 42] extract invariant information from 3D atomistic724

graphs and operate on the resulting invariant graphs. They mainly differ in leveraging different725

geometric information such as distances, bond angles (3 atom features) or dihedral angles (4 atom726

features). SchNet [63] uses relative distances and proposes continuous-filter convolutional layers727

to learn local interaction between atom pairs. DimeNet series [26, 25] incorporate bond angles728

by using triplet representations of atoms. SphereNet [48] and GemNet [42, 27] further extend729

to consider dihedral angles for better performance. In order to consider directional information730

contained in angles, they rely on triplet or quadruplet representations of atoms. In addition to being731

memory-intensive [69], they also change graph structures by introducing higher-order interaction732

terms [11], which would require non-trivial modifications to generic GNNs in order to apply them733

to 3D graphs. In contrast, the proposed Equiformer uses equivariant irreps features to consider734

directional information without complicating graph structures and therefore can directly inherit the735

design of generic GNNs.736

B.3 Attention and Transformer737

Graph Attention. Graph attention networks (GAT) [78, 6] use multi-layer perceptrons (MLP) to738

calculate attention weights in a similar manner to message passing networks. Subsequent works739
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using graph attention mechanisms follow either GAT-like MLP attention [8, 40] or Transformer-like740

dot product attention [86, 24, 66, 18, 40, 44]. In particular, Kim et al. [40] compares these two types741

of attention mechanisms empirically under a self-supervised setting. Brody et al. [6] analyzes their742

theoretical differences and compares their performance in general settings.743

Graph Transformer. A different line of research focuses on adapting standard Transformer net-744

works to graph problems [18, 58, 44, 84, 65]. They adopt dot product attention in Transformers [77]745

and propose different approaches to incorporate graph-related inductive biases into their networks.746

GROVE [58] includes additional message passing layers or graph convolutional layers to incorporate747

local graph structures when calculating attention weights. SAN [44] proposes to learn position748

embeddings of nodes with full Laplacian spectrum. Graphormer [84] proposes to encode degree749

information in centrality embeddings and encode distances and edge features in attention biases. The750

proposed Equiformer belongs to one of these attempts to generalize standard Transformers to graphs751

and is dedicated to 3D graphs. To incorporate 3D-related inductive biases, we adopt an equivariant752

version of Transformers with irreps features and propose novel equivariant graph attention.753

C Details of Architecture754

Output irreps 
features

Input irreps 
features 1

Input irreps 
features 2

Output irreps 
features

Input irreps 
features 1

Input irreps 
features 2

Output irreps 
features

Input irreps 
features 1

Input irreps 
features 2

(a) Paths contributing to type-0 vectors. (b) Paths contributing to type-1 vectors. (c) Paths contributing to type-2 vectors.

Figure 3: An alternative visualization of the depth-wise tensor product. We follow the visualiza-
tion of tensor products in e3nn [28] and separate paths into three parts based on the types of output
vectors. We note that one vector in the output irreps feature depends only on one vector in each input
irreps feature.

C.1 Equivariant Operation Used in Equiformer755

We illustrate the equivariant operations used in Equiformer in Fig. 2 and provide an alternative756

visualization of depth-wise tensor products in Fig. 3.757

C.2 Equiformer Architecture758

For simplicity and because most works we compare with do not include equivariance to inversion,759

we adopt SE(3)-equivariant irreps features in Equiformer for experiments in the main text and note760

that E(3)-equivariant irreps features can be easily incorporated into Equiformer.761

We define architectural hyper-parameters like the number of channels in some layers in Equiformer,762

which are used to specify the detailed architectures in Sec. D and Sec. E.763

We use dembed to denote embedding dimension, which defines the dimension of most irreps features.764

Specifically, all irreps features xi, yi in Fig. 1 have dimension dembed unless otherwise stated. Besides,765

we use dsh to represent the dimension of spherical harmonics embeddings of relative positions in all766

depth-wise tensor products.767

For equivariant graph attention in Fig. 1(b), the first two linear layers have the same output dimension768

dembed. The output dimension of depth-wise tensor products (DTP) are determined by that of input769

irreps features. Equivariant graph attention consists of h parallel attention functions, and the value770

vector in each attention function has dimension dhead. We refer to h and dhead as the number of771

heads and head dimension, respectively. By default, we set the number of channels in scalar feature772
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Figure 4: Architecture of equivariant dot product attention without non-linear message passing.
In this figure, “⊗” denotes multiplication, “⊕” denotes addition, and “DTP” stands for depth-wise
tensor product.

∑
within a circle denotes summation over all neighbors. Gray cells indicate

intermediate irreps features. We highlight the difference of dot product attention from multi-layer
perceptron attention in red. Note that key kij and value vij are irreps features and therefore fij in dot
product attention typically has more channels than that in multi-layer perceptron attention.

f
(0)
ij to be the same as the number of channels of type-0 or type-(0, e) vectors in vij . When non-linear773

messages are adopted in vij , we set the dimension of output irreps features in gate activation to774

be h × dhead. Therefore, we can use two hyper-parameters h and dhead to specify the detailed775

architecture of equivariant graph attention.776

As for feed forward networks (FFNs), we denote the dimension of output irreps features in gate777

activation as dffn. The FFN in the last Transformer block has output dimension dfeature, and we778

set dffn of the last FFN, which is followed by output head, to be dfeature as well. Thus, two hyper-779

parameters dffn and dfeature are used to specify architectures of FFNs and the output dimension780

after Transformer blocks.781

Irreps features contain channels of vectors with degrees up to Lmax. We denote CL type-L vectors as782

(CL, L) and C(L,p) type-(L, p) vectors as (C(L,p), L, p) and use brackets to represent concatenations783

of vectors. For example, the dimension of irreps features containing 256 type-0 vectors and 128784

type-1 vectors can be represented as [(256, 0), (128, 1)].785

C.3 Dot Product Attention786

We illustrate the dot product attention without non-linear message passing used in ablation study in787

Fig. 4. The architecture is adapted from SE(3)-Transformer [23]. The difference from multi-layer788

perceptron attention lies in how we obtain attention weights aij from fij . We split fij into two irreps789

features, key kij and value vij , and obtain query qi with a linear layer. Then, we perform scaled dot790

product [77] between qi and kij for attention weights.791

C.4 Discussion on Computational Complexity792

We discuss the computational complexity of the proposed equivariant graph attention here.793
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First, we compare dot product attention with MLP attention when linear messages are used for value794

vij . Dot product attention requires taking the dot product of two irreps features, query qi and key795

kij , for attention weights, and both qi and kij have the same dimension as value vij . In contrast,796

MLP attention uses only scalar features f (0)
ij for attention weights. The dimension of scalar features797

f
(0)
ij is the same as that of the scalar part of vij . Therefore, MLP attention generates less and smaller798

intermediate features for attention weights and is faster than dot product attention.799

Second, compared to linear messages, using non-linear messages increases the number of tensor800

product operations from 1 to 2. Since tensor products are compute-intensive, this inevitably increases801

training and inference time.802

Please refer to Sec. D.2 and Sec. E.2 for the exact numbers of training time on QM9 and OC20.803

D Details of Experiments on QM9804

D.1 Additional Comparison between SE(3) and E(3) Equivariance805

We train two versions of Equiformers, one with SE(3)-equivariant features denoted as “Equiformer”806

and the other with E(3)-equivariant features denoted as “E(3)-Equiformer”, and we compare them807

in Table 8. Including equivariance to inversion further improves the performance on QM9 dataset.808

As for Table 1, we compare “Equiformer” with other works since most of them do not include809

equivariance to inversion.810

Task α ∆ε εHOMO εLUMO µ Cν

Methods Units bohr3 meV meV meV D cal/mol K

Equiformer .056 33 17 16 .014 .025
E(3)-Equiformer .054 32 16 16 .013 .024

Table 8: Ablation study of SE(3)/E(3) equivariance on QM9 testing set. “Equiformer” operates
on SE(3)-equivariant features while “E(3)-Equiformer” uses E(3)-equivariant features. Including
inversion further improves mean absolute errors.

D.2 Training Details811

We normalize ground truth by subtracting mean and dividing by standard deviation. For the task of U ,812

U0, G, and H , where single-atom reference values are available, we subtract those reference values813

from ground truth before normalizing.814

We train Equiformer with 6 blocks with Lmax = 2 following SEGNN [5]. We choose Gaussian radial815

basis [63, 67, 42, 65] for the first six tasks in Table 1 and radial Bessel basis [26, 25] for the others.816

Table 9 summarizes the hyper-parameters for the QM9 dataset. Further details will be provided in the817

future. The detailed description of architectural hyper-parameters can be found in Sec. C.2.818

We use one A6000 GPU with 48GB to train each model and summarize the computational cost819

of training for one epoch as follows. Training E(3)-Equiformer for one epoch takes about 14.75820

minutes. The time of training Equiformer, Equiformer with linear messages (indicated by index 2821

in Table 6), and Equiformer with linear messages and dot product attention (indicated by index 3 in822

Table 6) for one epoch is 11 minutes, 6.6 minutes and 7.1 minutes, respectively.823

E Details of Experiments on OC20824

E.1 Additional Comparison between SE(3) and E(3) Equivariance825

We train two versions of Equiformers, one with SE(3)-equivariant features denoted as “Equiformer”826

and the other with E(3)-equivariant features denoted as “E(3)-Equiformer”, and we compare them827

in Table 10. Including inversion improves the MAE results on ID and OOD Cat sub-splits but828

degrades the performance on the other sub-splits. Overall, using E(3)-equivariant features results in829

slightly inferior performance. We surmise the reasons are as follows. First, inversion might not be the830
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Hyper-parameters Value or description

Optimizer AdamW
Learning rate scheduling Cosine learning rate with linear warmup
Warmup epochs 5
Maximum learning rate 5× 10−4

Batch size 128
Number of epochs 300
Weight decay 5× 10−3

Cutoff radius (Å) 5
Number of radial bases 128 for Gaussian radial basis, 8 for radial bessel basis
Hidden sizes of radial functions 64
Number of hidden layers in radial functions 2

Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(128, 0), (64, 1), (32, 2)]
Spherical harmonics embedding dimension dsh [(1, 0), (1, 1), (1, 2)]
Number of attention heads h 4
Attention head dimension dhead [(32, 0), (16, 1), (8, 2)]
Hidden dimension in feed forward networks dffn [(384, 0), (192, 1), (96, 2)]
Output feature dimension dfeature [(512, 0)]

E(3)-Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(128, 0, e), (32, 0, o), (32, 1, e), (32, 1, o), (16, 2, e), (16, 2, o)]
Spherical harmonics embedding dimension dsh [(1, 0, e), (1, 1, o), (1, 2, e)]
Number of attention heads h 4
Attention head dimension dhead [(32, 0, e), (8, 0, o), (8, 1, e), (8, 1, o), (4, 2, e), (4, 2, o)]
Hidden dimension in feed forward networks dffn [(384, 0, e), (96, 0, o), (96, 1, e), (96, 1, o), (48, 2, e), (48, 2, o)]
Output feature dimension dfeature [(512, 0, e)]

Table 9: Hyper-parameters for QM9 dataset. We denote CL type-L vectors as (CL, L) and C(L,p)

type-(L, p) vectors as (C(L,p), L, p) and use brackets to represent concatenations of vectors.

key bottleneck. Second, including inversion would break type-1 vectors into two parts, type-(1, e)831

and type-(1, o) vectors. They are regarded as different types in equivariant linear layers and layer832

normalizations, and therefore, the directional information captured in these two types of vectors can833

only exchange in depth-wise tensor products. Third, we mainly tune hyper-parameters for Equiformer834

with SE(3)-equivariant features, and it is possible that using E(3)-equivariant features would favor835

different hyper-parameters.836

For Table 2, 3, 4, and 5, we compare “Equiformer” with other works since most of them do not837

include equivariance to inversion.838

Energy MAE (eV) ↓ EwT (%) ↑
Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

Equiformer 0.5088 0.6271 0.5051 0.5545 0.5489 4.88 2.93 4.92 2.98 3.93
E(3)-Equiformer 0.5035 0.6385 0.5034 0.5658 0.5528 5.10 2.98 5.10 3.02 4.05

Table 10: Ablation study of SE(3)/E(3) equivariance on OC20 IS2RE validation set.
“Equiformer” operates on SE(3)-equivariant features while “E(3)-Equiformer” uses E(3)-
equivariant features.

E.2 Training Details839

IS2RE without Node-Level Auxiliary Task. We use hyper-parameters similar to those for QM9840

dataset and summarize in Table 11. The detailed description of architectural hyper-parameters can be841

found in Sec. C.2.842

IS2RE with IS2RS Node-Level Auxiliary Task. We increase the number of Transformer blocks843

to 18 as deeper networks can benefit more from IS2RS node-level auxiliary task [30]. We follow844
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the same hyper-parameters in Table 11 except that we increase maximum learning rate to 5× 10−4845

and set dfeature to [(512, 0), (256, 1)]. Inspired by Graphormer [65], we add an extra equivariant846

graph attention module after the last layer normalization to predict relaxed structures and use a847

linearly decayed weight for loss associated with IS2RS, which starts at 15 and decays to 1. For Noisy848

Nodes [30] data augmentation, we first interpolate between initial structure and relaxed structure and849

then add Gaussian noise as described by Noisy Nodes [30]. When Noisy Nodes data augmentation is850

used, we increase the number of epochs to 40. Further details will be provided in the future.851

We use two A6000 GPUs, each with 48GB, to train models when IS2RS is not included during852

training. Training Equiformer and E(3)-Equiformer takes about 43.6 and 58.3 hours. Training853

Equiformer with linear messages (indicated by index 2 in Table 7) and Equiformer with linear854

messages and dot product attention (indicated by index 3 in Table 7) takes 30.4 hours and 33.1 hours,855

respectively. We use four A6000 GPUs to train Equiformer models when IS2RS node-level auxiliary856

task is adopted during training. Training Equiformer without Noisy Nodes [30] data augmentation857

takes about 3 days and training with Noisy Nodes takes 6 days. We note that the proposed Equiformer858

in Table 5 achieves competitive results even with much less computation. Specifically, training859

“Equiformer + Noisy Nodes” takes about 24 GPU-days when A6000 GPUs are used. The training860

time of “GNS + Noisy Nodes” [30] is 56 TPU-days. “Graphormer” [65] uses ensemble of 31 models861

and requires 372 GPU-days to train all models when A100 GPUs are used.862

Hyper-parameters Value or description

Optimizer AdamW
Learning rate scheduling Cosine learning rate with linear warmup
Warmup epochs 2
Maximum learning rate 2× 10−4

Batch size 32
Number of epochs 20
Weight decay 1× 10−3

Cutoff radius (Å) 5
Number of radial basis 128
Hidden size of radial function 64
Number of hidden layers in radial function 2

Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(256, 0), (128, 1)]
Spherical harmonics embedding dimension dsh [(1, 0), (1, 1)]
Number of attention heads h 8
Attention head dimension dhead [(32, 0), (16, 1)]
Hidden dimension in feed forward networks dffn [(768, 0), (384, 1)]
Output feature dimension dfeature [(512, 0)]

E(3)-Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(256, 0, e), (64, 0, o), (64, 1, e), (64, 1, o)]
Spherical harmonics embedding dimension dsh [(1, 0, e), (1, 1, o)]
Number of attention heads h 8
Attention head dimension dhead [(32, 0, e), (8, 0, o), (8, 1, e), (8, 1, o)]
Hidden dimension in feed forward networks dffn [(768, 0, e), (192, 0, o), (192, 1, e), (192, 1, o)]
Output feature dimension dfeature [(512, 0, e)]

Table 11: Hyper-parameters for OC20 dataset under the setting of training without IS2RS aux-
iliary task. We denote CL type-L vectors as (CL, L) and C(L,p) type-(L, p) vectors as (C(L,p), L, p)
and use brackets to represent concatenations of vectors.

E.3 Error Distributions863

We plot the error distributions of different Equiformer models on different sub-splits of OC20 IS2RE864

validation set in Fig. 5. For each curve, we sort the absolute errors in ascending order for better865

visualization and have a few observations. First, for each sub-split, there are always easy examples,866

for which all models achieve significantly low errors, and hard examples, for which all models have867

high errors. Second, the performance gains brought by different models are non-uniform among868

different sub-splits. For example, using MLP attention and non-linear messages improves the errors869
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on the ID sub-split but is not that helpful on the OOD Ads sub-split. Third, when IS2RS node-level870

auxiliary task is not included during training, using stronger models mainly improves errors that are871

beyond the threshold of 0.02 eV, which is used to calculate the metric of energy within threshold872

(EwT). For instance, on the OOD Both sub-split, using non-linear messages, which corresponds873

to red and purple curves, improves the absolute errors for the 15000th through 20000th examples.874

However, the improvement in MAE does not translate to that in EwT as the errors are still higher than875

the threshold of 0.02 eV. This explains why using non-linear messages in Table 7 improves MAE876

from 0.5657 to 0.5545 but results in almost the same EwT.877

F Limitations878

We discuss several limitations of the proposed Equiformer and equivariant graph attention below.879

First, Equiformer is based on irreducible representations (irreps) and therefore can inherit the880

limitations common to all equivariant networks based on irreps and the library e3nn [28]. For881

example, using higher degrees L can result in larger features and using tensor products can be882

compute-intensive. Part of the reasons that tensor products can be computationally expensive are that883

the kernels have not been heavily optimized and customized as other operations in common libraries884

like PyTorch [52]. But this is the issue related to software, not the design of networks. While tensor885

products of irreps naively do not scale well, if all possible interactions and paths are considered, some886

paths in tensor products can also be pruned for computational efficiency. We leave these potential887

efficiency gains to future work and in this work focus on general equivariant attention if all possible888

paths up to Lmax in tensor products are allowed.889

Second, the improvement of the proposed equivariant graph attention can depend on tasks and890

datasets. For QM9, MLP attention improves not significantly upon dot product attention as shown in891

Table 6. We surmise that this is because QM9 contains less atoms and less diverse atom types and892

therefore linear attention is enough. For OC20, MLP attention clearly improves upon dot product893

attention as shown in Table 7. Non-linear messages improve upon linear ones for the two datasets.894

Third, equivariant graph attention requires more computation than typical graph convolution. It895

includes one softmax operation and thus requires one additional sum aggregation compared to typical896

message passing. For non-linear message passing, it increases the number of tensor products from897

one to two and requires more computation. We note that if there is a constraint on training budget,898

using stronger attention (i.e., MLP attention and non-linear messages) would not always be optimal899

because for some tasks or datasets, the improvement is not that significant and using stronger attention900

can slow down training. For example, for the task of Cν on QM9, using linear (index 2) or non-linear901

messages (index 1) results in the same performance as shown in Table 6. However, non-linear902

messages increase the training time of one epoch from 6.6 minutes to 11 minutes.903

Fourth, the proposed attention has complexity proportional to the products of numbers of channels904

and numbers of edges since the the attention is restricted to local neighborhoods. In the context of 3D905

atomistic graphs, the complexity is the same as that of messages and graph convolutions. However,906

in other domains like computer vision, the memory complexity of convolution is proportional to the907

number of pixels or nodes, not that of edges. Therefore, it would require further modifications in908

order to use the proposed attention in other domains.909
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(a) ID sub-split.

0 5000 10000 15000 20000 25000
Examples Sorted by Absolute Error

10
5

10
4

10
3

10
2

10
1

10
0

10
1

Ab
so

lu
te

 E
rro

r

0.02 eV Threshold

Equiformer with IS2RS and Noisy Nodes
Equiformer with IS2RS
Equiformer
Equiformer with linear messages
Equiformer with linear messages and dot product attention

(b) OOD Ads sub-split.
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(c) OOD Cat sub-split.
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(d) OOD Both sub-split.

Figure 5: Error distributions of different Equiformer models on different sub-splits of OC20
IS2RE validation set.
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