Under review as a conference paper at ICLR 2022

STABILIZED LIKELIHOOD-BASED IMITATION LEARN-
ING VIA DENOISING CONTINUOUS NORMALIZING
FLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art imitation learning (IL) approaches, e.g, GAIL, apply adversarial
training to minimize the discrepancy between expert and learner behaviors, which
is prone to unstable training and mode collapse. In this work, we propose SLIL —
Stabilized Likelihood-based Imitation Learning — a novel IL approach that directly
maximizes the likelihood of observing the expert demonstrations. SLIL is a two-
stage optimization framework, where in stage one the expert state distribution is
estimated via a new method for denoising continuous normalizing flow, and in
stage two the learner policy is trained to match both the expert’s policy and state
distribution. From the best of our knowledge, none of existing works solve the
unstable training and mode collapse problem of GAIL. Experimental evaluation of
SLIL compared with several baselines in ten different physics-based control tasks
reveals superior results in terms of learner policy performance, training stability,
and mode distribution preservation.

1 INTRODUCTION

Imitation learning (IL) (Abbeel & Ngl 2004; Ho & Ermon,|2016) aims to learn sequential decision-
making policies directly from expert demonstrations, without access to reward signals from the
environment. State-of-the-art (SOTA) IL approaches have primarily followed one of two paradigms:
behavior cloning (BC) (Pomerleau, 1991) and generative adversarial imitation learning (GAIL) (Ho &
Ermonl 2016). While both BC and GAIL have been studied extensively, each has crucial limitations.
On the one hand, BC approaches employ supervised learning, which requires a large amount of
expert demonstrations to avoid compounding errors due to covariate shifts (Ross et al., | 2011; |Ross &
Bagnell, 2010). On the other hand, GAIL approaches (Jena & Sycaral [2020; [Fei et al.,[2020; [Li et al.,
2017; Hausman et al., 2017; [Fu et al.|[2017; |Ke et al.,2019; Ghasemipour et al., [2019; Zhang et al.,
2020; |Arjovsky et al.,|2017) connect IL with generative adversarial networks (GAN) (Goodfellow
et al., [2014)), but adversarial training processes are intrinsically unstable (Jena & Sycaral [2020;
Arjovsky et al., 2017) and prone to mode collapse (especially when learning from multi-mode expert
demonstrations) (Ghasemipour et al.,2019; [Fei et al., [2020; |[Ke et al.| 2019). To see this, consider
Fig.[I] which shows an example of different IL algorithms on the Reacher task (Todorov et al., 2012;
Hausman et al.,2017) with four targets (Fig.[Ia). While the expert tends to visit all targets equally
(Fig. [1b), the policy learned by GAIL is mode collapsed, primarily visiting the green one (Fig.[Te).

SLIL: Overview and Contributions. In this work, we are motivated to design an IL. methodology
with a stabilized training process and mode distribution preservation from expert demonstrations.
We propose SLIL — Stabilized Likelihood-based Imitation Learning — a novel IL approach that
directly maximizes the likelihood of observing the expert demonstrations. SLIL is a stable two-
stage optimization framework, with the 15 stage focusing on accurately estimating the expert state
distribution, and the 2"? stage training the learner policy to match the expert’s policy and state
distribution. Fig.[Ic/shows a quick view of our results: SLIL leads to a learner policy preserving the
mode visitation distribution of the expert demonstrations. Our key contributions are as follows:

* We develop the first likelihood-based IL methodology that tackles the training instability issue of
GAIL. SLIL’s two-stage optimization framework is based on a tight lower bound on the joint policy
and state distribution training objective from the likelihood-based IL formulation (Sec .1).

Under review as a conference paper at ICLR 2022

. ﬁ<. .kO‘
‘o8 » .

(a) Reacher4 with (b) Mode coverage (c) Mode coverage (d) Mode collapse
four mode targets. of expert policy. of SLIL policy. of DRIL policy.
° 8 EMD
° ° ° SLIL 0.33
DRIL 0.55
GAIL 0.41
PWIL 0.48
s) m SoftSLIL 0.67
(e) Mode collapse of (f) Mode collapse of (g) Mode collapse (h) Learner policy
GAIL policy. PWIL policy. of Soft-SLIL policy. EMD result.

Figure 1: Example results obtained by SLIL (Ours) and baselines on mode coverage. (a): A Reacher
task, with four targets in different colors. (b)-(g) show the mode coverage (i.e, state distribution) with
expert policy (b), our SLIL policy (c), DRIL policy (d), GAIL policy (e), PWIL policy (f), and SLIL
implemented with SoftFlow (Soft-SLIL) (g). (h) show the earth mover’s distance (EMD)
between expert and learner policy state distributions. All the distributions are visualized
using kernel density estimation (KDE) (Sheather & Jones, |[1991). None of the compared approaches
solve the mode collapse problem.

* We propose the denoising continuous normalizing flow (DCNF) algorithm to accurately estimate
the expert state distribution in the 15! stage of SLIL to preserve expert modes. DCNF maps
the expert state to the Gaussian noise distribution with a neural ODE, and trains the ODE using
perturbed expert states (Sec4.2).

* Our evaluation on ten different physics-based control tasks reveals that SLIL obtains superior
results compared with SOTA baselines in terms of learner policy performances, training stability,
and mode distribution preservation (Sec El

2 RELATED WORK

Behavior Cloning (BC) (Pomerleau, [1991; [Bohg et al [2020) approaches for IL learn the expert
policy via maximizing expert trajectory likelihood in the demonstration data, i.e, maximizing expert
action likelihood. Though effective with abundant demonstrations, BC suffers from the covariate
shift problem with limited data (Ross et al.l 2011; [Ross & Bagnell, 2010). Brantley et al| (2019)
aims to address this via first pre-training an ensemble of BC policies, and then using reinforcement
learning (RL) (Sutton & Barto| [2018)) to train a learner policy whose cost is proportional to ensemble
policies’ prediction variance. In SLIL, we instead strive to solve the covariate shift problem via expert
state-action distribution matching, learning the expert state distribution explicitly.

Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) employs the GAN
framework (Goodfellow et al.,[2014) to minimize the discrepancy between expert and learner state-
action distributions. It jointly trains a generator (i.e, learner policy) to imitate the expert behaviors,
and a discriminator (i.e, reward signal) to distinguish the state-action pair distributions between the
expert and the learner. In GAIL, the discrepancy between the behavior distributions of the expert
and the learner is measured by JS divergence. Using the variational lower bound of an f-divergence
measure, several studies (Ke et al.|, 2019; /Ghasemipour et al.,[2019; [Fu et al.} 2017; [Nowozin et al.}
[2016;|Arumugam et al.,[2019; Zhang et al.,[2020) have extended GAIL from JS to a pre-defined f-
divergence, e.g, KL 2017), Reverse KL 2019), Total Variation 2017).
However, all these approaches adversarially train the generator and the discriminator as a minimax
game to reach an equilibrium, which can lead to training instability and mode collapse (Schroecker]
et al.} 2019} [Ghasemipour et al., 2019} [Fei et al.| [2020; [Ke et al., [2019).

'For reproducibility, the code for our experiments is available at https: //www.dropbox.com/sh/
buhgre6hfwdmvwu/AAAkc7SSjghmt falggj5I7Iba?dl1=0|

https://www.dropbox.com/sh/buhqre6hfwdmvwu/AAAkc7SSjqhmtfalqqj5I7Iba?dl=0
https://www.dropbox.com/sh/buhqre6hfwdmvwu/AAAkc7SSjqhmtfalqqj5I7Iba?dl=0

Under review as a conference paper at ICLR 2022

Several recent works try to avoid adversarial training in IL (Dadashi et al., [2020; |[Liu et al., 20205
Kim et al., 2020b; [Rhinehart et al.| 2018;[Schroecker et al.,2019). To do so, Primal Wasserstein IL
(PWIL) (Dadashi et al., |2020) considers the primal form of Wasserstein distance to match learner’s
and expert’s state-action distributions. Neural Density Imitation (NDI) (Kim et al.,2020b) estimates
expert’s occupancy measure using which as a reward for maximum occupancy entropy reinforcement
learning. Energy-Based IL (EBIL) (Liu et al., [2020) stems from Max-Entropy IRL (Ziebart et al.|
2008) and estimates a surrogate reward function with score matching from expert demonstrations.
Imitative Models (IM) (Rhinehart et al., 2018) learns a flow model that assigns high likelihoods to
expert-like trajectories for test time goal-directed planning. GPRIL (Schroecker et al.,|[2019) applies
masked autoregressive flows (Papamakarios et al.,[2017) to learn predecessor state-action distribution
in each training iteration, which adds complexity to learner policy training and requires training
stabilization. Unlike these methods, we maximize expert state-action likelihood and strive to not only
avoid adversarial training, but solve the mode collapse and unstable training problems as well.

3 LIL PROBLEM FORMULATION

Notations. We denote S as a set of states, A as a set of actions, P : S x
A xS [0, 1] as the transition probability distribution, r : S x A — R
as the reward function, py : S — R as the distribution of the initial
state so, and y € [0, 1] as the discount factor. An agent makes decisions
following a policy 7 : S x A +— [0, 1], which specifies a probability
distribution of choosing an action a € A at a state s € S. With
S0 ~ po, then over time ¢, a; ~ 7(as|sy) and s;41 ~ P(sp41|se, ar)
according to the policy w. We will denote the expert policy as mg,
and the learner policy as w. We denote P, (s, a) as the probability of
observing a state-action pair (s, a) when executing the learner policy 7,
and denote Pp(s, a) to represent Py, (s, a) for brevity. Moreover, for Figure 2: LIL framework.
a function h(s, a) of interest, we use an expectation over a policy 7 to P

denote an expectation with respect to the trajectories it generates, i.e,

)
E, [h(s,)] £ B[S0 1th(ss, ar))-

Likelihood-based Imitation Learning (LIL). To avoid the instability <
from adversarial training (e.g, in GAIL), we introduce a likelihood- 925 &,
based imitation learning paradigm to learn the policy 7 by directly y Stageh? =
maximizing the likelihood of the state-action pairs from the expert Evaluate oo
demonstration data Dg. The LIL objective can be formally modeled E D,

as a bilevel optimization problem (Sinha et al.,|2017):

max E, oyep, [l0g Pr(s,a)], s.t. Pr = argmaxE(, 4)ep, [log P(s, a)] Figure 3: SLIL framework.
m P
(1)

with Py (s, a) as the probability of observing an expert state-action pair (s, a) € Dy when executing
the learner policy 7. Notice that instead of maximizing trajectory likelihood as in BC, LIL maximizes
the likelihood of observed state-action pairs. The variable function Py (s, a) can be learned from the
lower-level optimization to maximize the log-likelihood of observing state-action pairs (s,a) € D,
collected by interacting with the environment using the learner policy 7 (i.e, the upper-level variable
function). Moreover, since Py (s,a) = m(a|s)Px(s), with w(al|s) as the learner policy and Py (s) as
the state distribution when executing 7, the LIL objective can be rewritten as

mng(S,a)epE log7(als)] + Esepg[log Pr(s)], st Pp=arg m}ngseDﬂ [log P(s)]. (2)

Challenges. The LIL solution framework alternates between policy learning (i.e, the upper-level
optimization to update) and state distribution estimation (i.e, the lower-level optimization to learn
Py), as shown in Fig. 2} In each iteration, the learner policy 7 is used to interact with the environment
to collect D,.. A normalizing flow is trained to estimate the state distribution P, of policy 7 using
D, (i.e, lower-level optimization). Then, the policy 7 is updated based on the state distribution
P, using expert data Dg, (i.e, upper-level optimization). However, two key challenges prevent a
straightforward application of LIL. C#I Training stability: 1t is challenging to properly grow 7 and
P, jointly to speed up and stabilize the training process in the bilevel optimization framework of
Eq.(2). C#2 Manifold hypothesis: Normalizing flows are only valid when the data distribution and

Under review as a conference paper at ICLR 2022

the target noise distribution have the same dimensions, which conflicts with the observation that
real-world data usually concentrate on low dimensional manifolds in a high dimensional space (a.k.a.
the ambient space) (Papamakarios et al., 2017; |Kim et al., 2020a; |Song & Ermon| 2019; Ho et al.,
2020; Belkin & Niyogi, 2003). Given an expert state distribution supported on a low dimensional
manifold, the LIL framework will fail to estimate the ground-truth state distribution P, and fail to
learn an expert-like learner policy 7 efficiently.

To address these challenges, we propose the Stabilized Likelihood-based Imitation Learning (SLIL)
framework shown in Fig.[3| SLIL relaxes the LIL problem to a two-stage optimization problem for
improved training stability, and learns expert state distribution with denoising continuous normalizing
flow (DCNF) to overcome the manifold hypothesis challenge. We formalize this methodology next.

4 OUR SLIL APPROACH

4.1 SLIL wiTH EXPERT STATE DISTRIBUTION

As we discussed earlier, the training instability of the LIL framework in Eq.(Z) comes from the
joint training of policy 7 (in the upper-level objective) and the corresponding state distribution P,
(in the lower-level objective). In Theorem [4.1]below, we show that the LIL problem (as a bilevel
optimization problem) can be relaxed to a two-stage optimization problem, which estimates the expert
state distribution Pg (in Stage #1), and trains the learner policy 7 based on Pg (in Stage #2).

Theorem 4.1. The optimal objective of the likelihood-based imitation learning (LIL) problem in
Eq.([2) is lower bounded tightly by the optimal objective of the following two-stage optimization
problem (see our proof in Appx.[A):

max (s q)epy llogm(als)] + Esep, [log P(s)], st Pg=arg max Esep,, [log P(s)]. ()

7 (1) Expert action
Based on Theorem [@.1, we can relax the LIL problem D= { (sa s " a @matghmg ---------- ra
by maximizing the two-stage optimization problem N |

in Eq.(3). LM E

The solution framework of SLIL. To solve the two- <~ & o

stage objective in Eq.(3), we model the learner policy |

m as a deep neural network parameterized by 6, and £ S

the expert state distribution Pg using our DCNF pa- (DCNF) (DCNF)
rameterized by w. The training process involves two A @ Expert state §
stages, described in Fig. [i: (Stage #1) expert state Pr,(3)| matching. Pro(s

(a) Stage#tl: Expert state

distribution matching, where we train an expert state distribution matching.

distribution Pg,, based on DCNF to tackle the man- ;
ifold hypothesis challenge (see details in Sec.[d.2); Figure 4: Illustration of our SLIL framework.
(Stage #2) policy learning, where we use the learned expert state distribution Pg,« to train the
learner policy 7y with the objective in Eq.(3). Note that updating the policy mg with Pg,+ guidance
involves action sampling. Thus, we follow an RL approach and employ proximal policy gradient
(PPO) (Schulman et al., 2017) for back-propagation, with the Adam optimizer (Kingma & Ba,[2014)
for updating the policy mg. Comparing to the bilevel optimization framework of LIL in Fig. |2, the
stabilized two-stage optimization framework for SLIL is shown in Fig.

(b) Stage#?2: Policy learning.

The objective function in Eq.(3) has two components: expert policy matching (i.e, BC), and expert
state distribution matching (with Pg,+). In each training iteration, the learning speed between the
two components matter, and have impacts on the training stability. Similar observations are made in
(Lee et al.,2018). To further improve the training stability, we introduce a gating function 1 (-) with
parameter A, which governs whether to run the second component of matching expert distribution
in a particular iteration, i.e, 1(¢) = 1 iff (i mod \) = 0 for any training iteration . For example,
A = 2 means that the second component is included in all training iterations with even sequence
numbers. A lower A leads to more iterations to match the expert distribution, which can mitigate the
compounding errors from BC. On the other hand, a higher A encourages supervision from expert
policy matching (i.e, through BC). Therefore, with the gating function, the objective in Eq.(3)) can be
rewritten as

E(s,a)GDE UOg Y, (G‘S)} + 1A(i)Es€Dwe [1Og Pg- (S)]a Vi. (4)

i

Under review as a conference paper at ICLR 2022

4.2 DCNF FOR LEARNING EXPERT STATE DISTRIBUTION
There have been many solutions proposed to estimate the Deta Disuributon - Latent Space. - Tareet Pisribution
data distribution from a real world dataset {x} € X. The
discrete normalizing flow (DNF) and continuous normal-
izing flow (CNF) methods both have advantages as ex-
plicit models for expressing data sample likelihood via the
change of variable formula (Rezende & Mohamed, 2015). .
Discrete versions of normalizing flows (NF) (Rezende & LT MY
Mohamed, 2015; [Dinh et al. [2016; [Kim et al., [2020a; ' ‘
Dinh et al.}[2014) feature a sequence of n bijective map- | 1\
pings, i.e, f, = fno fn—10-- -0 f and require computing '
the Jacobian of f,, for back-propagation. These features
restrict DNF’s modeling capability as f,, needs to be a
once-differentiable bijection, and makes it computation-
ally costly as the Jacobian matrix requires large computa-
tion power (Chen et al., 2018} |Grathwohl et al., 2018). In
contrast, CNF (Chen et al., 2018;|Grathwohl et al.,[2018)
views the transformation between Gaussian noise and data Figure 5: Nllustration of FFJORD trained
samples as an ordinary differential equation (ODE) de- 1, 2D manifold (top), on 1D manifold
termined by f,,, which does not have model restrictions (middle), and our DCNF trained on 1D
(Grathwohl et al.,[2018), and expresses data sample density ., nifold (bottom).
via the instantaneous change of variable formula (Chen
et al.} 2018). Therefore, CNF, e.g, FFJORD (Grathwohl h]_’ .0 .01
. .. . Zz s+€1_>..._.s+€i_...._.s
et al.,2018), is more promising than DNF in terms of es-
timating the expert state distribution Pg,,, where the ODE ’ . : . : .
system function f,, learns a bijection between random N & \
noise z € Z and expert state s ~ Pg(s), i.e, f, : Z+— S. -
The ODE and the expert distribution density follow the
instantaneous change of variable formula, i.e,

@ = fu(2(t),1), with z(to) = 2, 2(t1) = s € S;log Ppu(s) = logp(z(to)) — /t 1 Tr(

o o, =0

Figure 6: Illustration of DCNFE.

Ofw
92(1))

Manifold hypothesis challenge. The manifold hypothesis, i.e, real-world data tend to concentrate
on a low dimensional manifold in a high dimensional space (Roweis & Saul, [2000; Belkin & Niyogi,
2003), has been observed on many datasets. As a result, since CNF is only valid when the data
distribution and the target noise distribution have the same dimensions, the CNF will fail to estimate
the ground-truth state distribution Pg(s) if the expert states lie in a low dimensional manifold.

Fig.[5 shows examples to illustrate the manifold hypothesis challenge. The goal is to transform
the data distribution displayed on the left column to the target Gaussian distribution on the right
column using CNF. The transformed latent variable scatter plots (from the data distribution) based on
FFJORD (Grathwohl et al.,2018) and our DCNF (described below) are placed in the middle column.
It is clear that when the true data populates a 2D manifold over a 2D space, its transformed latent
variables match a target Gaussian distribution well (the 1st row). On the other hand, when the true
data resides in a 1D manifold of the 2D space, its transformed latent variable does not match the
target Gaussian distribution (the 2nd row). This example illustrates how the manifold hypothesis
deteriorates CNF’s performance: when the data distribution lies in a low-dimension manifold of the
ambient space, no homeomorphism can be easily created (Dupont et al.|[2019; |[Kim et al., 2020a).

DCNE. Our experimental results in Fig. li (the 3rd row) and SOTA works (Kim et al., [2020a; [Liu
et al., 2019; Song & Ermon, |2019; Ho et al.,|2020) have each observed that perturbing data with
random Gaussian noise N (0, c°T) (with o > 0 as the noise level) can tackle the manifold hypothesis
challenge, since the perturbed data will expand the data (i.e, expert states) from a low-dimension
manifold to a high dimensional ambient space. It can also increase model generalizability given
limited amounts of expert data. Denote a perturbed expert state s ~ Dg as s, with 5 = s + o€
where € ~ N/ (0,I). When the noise level is very small, i.e, 0 — 0, § approaches s. Therefore,
we decrease the noise level ¢ in each iteration when training the ODE system function f,, of the
expert state distribution Pg. Fig.[6 and Alg. [T give our denoising continuous normalizing flow

Under review as a conference paper at ICLR 2022

(DCNF) algorithm. We first pre-define an arithmetic sequence of decreasing noise levels {o; } 2 ;
whose common difference of successive numbers is F*, where L is the number of training iterations.
For each training iteration, we sample B states s; from expert demonstrations Dg, and B random
noises €; ~ N(0, sz-I) with j = 1,--- , B (line 2&3). The sampled noises ¢; are applied to the
sampled states s; to obtain perturbed states 5; (line 4). The perturbed states 5; are input into the
expert state distribution Pg,, to be evaluated, whose value will be used to compute the gradient with
Adam (Kingma & Ba||[2014) to update w (line 5). After training, a learned expert state distribution

Pg,~ (governed by the learned f,,« function) is obtained and used for learner policy training.

Algorithm 1 Denoising Continuous Normalizing Flow (DCNF)

Require: Initial parameters w for the ODE system function f,, of Pg,,; expert demonstrations Dg
containing state-action pairs; predefined initial noise level o1, total number of training iteration
L and batch size B.

Ensure: The ODE system function f,,« of the expert state distribution Pg,».

1: for eachepoch:=1,2,--- L do
Sample B states s; € Dg where j = 1,--- , B.

3: Sample B random noises ¢; ~ N (0,071) where j =1,--- ,Bando; =01 — % - (i — 1).

4: Apply noise on sampled states 5; = s; + €;.

5: Update w; to w; 1 by ascending with the gradients: A,,, = Zle V., log Py, (55).

6: end for

5 EXPERIMENTAL EVALUATION

To evaluate our proposed SLIL methodology, we conduct experiments on ten physics-based control
tasks, including CartPole (Barto et al., [1983), Reacher (with 1, 2 and 4 targets), Hopper, Walker,
HalfCheetah (with 1 and 2 running directions), Ant, and Humanoid all simulated with MuJoCo
(Todorov et al.,[2012). From these experiments, we show that: i) learner policy from our SLIL avoids
mode collapse, by accurately preserving the expert mode distribution; ii) our DCNF can properly
address the manifold hypothesis challenge in estimating the expert state distribution; iii) learner
policies from SLIL have comparable or better performance than IL baselines; and vi) SLIL has more
stability to hyper-parameter changes than IL baselines using alternative training (e.g., GAIL).

Implementation Settings and IL Baselines. We obtain expert policies of all tasks by running
TRPO (Schulman et al.;|[2015a) with their ground-truth reward functions defined in the OpenAl Gym
(Brockman et al.;[2016). Then, we use the expert policies to generate expert demonstrations. We use
Reacher with two and four target modes, and HalfCheetah with two target modes (Todorov et al.,
2012) respectively (i.e, Reacher2, Reacher4 and HalfCheetah?2) to analyze the mode coverage of our
SLIL vs IL baselines. Each expert policy obtained by TRPO has a particular distribution of reaching
different target modes. We relegate more implementation details to Appx. [B| Below are the four IL
baselines we use to compare with SLIL:

* Behavior Cloning (BC) (Pomerleau, 1991): Expert demonstrations as a set of state-action pairs are
split into 70% training data and 30% validation data. The learner policy is trained with supervised
learning where actions are viewed as labels and states are viewed as input features.

* Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon,|2016): GAIL is an IL. method
that consists of a generator as a policy network mimicking the expert behaviors, and a discriminator
as a reward signal distinguishing between learner and expert behaviors.

* Generative PRedecessor models for Imitation Learning (GPRIL) (Schroecker et al., |2019): GPRIL
performs the state-action distribution matching by jointly training the learner policy and the
corresponding multi-step predecessor state-action distribution. In each iteration, the predecessor
state-action distribution is estimated using masked autoregressive flows (Papamakarios et al.,[2017).

* Disagreement-Regularised Imitation Learning (DRIL) (Brantley et al., 2019): DRIL pre-trains
an ensemble of BC policies with expert demonstration data, and uses RL to train a learner policy
whose cost function is proportional to the sum of the variance of ensemble policies’ predictions.

5.1 MODE COVERAGE

Fig. [I]shows the results of Reacher4 with four mode targets in different colors in Fig.[Ta} and Fig.
shows the results of HalfCheetah2 with two mode directions as running forward and backward.

Under review as a conference paper at ICLR 2022

— Expert -e- BC @ GAIL < DRIL -*SLIL

: > Eilo g
0.3 Backward Forward | £ | _________ . ____ gro2 | .7
e ~o.98| | | ®oogl 1] 1
L] —8 8 A
,‘é\ =0.94 80,94
Z @ @
g 0.5 0.7 0.9 0.4 0.6 0.8
=) EMD EMD
(a) Reacher2 w. 2 modes. (b) Reacher4 w. 4 modes.
E = [P ———
é | S P — g 1 &
~ 0.9 I 0.9
= =]
s S 04
« 0.85 0.95 1.05 L5 ? 1 1.2 1.4 1.6 1.8
EMD EMD
(c) HalfCheetah w. 1 mode. (d) HalfCheetah2 w. 2 modes.

Figure 7: Results of SLIL (Ours) Figure 8: EMD vs scaled return in tasks with multiple
and baselines on mode coverage in modes. The x-axis is the EMD (Ling & Okadal [2007)
HalfCheetah?2. All the distributions between expert and learner policy state distribution. The
are visualized using KDE (Sheather| y-axis is the expected return (i.e, total reward), scaled so
& Jones| [1991)). that the expert achieves 1 and a random policy achieves 0.

Results of Reacher2 are in Appx.[Clas its observations are similar to the Reacher4 task. Fig.[Tb|shows
the mode coverage (i.e, the state distribution) of the expert policy, where the expert tends to cover all
four targets (as four modes) evenly. The learner policy obtained by SLIL preserves the expert mode
coverage very well as shown in Fig. On the other hand, the learner policy from GAIL is prone to
mode collapse. It only focuses on the green target out of the four targets. Consistent with results in
SOTA works (Fei et al., 2020; |Arjovsky et al.,|2017; Jena & Sycara, [2020), this mode collapse is due
to the adversarial training process used in GAIL. DRIL also fails to cover the green target mode as its
defined reward function likely encourages a mode seeking behavior. SLIL successfully preserves
the mode coverage from the expert, because it uses our DCNF to accurately estimate the expert state
distribution, and the stabilized two-stage training to update the learner policy.

In the HalfCheetah2 task shown in Fig.[7, the — DCNF (Qurs) — CNF " SoftFlow
x-axis represents the running velocity, and the S | | |

plots show the velocity distributions of expert) ﬁ
-10 |

and IL policies. The black curve demonstrates

Test Log Likelihood
Test Log Likelihood

two modes (i.e, running forward and backward) L —1 /
in expert demonstrations. SLIL (blue curve) 15|] e
is able to preserve all modes, while DRIL and -
BC are collapsed to running forward and GAIL -20
: 5 10 15 20 25 5 10 15 20 25
fails to reveal any mode. We further calcu- Number of Trajectories Number of Trajectories

lated the earth mover’s distance (EMD) (Ling & (a) Hopper (b) Walker
Okada, |2007) between expert and learned poli-
cies’ state distributions as the x-axis in Fig. [§
in the Reacher and HalfCheetah tasks with mul-
tiple modes. A lower EMD value indicates a
better learner policy at recovering expert demon-
stration modes, and the results echo the above
observations quantitatively. We omit GPRIL as
no meaningful results are obtained.

Figure 9: Test state log likelihood using Pg,~
learned from our DCNF and CNF.

of Hopper Walker
Traj.[CNF|SoftFlow|DCNF|CNF|SoftFlow DCNF
4 13.73] 1.88 | 0.63 |3.22] 2.04 | 1.44
11 |2.69| 1.42 |0.52(3.72] 1.53 | 0.80
18 |12.09| 0.94 | 0.49 [3.73| 1.10 | 0.80
25 |11.95| 0.68 | 0.49 [2.85| 1.02 | 0.64

5.2 EXPERT STATE ESTIMATION Table 1: The EMD (Ling & Okada, 2007) between
the Gaussian and the latent noise recovered from

To show how our proposed denoising mecha- Pp.- learned from DCNF, SoftFlow and CNF.
nism in DCNF addresses the manifold hypothe-

sis challenge in estimating the expert state distri-

bution, we compare our DCNF to SoftFlow and CNF both in terms of i) expert state matching and ii)
latent space (i.e, Gaussian noise) recovery. The results below are obtained using Hopper and Walker
tasks. We make similar observations for other tasks, so their results are omitted for brevity.

i) Expert state matching. To quantify the quality of the expert state matching, we use expert policies
to generate 50 trajectories (each consisting of 1,000 state-action pairs) as a test set and evaluate the
log-likelihood of states in the test set using Pg,,~ learned by our DCNF, SoftFlow (Kim et al.,[2020a)

Under review as a conference paper at ICLR 2022

< SLIL (Ours) < DRIL @ GAIL -©-BC ‘# GPRIL = —Random Policy — Expert

1 ;;;:;;;- 1 o e s 1 --mmmmoae Pt =
] : : 108 038 _
g 0.9 E «. . g .
é & 0.6 é 0.6
308 B 04 . 1304
< < <
Q Q Q
2 0.7 © (.2 £ ©0.2|.
(U 0]
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Number of Trajectories in Dataset Number of Trajectories in Dataset Number of Trajectories in Dataset
(a) Reacher. (b) Hopper. (c) Walker.
| ——— N | O C e LT — S N
08 e 1 '”*f\/ ///\,
g% Eog. Eos
Q Q Q
Sos| K & 06| -
B o4 g8 3B o4
< < <
G 02 @ @02
: 0.7 02} -
0 0]
5 10 15 20 25 5 10 15 20 25 80 120 160 200 240
Number of Trajectories in Dataset Number of Trajectories in Dataset Number of Trajectories in Dataset
(d) HalfCheetah. (e) Ant. (f) Humanoid.

Figure 10: Performance of learner policies in tasks with one mode. The y-axis is the expected return
(i.e, total reward), scaled so that the expert achieves 1 and a random policy achieves 0.

and CNF (Grathwohl et al.| [2018). A higher test state log-likelihood score indicates a more accurate
model in estimating the expert state distribution. The results are shown in Fig.[9. Clearly, in both
tasks with different numbers of expert demonstrations, DCNF outperforms SoftFlow and CNF which
validates the necessity of our denoising mechanism in tackling the manifold hypothesis challenge for
expert state distribution estimation.

ii) Latent space (i.e., Gaussian noise) recovery. We use the test set to recover latent noises and com-
pute its EMD (Ling & Okada}[2007) to the Gaussian noise distribution. A lower EMD value indicates
a better normalizing flow model, with its learned data transformation closer to a homeomorphism.
Tab. [T] shows the EMD results in Hopper and Walker with different number of expert demonstrations.
It demonstrates that DCNF is more likely to recover a latent space closer to Gaussian.

5.3 PERFORMANCE OF THE LEARNER POLICY FROM SLIL

Fig. E shows the EMD (Ling & Okada} 2007) vs scaled return results in Reacher and HalfCheetah
with different numbers of demonstration modes. In all the tasks, SLIL has both lower EMD and
higher scaled return compared with baselines. This is because DCNF is able to recover expert state
distribution Pg with multiple modes well, and thus provides useful feedback for the learner policy to
recover expert behaviors. Comparing between Reacher with 2 and 4 targets, SLIL shows a larger
return margin when the target modes are more distant from each other in the Reacher2 task.

Fig. [I0 shows the performances of the learner policies from our SLIL and IL baselines under
different numbers of expert trajectories when they only contain one mode. In all tasks, the learner
policies from our SLIL have comparable performances with GAIL, which is because SLIL directly
maximizes the log-likelihood of expert data without using adversarial training. SLIL outperforms
DRIL particularly with a limited number of expert trajectories because the use of DCNF-learned Pg
has good generalization ability and provides useful feedback to learner policy 7 to reach a better
policy. Moreover, in both easy tasks (Reacher) and complex tasks (Hopper and Walker), SLIL
consistently outperforms BC with different numbers of expert demonstrations, which is because
SLIL uses the state distribution matching on top of the BC objective to overcome the covariate
shift problem. The performance of the learner policy from BC increases when using more expert
demonstrations, as more training data mitigate the overfitting problem and compounding errors.
However, the learner policies from GPRIL have the lowest performances in all tasks. This is primarily
because the policy is jointly learned with its multi-step predecessor state-action distribution. With
random initial parameters for these two functions, it is hard to progressively improve them jointly.

5.4 TRAINING STABILITY OF SLIL

Under review as a conference paper at ICLR 2022

A=1 =4=2 «1=3 ~A=5 SLIL (Ours) GAIL
| 1
0.8
50'75 £
15} £ 0.6
&~ 0.5 &
3 B 04
z K>
S0.25 S 02
0 0
1 2 3 4 5 6 le5 7e5 led Ted4 le3 Ted
Number of Environment Interactions(x 10°) Learning Rate
Figure 11: SLIL (Ours) performance with differ- Figure 12: Policy performances with different
ent gating parameters A in Walker. learning rates using GAIL and our SLIL in Walker.
- SLIL (Ours) —— GAIL

When training the learner policy, the conver-
gence speed, performance fluctuation, and ro-
bustness to the learning rate are all important.
A stable IL algorithm leads to a high conver-
gence speed, low performance fluctuation in
training, and works in a wide-range of learning
rate choices. Now, we investigate the training
stability of our SLIL from the perspectives of 1) 0
the gating parameter), ii) the learning rate, and
iii) the number of environment interactions. Be-
low, we show our results from the Walker task
with 18 expert trajectories; similar observations
were made for other tasks.

Scaled Return
s 9
wn Wi —

o
N
G

1 2 3 4 5 6 7 8 9 10
Number of Environment Interactions(x 10°)
Figure 13: Policy performance over environment
interaction numbers (SLIL vs GAIL) in Walker.

Impact of the gating parameter \. Fig. |11 shows the training curves of SLIL with different gating
parameters A. It is clear that when A\ = 2, the SLIL training process is stable, with small performance
fluctuation, and fast convergence rate. On the other hand, a lower gating parameter (i.e, A = 1) leads
to an unstable training curve, with high fluctuations; and a higher gating parameter e.g., A = 3 and
A =5 leads to a slower convergence rate. This indicates that both behavior cloning and expert state
matching matter in learning expert policy, and balancing the weights of these two components is
crucial. If the weight to the expert state matching is too much (small)), it leads to a high training
fluctuation. On the other hand, when the weight of the expert state matching is too small (large A), it
slows down the training speed.

Impact of the learning rate. We further study SLIL’s robustness in choosing different learning rates.
Fig.|12|shows the performance of SLIL and GAIL given different learning rates. It shows that SLIL
works in a wide range of learning rates, while GAIL tends to fail/crash when learning rates are
le-3 and higher. GAIL with adversarial training is less robust to the change of learning rate due to
vanishing gradient and the complex interactions between the discriminator and the generator (Jena &
Sycara, 2020; |Arjovsky et al.,[2017). However, our SLIL is implemented in a two-stage optimization
framework, which is more robust to hyper-parameter changes.

Impact of the number of environment interactions. Fig. |13 shows the performance change with the
number of environment interactions (self-supervision steps). This figure shows that SLIL is able
to attain a higher return than GAIL given a small number of environment interactions (at around
3-6x10° steps). An explanation is that the pre-trained Py, is good at guiding the learner policy g
to explore on those states frequently visited by the experts. Moreover, differing from the adversarial
training in GAIL with two generator and discriminator trained alternatively, SLIL employs the
two-stage training process to training Pg,+ and 7y separately, thus leading to a fast convergence rate.

6 CONCLUSION

In this work, we proposed SLIL — stable likelihood-based imitation learning — which trains a learner
policy by directly maximizing the likelihood of expert demonstrations. SLIL is a stable two-stage
optimization framework, where in stage one we accurately estimate the expert state distribution
using a novel denoising continuous normalizing flow method, and in stage two we train the learner
policy to match both expert’s policy and state distribution. Comparing our SLIL with baselines in ten
different physics-based control tasks, we present superior evaluation results in terms of learner policy
performance, training stability, and mode distribution preservation.

Under review as a conference paper at ICLR 2022

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1. ACM, 2004.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Dilip Arumugam, Debadeepta Dey, Alekh Agarwal, Asli Celikyilmaz, Elnaz Nouri, Eric Horvitz, and
Bill Dolan. Reparameterized variational divergence minimization for stable imitation. 2019.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEFE transactions on systems, man, and cybernetics, (5):
834-846, 1983.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373-1396, 2003.

Jeannette Bohg, Marco Pavone, and Dorsa Sadigh. Principles of robot autonomy
ii. URL https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_
10111213.pdfimitationlearning.pdf. [Online], 2020.

Kianté Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized imitation learning. In
International Conference on Learning Representations, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. arXiv preprint arXiv:1806.07366, 2018.

Robert Dadashi, Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. Primal wasserstein imitation
learning. arXiv preprint arXiv:2006.04678, 2020.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. arXiv preprint
arXiv:1904.01681, 2019.

Cong Fei, Bin Wang, Yuzheng Zhuang, Zongzhang Zhang, Jianye Hao, Hongbo Zhang, Xuewu
Ji, and Wulong Liu. Triple-gail: a multi-modal imitation learning framework with generative
adversarial nets. arXiv preprint arXiv:2005.10622, 2020.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning. arXiv preprint arXiv:1710.11248, 2017.

Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence minimization perspective on
imitation learning methods. arXiv preprint arXiv:1911.02256, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672-2680, 2014.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph Lim. Multi-modal
imitation learning from unstructured demonstrations using generative adversarial nets. arXiv
preprint arXiv:1705.10479, 2017.

10

https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_10111213.pdf%20imitation%20learning.pdf.%5BOnline%5D
https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_10111213.pdf%20imitation%20learning.pdf.%5BOnline%5D

Under review as a conference paper at ICLR 2022

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, pp. 4565—-4573, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239, 2020.

Rohit Jena and Katia Sycara. Loss-annealed gail for sample efficient and stable imitation learning.
arXiv preprint arXiv:2001.07798, 2020.

Liyiming Ke, Matt Barnes, Wen Sun, Gilwoo Lee, Sanjiban Choudhury, and Siddhartha Srinivasa.
Imitation learning as f-divergence minimization. arXiv preprint arXiv:1905.12888, 2019.

Hyeongju Kim, Hyeonseung Lee, Woo Hyun Kang, Joun Yeop Lee, and Nam Soo Kim. Softflow:
Probabilistic framework for normalizing flow on manifolds. Advances in Neural Information
Processing Systems, 33, 2020a.

Kuno Kim, Akshat Jindal, Yang Song, Jiaming Song, Yanan Sui, and Stefano Ermon. Imitation with
neural density models. arXiv preprint arXiv:2010.09808, 2020b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dongsoo Lee, Parichay Kapoor, and Byeongwook Kim. Deeptwist: Learning model compression via
occasional weight distortion. arXiv preprint arXiv:1810.12823,2018.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
demonstrations. In Advances in Neural Information Processing Systems, pp. 38123822, 2017.

Haibin Ling and Kazunori Okada. An efficient earth mover’s distance algorithm for robust histogram
comparison. IEEE transactions on pattern analysis and machine intelligence, 29(5):840-853,
2007.

Minghuan Liu, Tairan He, Minkai Xu, and Weinan Zhang. Energy-based imitation learning. arXiv
preprint arXiv:2004.09395, 2020.

Xuanging Liu, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural sde: Stabilizing neural ode
networks with stochastic noise. arXiv preprint arXiv:1906.02355, 2019.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11(2):125-139, 2001.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in neural information processing systems,
pp. 271-279, 2016.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. arXiv preprint arXiv:1705.07057, 2017.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
Computation, 3(1):88-97, 1991.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning, pp. 1530-1538. PMLR, 2015.

Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep imitative models for flexible
inference, planning, and control. arXiv preprint arXiv:1810.06544, 2018.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661-668, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627-635, 2011.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
science, 290(5500):2323-2326, 2000.

11

Under review as a conference paper at ICLR 2022

Yannick Schroecker, Mel Vecerik, and Jonathan Scholz. Generative predecessor models for sample-
efficient imitation learning. arXiv preprint arXiv:1904.01139, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889—-1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Simon J Sheather and Michael C Jones. A reliable data-based bandwidth selection method for kernel
density estimation. Journal of the Royal Statistical Society: Series B (Methodological), 53(3):
683-690, 1991.

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: from classical to
evolutionary approaches and applications. IEEE Transactions on Evolutionary Computation, 22
(2):276-295, 2017.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
arXiv preprint arXiv:1907.05600, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012.

Xin Zhang, Yanhua Li, Ziming Zhang, and Zhi-Li Zhang. f-gail: Learning f-divergence for
generative adversarial imitation learning. Advances in Neural Information Processing Systems, 33,
2020.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In AAAI volume 8, pp. 1433—-1438. Chicago, IL, USA, 2008.

12

	Introduction
	Related Work
	LIL Problem Formulation
	Our SLIL Approach
	SLIL with Expert State Distribution
	DCNF for Learning Expert State Distribution

	Experimental Evaluation
	Mode Coverage
	Expert State Estimation
	Performance of the Learner Policy from SLIL
	Training Stability of SLIL

	Conclusion
	Proof for Theorem 4.1
	Experiment Setups
	More Experiment Results

