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A B S T R A C T

Aiming at the optimization of aircraft panels, a modified version of harmony search (HS) algorithm is proposed
based on the information of the harmony memory (a memory location where all the solution vectors are stored)
for improvisation procedure, named as adaptive dynamic harmony search (ADHS) algorithm. In order to reduce
the amount of calculation, response surface method is employed, and second-order polynomial with cross terms
is used to construct the model. To demonstrate the advantage of the proposed algorithm, typical aircraft panels
under buckling constraint are established, and several existing HS algorithms are compared. The effects of the
number of improvisation (NI) and harmony memory size (HMS) are investigated and discussed in detail. Results
indicate that the proposed ADHS can provide an optimum design in a robust manner, and local optimum
solutions may be reduced based on the ADHS for optimization problems with multiple local minima. Finally,
several useful information is obtained for the design of stiffened panels with cutouts.

1. Introduction

Due to high specific strength and stiffness, stiffened panels are
widely used in various types of weight-critical applications to resist
buckling and collapse, such as aircrafts and launch vehicles, etc. For a
variety of reasons, e.g. easy access, inspection, etc, cutouts are usually
inevitable for aircraft structures [1–7], which may cause remarkable
reductions on both load-carrying capacity and structural efficiency. To
compensate the performance loss caused by cutout, the topic on the
design of stiffened shells with cutouts becomes ever more significant
and urgent.

In the past, many researchers have undertaken the research on the
buckling behavior of thin-walled panels with cutouts. Mahmoud et al.
[8] studied the steel cylindrical shells with various sizes of elliptical
cutouts under axial compression. Schlack et al. [9] determined the
buckling load of square plates with a circular central hole by experi-
ment, and the results agree well with the predictions by the Ritz energy
method. Later, Tennyson [10] found that the membrane stress con-
centration factors of circular cylindrical shells under axial compression
increase rapidly with the growth of curvature parameter. Until now,
many investigators have investigated the effects of cutouts on the metal
shells or composite shells [11–13]. To mitigate the decline of load
capacity and stability caused by cutouts, much attention was paid to the
thin-wall structures reinforced by stiffeners [14–16]. It is worth noting

that those works mentioned above are mainly focused on straight
stiffeners, and their enhancement approach is relatively fixed. The
primary reasons that cause this situation mainly include the limitation
of current manufacturing technology and design method. As for this, for
certain types of aircrafts, the cutout are still reinforced by straight
stiffeners [17,18], which are easy for manufacturing, assembly, inspect
and design optimization. Fortunately, as manufacturing technologies
are developed rapidly, new manufacturing processes (e.g. additive
manufacturing) make it more convenient to reinforce thin-wall struc-
tures by curvilinear stiffeners, which can greatly enhance the load-
carrying capacity. However, for the design optimization of curvilinear
stiffeners, it is still a very challenging problem due to the high-
dimensional inherence. Kapania et al. [19] summarized the previous
research works of curvilinear stiffened panels, and found that curvili-
nearly stiffened panels have larger design space as well as lightweight
potential in comparison with straight stiffeners. As for recent works,
more and more researches are focused on the mechanical behavior of
curvilinearly stiffened panels under shear load or combined compres-
sion-shear load. For instance, the mesh-free method is used to study the
buckling and static behavior of curvilinearly stiffened panels [20,21].
Wang et al. [22] performed the buckling optimization of curved
stiffeners based on a global/local coupled strategy, and a significant
improvement of post-buckling performance was observed. In addition,
a new shear deformation theory was developed for functionally graded
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plates and beams, and a satisfying accuracy was achieved [23–26]. In
order to optimize the stiffener layout more effectively, many kinds of
software are committed to this work. PANDA2 [27,28] can design
composite stiffened shells under as many as five combined load cases
based on gradient optimization algorithm. VICONOPT [29] is able to
analyze the buckling and vibration problems of anisotropic plates.
Furthermore, it can also optimize thin-wall structures under buckling
constraints. Indeed, due to the introduction of NURBS [30,31] to
describe the stiffener path, the computational cost of designing curved
paths of stiffeners still face enormous challenges. Worse yet, in the
design space, curvilinearly stiffened panels are always characterized by
many local minima, which also increase the calculation burden
remarkably. To solve this problem, more efficient global optimization
algorithms and frameworks are crucial. The authors [32] proposed a
novel stepwise design method to optimize cylindrical shells with
curvilinear stiffeners. Mulani et al. [33,34] designed the stiffeners
placement and size of stiffened panels by Response Surface Method
(RSM), and the optimization process is decomposed into sizing optimi-
zation and stiffener placement optimization. Therefore, this approach is
able to avoid trapping in local optimum and find global minima. In
addition, dynamically reconfigurable quantum particle swarm optimi-
zation (PSO) was also used to find the optimal design of stiffened
composite cylinders [35]. Compared with previous PSO algorithms, the
quantum PSO can provide a more robust and reasonable optimal
solution. It should be noted that above intelligence and genetic
algorithms will cause much heavier computation burden compared to
gradient-based optimization methods. In order to reduce the computa-
tional cost, a surrogate-based optimization framework with adaptive
sampling was established by authors [36].

As a promising optimization technique, the HS algorithm was
developed to search the optimum design of linear and nonlinear
problems with both discrete and continuous variables [37]. This
algorithm is in an analogy with music improvisation process where
music players improvise the pitches of their instruments to obtain better
harmony. During the improvisation process, all the solution vectors are
stored in the harmony memory (HM), which is similar to the genetic
pool in the genetic algorithm. In the HS algorithm, improvisation
process continues to improve her/his contribution for a better state
search of harmony [38,39]. The perfect harmony and improvisation
group are corresponding to the global optimum and design variables,
respectively. Originally, Geem et al. [40] developed the HS algorithm.
Later, Mahdavi et al. [39] proposed the improved harmony search
algorithm (IHS) whose parameters are dynamically updated at each
iteration. Omran and Mahdavi [41] proposed the Global-best harmony
search (GHS) algorithm based on a modified pitch adjustment rule
where the best harmony is considered in new harmony memory. Kattan
and Abdullah [37] extended the IHS based on the best-to worst
harmony memory, adaptively. El-Abd [42] introduced an improved
global-best harmony search (IGHS) algorithm and with a novel pitch
generation scheme using the Gaussian and uniform distribution in the
pitch process.

The structure of this paper is organized as below. In Section 2, the
optimization method is introduced, including standard HS algorithm
and a series of improved HS algorithm. On this basis, a modified version
of HS algorithm (adaptive dynamic harmony search (ADHS) algorithm)
is proposed based on the information of the harmony memory for
improvisation procedure. In Section 3, the numerical model of curvi-
linearly stiffened shell is established. In order to reduce the amount of
calculation, response surface method (RSM) is employed, and second-
order polynomial with cross terms is used to construct the model. In
Section 4, the optimum designs of aircraft panels are evaluated, and
different harmony search algorithms are compared, and then the effects
of the number of improvisation and harmony memory size are
investigated.

2. Adaptive dynamic harmony search optimization

For the HS algorithm, there are five parameters including harmony
memory size (HMS), harmony memory consideration rate (HMCR),
pitch adjustment rate (PAR), bandwidth (bw) and number of improvisa-
tions (NI). In particular, HMCR, bw and PAR are the main parameters. In
the improved versions of HS, some of these parameters are considered
as a constant value or are computed dynamically using another
parameter. To search the optimum of objective function, the sets of
design variables are randomly generated based on those parameters,
and five basic steps are included [40].

1) Define the optimization problem and parameters of the problem
2) Determine the initial values of the harmony memory
3) Create a new harmony memory
4) Update the harmony memory
5) Check the stopping criterion of the algorithm optimization:

Terminate when the maximum number of improvisations is reached.

Based on the initial harmony memory in the second step, each
generated member of the previous harmony memory are improvised
using algorithm parameters such as HMCR, PAR and bw. This impro-
visation leads to a new harmony memory based on three rules: 1)
consideration of the previous harmony memory members; 2) adjust-
ment of the existing harmony memory; 3) random selection of each
member of memory [43]. The parameter HMCR shows the selection
rate of new memory from the previous harmony memory. The PAR is
similar to the mutation of GA algorithm and adjusts the design variable
of harmony memory randomly. Based on the randomness of improvisa-
tion in HS, the improvisation in harmony search optimization algo-
rithms is introduced.

2.1. Harmony search

The memory consideration, pitch adjustment, and randomization
are applied to improve new harmony for each design variable in the
standard HS algorithm as follows:

Algorithm 1. The harmony search algorithm

IF r HMCR≤1 then
x x′ =i

j
i
j; /select from previous harmony

memory/
IF r PAR≤2 then

x x r bw′ = + (2 − 1) ×i
j

i
j ; /adjust new harmony memory/

ENDIF
ELSE

x x r x x′ = + × ( − )i
j

i
L

i
U

i
L

3 ; /select from the domain of
variables/

ENDIF;
F f x′ = ( ′ )j j ; /Computing the objective function

based on new harmony memory/

where, r r r r, , , ∈ [0 , 1]1 2 3 are random numbers. x is the set of
design variables, xi

L and xi
U are the upper and lower bounds of xi

respectively, which is the set of the possible range for each design
variable. Hence, each design variable is placed in the domain
x x x∈ [ , ]i i

L
i
U .

2.2. Improved harmony search

The parameters of improved harmony search (IHS) including PAR
and bw are dynamically updated during the evolution by the following
equations [39]:
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PAR k PAR PAR PAR
NI

k( ) = + −
min

max min
(1)

bw k bw Ln bw Ln bw
NI

k( ) = exp[ ( ) − ( ) ]max
min max

(2)

where, PARmin and PARmax are the minimum and maximum values of
the pitch adjusting rate, respectively. PAR k( ) is the calculated pitch
adjusting rate for the kth generation. In Eq. (2), bwmin and bwmax are the
minimum and maximum values of the distance bandwidth respectively,
and bw k( ) is the obtained distance bandwidth for the kth generation.
The IHS is the same as the basic HS algorithm, but exhibits better
performance for optimization problems [39,42]. Therefore, adjusting
step for improvisation of the IHS algorithm is shown as follows:

Algorithm 2. The improved harmony search algorithm

IF r HMCR≤1 then
x x′ =i

j
i
j; /select from previous harmony

memory/
IF r PAR k≤ ( )2 then

x x r bw k′ = + (2 − 1) × ( )i
j

i
j ; /adjust new harmony memory

based on dynamical bandwidth
Eq. (2)/

ENDIF
ELSE

x x r x x′ = + × ( − )i
j

i
L

i
U

i
L

3 ; /select from the domain of
variables/

ENDIF;
F f x′ = ( ′ )j j ; /compute the objective

function based on new
harmony memory/

2.3. Global-best harmony search

Mahdavi and Omran [41] proposed the GHS based on the best
harmony in the harmony memory. The pitch adjustment step of the HS
is modified by the best harmony. Additionally, the parameter PAR is
determined by a dynamic updating procedure based on Eq. (1). The
improvisation step of the GHS is similar to the basic HS algorithm, but
the improvisation step of GHS is modified as follows:

Algorithm 3. global-best harmony search algorithm

IF r HMCR≤1 then
x x′ =i

j
i
j; /select from previous harmony

memory/
IF r PAR k≤ ( )2 then

x x′ =i
j

i
best; /adjust new harmony memory based

on the best harmony in memory/
ENDIF

ELSE
x x r x x′ = + × ( − )i

j
i
L

i
U

i
L

3 ; /select from the domain of variables/

ENDIF;
F f x′ = ( ′ )j j ; /compute the objective function

based on new harmony memory/

where, xi
best means the best harmony of the ith design variable in the

memory. PAR k( ) is the dynamical pitch adjusting rate for the kth
generation, which is computed by Eq. (1).

2.4. Improved global best harmony search

An improved version of global-best harmony search algorithm was
introduced by El-Abd [42] that has better efficiency and performance
than the HS algorithm. The harmony memory with probability of

HMCR is adjusted using random generation based on standard normal
probability distribution. Then, the best harmony is adjusted using the
uniform distribution and the bandwidth, which was developed by
Mahdavi et al. [39] in Eq. (2). The adjusting step of new harmony
memory for IGHS algorithm is shown as follows:

Algorithm 4. improved global -best harmony search algorithm

IF r HMCR≤1 then
x x Gr bw k′ = + (0 , 1) × ( )i

j
i
j ; /adjust the HM using the

Gaussian standard
distribution/

IF r PAR k≤ ( )2 then
x x r bw k′ = + (2 − 1) × ( )i

j
i
best ; /adjust the new HM with the

best memory by bw (proposed
by Mahdavi et al. (2007))/

ENDIF ELSE
x x r x x′ = + × ( − )i

j
i
L

i
U

i
L

3 ; /select from the domain of
variables/

ENDIF
F f x′ = ( ′ )j j ; /compute the objective

function based on new
harmony memory/

in which, Gr (0 , 1) is a random number generated using Gaussian
standard distribution with a mean of 0 and a standard deviation of 1.
The pitch adjusting rate (PAR) and bandwidth (bw) are dynamically
calculated by Eqs. (1) and (2) in IGHS algorithm.

2.5. Adaptive dynamic harmony search

In this study, a modified version of HS algorithm is proposed based
on the information of the harmony memory for improvisation proce-
dure. The new harmony memory is dynamically determined based on
two adjusting stages in the adaptive dynamic harmony search (ADHS)
algorithm. In the first stage, the harmony memory is adjusted using the
maximum and minimum numbers of each design variable in HM with a
dynamical HMCR as follows:

HMCR k k
NI

k
NI

( ) = 0.95 + 0.1 × − ( )2
(3)

where k is the number of the current iteration, NI is the total number of
iterations. Therefore, the new harmony memory based on HMCR (k) in
Eq. (3) is computed as

⎪

⎪

⎧
⎨
⎩

x
x k NI Bw k HMCR k
x r x x HMCR k

′ =
′ ± 1 − / × ( ) with probability ( )

+ × ( − ) with probability 1− ( )i
j i

j
i

i
L

i
U

i
L

(4)

where, Bw k( ) is a dynamical bandwidth, which is suggested as follows:

Bw k
x x k

NI
( ) =

− + 0.001
10

exp[−10 ]i
i i
max min

(5)

where xi
max and xi

min are the maximum and minimum values for design
variable xi in HM, respectively. According to Eq. (5), a bandwidth is
developed based on a mathematical function using the maximum and
minimum harmony memory for each iteration. The proposed band-
width is larger at the initial iterations, because a maximum difference is
obtained between xi

max and xi
min . Consequently, a larger bandwidth is

considered to adjust the harmony in ADHS. The dynamical bandwidth
is decreased based on the increment of improvisation as logarithmic
(bandwidth is about Bw NI x x( ) ≈ 4.54 × 10 ( − )i i i

−6 max min at the end of
iterations), and the difference between the maximum and minimum
harmony memory is decreased in successive iterations. Therefore, the
bandwidth is reduced at the final iterations. The dynamical bandwidth
is established based on the number of current improvisation, minimum
and maximum values of each design variable in the harmony memory.
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In the second stage, the new HM is adjusted using the coefficient
k NI1 − / and the dynamic pitch adjustment rate (PAR (k)) by the

following relations:

PAR k k NI( ) = 0.3 + 0.6 × [1 − 1 − / ] (6)

⎧
⎨⎪
⎩⎪

x
x x x PAR k

x r x x PAR k
′ =

± 1 − × [ − ] with probability ( )

+ × ( − ) with probability 1− ( )
i

j i
j k

NI i i

i
L

i
U

i
L

max min

(7)

As can be seen from Eqs. (6) and (7), each element in harmony
memory is adapted with an interval x x[ , ]i i

min max at each iteration. This
line search direction (i.e. x x−i i

max min ) for each variable is used to move
each harmony memory corresponding to the maximum and minimum
harmony memory. Generally, a global adjustment is achieved based on
the proposed adjustment processes in the second stage, where the
movement of each harmony from the previous position is controlled by
the coefficient k NI1 − / . The value of k NI1 − / is determined as a
smaller value at the final iteration, thus the new HM is adapted with a
smaller bandwidth i.e. k NI x x1 − / × [ − ]i i

max min . On the other hand,
the proposed line search to adapt the HM in the first stage is obtained as
a larger value at the initial iterations in order to determine a larger

k NI1 − / and larger difference between the maximum and minimum
values for design variable xi, thus a wide area for searching the pitch
adjustment of each design variable is randomly selected.

As is evident, the harmony memory is adjusted with the probability
of HMCR×PAR based on a dynamical pitch adjustment with a
bandwidth in Eq. (7). This dynamical bandwidth can adjust the new
HM in local position of each design variable. Therefore, the local
optimum solutions may be reduced based on the ADHS for optimization
problems with several local minima. The ADHS to determine the
optimum condition is defined based on the following steps, which can
be implemented in a computer program to optimize complex engineer-
ing problems.

Algorithm 5. adaptive dynamic harmony search algorithm

Step 1: DEFINE HMS, X X X∈ [ , ]L U ,
k=1;

Step 2: FOR j←1 to MHS DO
FOR i←1 to N DO /for number of design

variables (N)/
x x r x x= + × ( − )i

j
i
L

i
U

i
L ; in which r ∈ [0 , 1]

END FOR
XF f= ( )j j / objective function at the

harmony memory X j/
END FOR

Step 3: FOR i←1 to N DO
Find the maximum harmony (xi

max ) and minimum harmony

(xi
min ) for variable xi

Compute the parameters of ADHS
as

γ k k NI( ) = 1 − / and
L x x= −i i i

max min

Bw k( ) = exp[−10 ]i
L k

NI
+ 0.001
10

i ,

PAR k γ k( ) = 0.3 + 0.6 × [1 − ( )],
HMCR k γ k k NI( ) = 0.95 + 0.1 × ( ) /
FOR j←1 to MHS DO
IF r HMCR k≤ ( )1 THEN in which
r ∈ [0, 1]1

x x γ k Bw k′ = ′ ± ( ) × ( )i
j

i
j

i ; /pitch the harmony
memory in terms of local
position/

IF r PAR k≤ ( )2 THEN in which r ∈ [0 , 1]2

/pitch the new harmony

x x γ k L′ = ± ( ) ×i
j

i
j

i memory as global
position/

ENDIF ELSE
x x r x x′ = + × ( − )i

j
i
L

i
U

i
L ; in which

r ∈ [0, 1]
/select the new HM from
the domain of design
variables/

ENDIF
END FORs

Step 4: FOR j←1 to MHS DO
XF f′ = ( ′ )j j / objective function at the

new harmony memory
X′j/

IF F F′ <j j THEN X X= ′j j END IF
END FOR

Step 5: IF k=NI AND Fj satisfies the
convergence criteria THEN report
results and STOP
ELSE k=k+1 and return to Step 3
END IF

3. Numerical example

3.1. Model description

A curvilinearly stiffened panel with multiple cutouts for aircraft
design is established in this section, which was designed, manufactured
and tested in the Combined Load Test Fixture at NASA Langley
Research Center by Havens et al. [44]. This stiffened panel is
representative of a large wing engine pylon rib, with a length of
L=711.2 mm, a width of B=609.6 mm, as shown in Fig. 1. There are
four curvilinear stiffeners and two circular cutouts, and both of the
cutouts are reinforced by thick circular ring area. Unlike the work by
Havens et al. [44], only axial compression is considered in this paper.
The thickness of two thick circular reinforced rings are 5.9 mm and
4.7 mm, respectively. All stiffeners have same thickness and height. The
stiffener height h is 13.4 mm, and the thickness t is 1.6 mm. The skin
thickness tc is 2.6 mm. The aluminum alloy 2139 is used to manufacture
this shell, with the material properties listed as follows: Young's
modulus E=72504 MPa, Poisson's ratio υ=0.33, density ρ=2.8E-
6 kg/mm3 and yield stress σs=465.8 MPa. The structural weight of
the initial design is 3.27 kg.

To prevent the distortion along shell edge and thus virtual buckling
modes, all the loading-end nodes are coupled to a central reference
point with a rigid body link to enforce a uniform displacement
condition, and two sides are simply supported. There are three variables
(cover thickness tc, stiffener thickness t, stiffener height h) in this model,
which follow normal distribution. By performing the linear buckling
analysis in FE package ABAQUS, the predicted buckling load is 38.3 kN,
and the first buckling mode shape is shown in Fig. 2.

3.2. Response surface method for performance prediction

Buckling analysis is relatively time-consuming for global optimiza-
tion. Originally, the response surface method (RSM) is an appropriate
tool to calibrate the mathematical model-based polynomial functions
for estimation of mechanical experiments, which approximates an
implicit or complex process as a response surface function (RSF) in an
explicit and simple polynomial form based on evaluation of the
experimental points of a mechanical event. The second-order poly-
nomial form can be used to reassert the RSF, and the second-order
polynomial form of RSF with cross terms is expressed as [45,46].

∑ ∑ ∑ ∑f X a a x a x a x x( ) = + + +
i

n

i i
i

n

ii i
i

n

j i

n

ij i j0
=1 =1

2

=1 = +1 (8)
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where, a0, ai, aii and aij are the unknown coefficients, and the number of
coefficients necessary to define is n n( + 1)( + 2)/2. The accuracy of
predicting the mechanical properties may be improved through the
inclusion of the cross terms in the second-order polynomial RSF. The
least squares estimator commonly used in evaluating the unknown
coefficients of the RSF in terms of the experiment data points [46,47].
The main goal in the RSM is to fit a RSF to the experiment points. The
approximated RSF can be rewritten in matrix form as follows:

X X af P( ) = ( )i i
T (9)

where Xf ( )i is the prediction value based on experimental input data X .
a is the coefficient vector, which can be computed based on variables X
at each experiment for mechanical properties. XP ( )i is the polynomial

basic function vector at the observed data points Xi, and the basic
functions for second-order polynomial of RSF with three input variables
is defined as

XP x x x x x x x x x x x x( ) = [1 , , , , , , , , , ]1 2 3 1
2

2
2

3
2

1 2 1 3 2 3 (10)

The unknown coefficient a is computed by minimizing the error
between the observed (O) and approximation ( Xf ( )) data. The error is
determined by the following relation:

∑ ∑X X X ae O f O P( ) = [ − ( )] = [ − ( ) ]i
i

NE

i i
i

NE

i i
T

=1

2

=1

2

(11)

where, NE is the number of data points in O O O O O= [ , , , ... ]NE
T

1 2 3 and
XP P X P X P X P X( ) = [ ( ), ( ), ( ), ... ( )]T

NE1 2 3 . By minimizing the error func-
tion in Eq. (11) with respect to the unknown coefficient a, we have

a X X X OP P P= [ ( ) ( )] [ ( ) ]T T−1 (12)

In this way, the surrogate model-based RSF is determined, more
simply. The weight and the buckling load of aircraft panels can be
estimated by the second-order RSF.

The response surface function in Eq. (8) is calibrated based on data
points. The unknown parameters for second-order polynomial function
of weight and buckling load are determined based on Eq. (12) with
input variables; t, tc and h in this study.

3.3. Comparative studies of the input variables

The observed and predicted values from the RSF for weight (W) and
buckling load (Pcr) are plotted in Fig. 3a and b, respectively. As can be
seen, the RSFs, which can be used to prediction of W and Pcr, have a
good performance, since the predictions are close to the experiment
data point. The root mean square errors (RMSE) and adjusted correla-
tion (R2) are computed for the RSFs as RMSE=0.003 kg and R2=1 for
W, RMSE=0.75762 kN and R2=0.997 for Pcr. Consequently, the RSF
can be used for the optimization and evaluation of the optimum
condition based on the proposed ADHS.

Firstly, the weight and buckling load of aircraft panels are evaluated
based on the second-order RSF with cross terms. The effects of three
design variables (i.e. cover thickness tc, stiffener height h and thickness
t) are investigated with regard to the initial design (tc, h, t) int=
(2.6 mm, 13.4 mm, 1.8 mm). The initial weight and buckling load are

Fig. 1. Sketch of the curvilinearly stiffened panel with multiple cutouts.

Fig. 2. First buckling mode shape of the initial design.
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estimated for the initial design using RSM as Wint=3.2889 kg and Pcr
int=40.3825 kN, respectively. The normalized weight (weight to initial
weight i.e. W/Wint) with respect to the normalized design variables is
plotted in Fig. 4. It can be seen from Fig. 4 that the weight is more
sensitive to skin thickness than other design variables i.e. h, and t.

Fig. 5 illustrates the normalized buckling load (buckling load to
initial buckling load i.e. Pcr/ Pcr int) with respect to the normalized
design variables. As expected, the buckling load is increased by
increasing the design variables. The buckling load is increased about
5.26, 2.67 and 1.27 times when the normalized variables (i.e. skin
thickness tc, stiffener height h and thickness t) are increased to 3,
respectively. In addition, it can be found that the effect of skin thickness
tc is more than other design variables i.e. h and t. However, the buckling
load with respect to stiffener height (h) is more sensitive than stiffener
thickness t but this variable h is not shown a significant weight
difference between panels with a same tc=1.5 mm and t=0.8 mm,
and different stiffener heights 8 mm and 24 mm.

4. Comparative results and discussion

In this section, two applications of the optimization approach using
response surface method and proposed ADHS method are discussed. In
the first application, the optimum designs of aircraft panels based on
different harmony search algorithms are evaluated and the results are
compared, and then, in the second application, the optimum designs
based on the proposed ADHS algorithm are evaluated with respect to
various constraints of buckling load, stiffener height and thickness. The
optimization model to search the optimum conditions of the aircraft
panels is given as follows:

find t h t
W f t h t

S t P t h t P
t cm h cm t cm

*, *, *
min = ( , , )

. . ( , , ) ≥
0.5 ≤ ≤ 3.75 , 8 ≤ ≤ 18 , 0.5 ≤ ≤ 2.5

c

c

c cr

c (13)

where, t h*, *c and t* are the optimum design variables. W and
P t h t( , , )c are the weight and buckling load of aircraft panels respec-
tively, which are predicted at the design point (tc, h, t) based on the RSF
with cross terms. Pcr is the buckling load constraint. To evaluate the
ability to search the optimum design, an unconstrained optimization
function is used by the penalty functions as F W λ g t h t= + [ ( , , )]c

η, in
which λ and η are the penalty coefficients as λ = 104 and η = 2.
g t h t( , , )c is the penalty function, which is determined by
g t h t P P t h t( , , ) = max {0, − ( , , )}c cr c .

4.1. Comparison of different harmony search algorithms

In this section, five harmony algorithms with a same number of
improvisation i.e. NI=5000 and harmony memory size i.e. HMS=5
[42] are compared. To be specific, the parameters are considered as
HMCR=0.95 for all algorithms; bw=(xmax−xmin)/100, and PAR=0.35

Fig. 3. The observed experiments and predicted RSF for weight and buckling load of aircraft panels. (a) weight (kg); (b) buckling load (kN).

Fig. 4. The effects of design variables on the weight of aircraft panels.

Fig. 5. The effects of design variables on the buckling load of aircraft panels.
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for HS algorithm; bwmax=(xmax−xmin)/20, bwmin=0.001, PARmax=0.9,
PARmin=0.1 for IHS and IGHS [42]; PARmax=0.9, PARmin=0.1 for GHS.
The parameters of harmony search method based on the adaptive
dynamical algorithm are dynamically determined at each iteration. The
optimum designs of this complex problem, which is described in Section
3.1, are obtained based on the HS, IHS, GHS, IGHS, ADHS respectively,
and the corresponding results are listed in Table 1. The optimum weight
is obtained based on 30-run iterations for each algorithm, and then the
average value i.e. W (mean), standard deviations SD and best solution
(minimum weight) i.e. W (best) as well as the optimum variable values
are tabulated in Table 1. Also, the average W (mean), best W (best) and
worst W (worst) solutions in 30-runs for each iteration are plotted in
Fig. 6 for the proposed ADHS algorithm. The results in Table 1
demonstrate that the harmony search algorithms can be used to search
the optimum designs of this complex example, successfully. In addition,
it can be found that the IGHS algorithm has a better performance than
the HS, IHS, and GHS, but the proposed method obtains a superior
optimum design than the IGHS i.e. W (best)=2.2027 kg. The HS and
GHS yield maximum average and best solutions among other harmony
algorithms. The results from Fig. 6 and Table 1 show that the difference
between the average optimum weight of the proposed ADHS and the
best solution is about 0.23 kg, but the corresponding values are
obtained as 1.034 kg for HS, 0.37 kg for IHS, 0.667 kg for GHS and
0.904 kg for IGHS. This means that the proposed ADHS can provide an
optimum design in a robust manner when compared with other
harmony algorithms. In the ADHS, the dynamic pith stage based on
the novel generated harmony memory produces an appropriate opti-
mum design. The optimum variable values based on the ADHS are
obtained as (tc*, h*, t*)=(1.703789 mm, 18 mm, 2.5 mm) with an
optimal weight of 2.4281 kg. As can be seen, both h* and t* are
converged to the upper bounds. Therefore, the geometrical dimensions
of stiffener are the important factors to balance improved load-carrying
capacity and optimum weight of aircraft panels.

4.2. Effects of the number of improvisation

The number of improvisation (NI) is one of important parameters in
ADHS based on Eqs. (3)–(7), since most of ADHS parameters are
dynamically evaluated by NI. Thus, the effects of NI are investigated
based on the optimum designs using different harmony search algo-
rithms. The statistical results including mean, SD and best solutions for
the optimum weight of aircraft panels are tabulated in Table 2 for HS,
IHS, GH, IGHS and proposed ADHS methods. The iterative histories for
the proposed ADHS algorithm with different NI are shown in Fig. 7. The
results in Table 2 indicate that the means of optimum weight can be
decreased by increasing the NI for the proposed ADHS (W (mean)

Table 1
Results of different harmony search algorithms for aircraft panels.

Method HS IHS GHS IGHS Proposed ADHS

W (mean) (kg) 3.4740 3.3963 3.4428 3.4963 2.8449
SD (kg) 0.3698 0.4085 0.4273 0.3891 0.1232
W (best) (kg) 2.8289 2.7468 2.7983 2.7603 2.7265

Optimum variable value
t c* (mm) 2.0762 1.9948 2.0358 2.0164 1.9598
h*(mm) 17.1331 18.00 17.2952 18.00 18.00
t*(mm) 2.3772 2.3544 2.4774 2.2707 2.50
ABAQUS (W) 2.8289 2.7468 2.7983 2.7603 2.7265
ABAQUS (Pcr) 44.812 40.558 42.933 41.471 39.148
Rel-errors (W) % −9.48E−06 −1.23E−05 −1.46E−05 −9.02E−06 −1.90E−05
Rel-errors (Pcr) % −14.53 −5.57 −10.79 −7.65 −2.17

Fig. 6. Iterative histories of optimum weight for ADHS with HMS=5.

Table 2
Effects of NI on the optimum design using different harmony search algorithms.

Method HS IHS GHS IGHS ADHS

NI=50 W (mean) (kg) 3.5785 3.5638 3.4527 3.6746 3.2714
SD (kg) 0.4002 0.3717 0.3933 0.4127 0.4591
W (best)(kg) 2.9193 2.8091 2.8941 2.8934 2.7278

NI=100 W (mean) (kg) 3.6461 3.4547 3.3564 3.5125 3.3391
SD (kg) 0.3838 0.4382 0.4083 0.4564 0.4610
W (best)(kg) 2.9378 2.7381 2.8267 2.8537 2.7272

NI=500 W (mean) (kg) 3.6333 3.5621 3.4987 3.4988 3.1319
SD (kg) 0.4202 0.3299 0.3625 0.3858 0.3639
W (best)(kg) 2.8448 2.7945 2.8766 2.9079 2.7272

NI=1000 W (mean) (kg) 3.5547 3.3633 3.5514 3.6477 2.9276
SD (kg) 0.4283 0.4692 0.4182 0.4337 0.2635
W (best)(kg) 2.9004 2.7382 2.8528 2.7465 2.7266

NI=2000 W (mean) (kg) 3.3803 3.5584 3.4570 3.5095 2.8926
SD (kg) 0.3414 0.3531 0.3822 0.3749 0.1813
W (best)(kg) 2.8803 2.9621 2.8058 2.9396 2.7265

*The bold numbers are the best optimum results among different NI for each algorithm.

Fig. 7. Iterative results of optimum weight for different numbers of improvisation (NI) in
ADHS algorithm.
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=3.27 kg at NI=50 and W (mean)=2.89 kg at NI=2000), however,
the best solution is almost unchanged for NI=50 and NI=2000 i.e.
Wbest≈2.726 kg (see Fig. 7). By contrast, the IGHS, GHS, IHS as well as
HS methods exhibit different performances when increasing the NI,
specifically, W (best)=2.845 kg at NI=500 for HS, W (best)=2.738 kg
at NI=100 for IHS, W (best)=2.806 kg at NI=2000 for GHS and W
(best)=2.747 kg at NI=1000 for IGHS. On the other hand, the
differences between the maximum and minimum values of best weight
for various NI in the IGHS, GHS, IHS and HS algorithms are larger than
the proposed ADHS. The proposed pith adjusted process based on a
local and global adjusting formula with probability dynamical HMCR
and PAR. Therefore, the proposed ADHS algorithm can provide an
optimum result compared to other harmony algorithms based on a less
harmony memory size (HMS=5) and NI>500 for this example, more
efficiently.

4.3. Effects of the harmony memory size

In the studied HS methods, HMS determines the scale of initial
solution, and its value will influence the efficiency and accuracy of HS
algorithms. A larger HMS means that the algorithm has a higher chance
to find a better feasible solution. In this section, the effects of the
harmony memory size are discussed between HS, HIS, GHS, IGHS and
ADHS. As the statistical results of the optimum weight of aircraft panels
are listed in Table 3, W (best)=2.74 kg at HMS=50 for HS, W (best)
=2.7355 kg at HMS=30 for IHS, W (best)=2.7922 kg at HMS=10 for
GHS, W (best)=2.7293 kg at HMS=30 for IGHS and W (best)
=2.7147 kg at HMS=50 for IGHS. Along with an increasing value of
HMS, most of HS algorithms obtain a better result for both the mean
and best of solution. However, with the increase of HMS, GHS obtains
the best solution at HMS=10, and W (best) at HMS=5 and HMS=20
are also superior to the solution at HMS=50. The means and best of
optimum weight can be decreased by increasing the HMS for the
proposed ADHS (W (mean)=2.8926 kg, W (best)=2.7265 kg at
HMS=5 and W (mean)=2.715 kg, W (best)=2.7147 kg at HMS=50).
It should be noted that the W (mean) and W (best) of ADHS at HMS=5
is even better than W (mean) and W (best) of HS, IHS, GHS and IGHS at
HMS=50. It means that ADHS can achieve a better performance than
HS, IHS, GHS and IGHS with a smaller amount of calculation. From
Table 3, the ADHS gets the smallest value of SD at each HMS, even at
HMS=5, the divergence of solution is better than other algorithms at
HMS=50. In particular, when HMS=50, SD=0.0005, which indicates
the HM converges to a stable solution. The harmony memory of ADHS
is adjusted with the probability of HMCR×PAR based on a dynamical
pitch adjustment with dynamical bandwidth, which can adjust the new

HM in local position of each design variable. Therefore, local optimum
solutions may be reduced based on the ADHS for optimization problems
with multiple local minima, which will make the algorithm more robust
and efficient.

5. Conclusions

Structural weight is crucial for aircraft panels under buckling
constraint, and thus the minimum-weight optimization is of great
concerns. In this study, a modified version of HS algorithm is proposed
based on the information of the harmony memory to find the optimum
design of aircraft panels, named as adaptive dynamic harmony search
(ADHS) algorithm. Typical curvilinear stiffened panels under buckling
constraint are considered, in order to demonstrate the advantage of the
proposed algorithm. Based on the illustrative example, several existing
harmony search algorithms are compared with the proposed algorithm,
including the best solution, mean value and standard deviation of
optimum results. Results indicate that the proposed ADHS can provide
an optimum design in a robust manner. However, due to the inherence
of evolutionary algorithm, the proposed method is still not suitable for
super-dimensional problems. Therefore, the number of design variables
should not be too large, otherwise, the global optimum design cannot
be guaranteed.

Furthermore, the effects of the number of improvisation (NI) and
harmony memory size (HMS) are investigated and discussed in detail. It
is found that the differences between the maximum and minimum
values of best weight for various NI in the IGHS, GHS, IHS and HS
algorithms are larger than the proposed ADHS. Also, local optimum
solutions may be reduced based on the ADHS for optimization problems
with multiple local minima, which makes the algorithm more robust
and efficient optimum results as W*=2.7147 kg with optimum condi-
tions as skin thickness tc*=1.9497 mm, stiffener thickness t*=2.5 mm,
and stiffener height h*=18 mm.
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