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Abstract

Moiré patterns, appearing as color distortions, severely
degrade image and video qualities when filming a screen
with digital cameras. Considering the increasing demands
for capturing videos, we study how to remove such undesir-
able moiré patterns in videos, namely video demoiréing. To
this end, we introduce the first hand-held video demoiréing
dataset with a dedicated data collection pipeline to ensure
spatial and temporal alignments of captured data. Further,
a baseline video demoiréing model with implicit feature
space alignment and selective feature aggregation is devel-
oped to leverage complementary information from nearby
frames to improve frame-level video demoiréing. More im-
portantly, we propose a relation-based temporal consis-
tency loss to encourage the model to learn temporal con-
sistency priors directly from ground-truth reference videos,
which facilitates producing temporally consistent predic-
tions and effectively maintains frame-level qualities. Ex-
tensive experiments manifest the superiority of our model.
Code is available at https://daipengwa.github.
io/VDmoire_ProjectPage/.

1. Introduction
Video is an important source of entertainment, infor-

mation recording and dissemination through social media.

When photographing a video on a screen, frequency alias-

ing leads to moiré patterns (Fig. 1) which appear as colored

stripes, severely degrading the visual quality and fidelity of

captured contents. Although many research efforts have

been made to remove such moiré patterns in a single im-

age [14,15,25,31,40,54] and attained notable progress with

deep learning [14, 15, 25, 40, 54], video demoiréing is still

an unexplored research problem as far as we know, which is

yet of great significance due to the ubiquity and importance

of video data in our daily life.

This paper investigates the problem of video demoiréing.

Compared to image demoiréing, this task offers more op-

portunities for high-quality frame-level restoration through
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Figure 1. The first row shows moiré frames at different times, and

the second row shows our demoiréd results. Please see our videos,

which are clean and temporally consistent.

leveraging auxiliary information from nearby video frames

but is yet more challenging as it requires not only frame-

level visual quality but also temporal consistency.

The state-of-the-art image demoiréing method [54] fails

to recover temporally consistent videos due to its inabil-

ity to access temporal information/supervision. Using ex-

isting post-processing methods such as [18, 22]; in doing

so, however, the chance is lost to utilize video informa-

tion for enhancing frame-level quality. Besides, these post-

processing methods are susceptible to artifacts in demoiréd

results, and complicate the system design, leading to in-

creased computational costs. Another widely adopted strat-

egy is to incorporate a flow-based consistency regulariza-

tion [21, 37, 51, 52] on the predicted videos during train-

ing, which encourages aligned pixels from nearby frames

to have the same pixel intensity values. While simple, such

regularization ignores natural intensity changes of pixels in

videos (Fig. 3 (a)), is prone to errors in estimated optical

flows (Fig. 3 (b) and (c)), and has the potential to propa-

gate artifacts of one frame to nearby frames. Consequently,

the improved temporal consistency tends to sacrifice frame-

level quality and fidelity, leading to blurry and low-contrast

results (Fig. 7 (a): blurry textures).

In this work, we present a simple video demoiréing

model to leverage multiple video frames and a new relation-

based consistency loss to improve video-level temporal con-

sistency without sacrificing frame-level qualities. Besides,

we construct the first hand-held video demoiréing dataset to

facilitate further studies on learning-based approaches.

We analyze the characteristics of moiré patterns in
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videos and develop a video demoiréing baseline model fol-

lowing [40, 49, 50] with a selective aggregation scheme to

adaptively combine aligned features and a pyramid archi-

tecture to enlarge the receptive field. The baseline model

can effectively leverage nearby frames for a better frame-

level demoiréing. Deep supervision at different scales is

adopted during training to facilitate model optimization.

Moreover, inspired by the observation that human beings

can perceive video flickering [11] directly from consecu-

tive frames without using explicitly aligned videos, we pro-

pose a simple relation-based temporal consistency loss that

encourages the direct relations (e.g., pixel intensity differ-

ences) of predicted video frames to follow those of ground-

truth frames. In particular, we exploit such relations at

multiple levels, including pixel level using pixel intensity

differences and patch level using intensity statistics (e.g.,

mean) changes considering different patch sizes. Instead

of constraining intensities of aligned pixels to be identical,

our relation-based regularization directly matches the natu-

ral relations and changes of nearby video frames with those

of ground-truth videos. This simple design bypasses the

aforementioned drawbacks of flow-based consistency regu-

larization and avoids sacrificing frame-level qualities while

still being able to enforce the model to learn temporal con-

sistency priors from ground-truth videos.

Further, as there are no available datasets for developing

and evaluating video demoiréing methods, we collect a new

video demoiréing dataset with a dedicated pipeline to en-

sure spatial and temporal alignments between moiré videos

and corresponding ground-truth ones.

Finally, extensive experiments on our video demoiréing

dataset demonstrate the superior performance of our

method. In particular, our method obtains 22% improve-

ments in terms of LIPIS in comparison with MBCNN [54]

and more than 75% of users preferred our results when com-

pared with results without using the multi-scale relation-

based consistency loss.

2. Related Work
Image Demoiréing. Moiré patterns appear when two sim-

ilar repetitive patterns interact with each other, and it is

frequently observed while capturing images on the screen,

which severely degrades image qualities. To remove it,

early works have studied spectral models [38] and the

sparse matrix decomposition method [23]. However, these

methods can only remove certain types of moiré patterns.

With the rising of deep learning, various convolution neu-

ral networks [14, 15, 25, 26, 40, 54] have been designed for

image demoiréing. Sun et al. [40] built the first large-scale

image demoiréing dataset and designed a multi-scale archi-

tecture to remove moiré patterns. Further, MopNet [14] in-

tegrates the characteristics of the moiré pattern into the net-

work and achieves a better result. For high-resolution im-

(a) (b) (c)
Figure 2. The characteristics of moiré patterns in the video. Each

row represents frames with different time stamps, and the differ-

ences between two rows are highlighted by red circles.

age demoiréing, He et al. [15] designed a two-stage method

to simultaneously remove large moiré patterns and preserve

image details. In addition to the above methods which de-

sign networks in the image domain, some approaches at-

tempt to address this problem from the perspective of fre-

quency domain [25, 54]. Most recently, Liu et al. [26]

designed a self-supervised learning method to restore the

image only from a pair consisting of one focused moiré-

degraded image and one defocused moiré-free image. What

differentiates our work from the above research efforts is

that we study the new task of video demoiréing with a col-

lected dataset, which provides new opportunities to improve

demoiréing qualities by leveraging temporal information.

Multi-Frame Restoration. Multi-frame restoration [3, 24,

39, 41, 44] aims to improve restoration performance by

leveraging information from auxiliary frames and typically

performs better than image-based counterparts. A key com-

ponent in multi-frame restorations is the registration of mul-

tiple frames, and previous methods usually achieve this us-

ing optical flow [1, 3]. Recently, Tian et al. [43] introduced

the deformable convolution [10] into video super-resolution

to implicitly align multiple frames and obtain superior re-

sults. This module has been further developed and adopted

by several follow-up works [5, 6, 28, 49]. In this work, we

follow the method in [49] to align multiple frames in fea-

ture space and develop a module to automatically select

valuable information from nearby moiré frames.

Video Temporal Consistency. To obtain temporally con-

sistent videos, previous methods have adopted consistency

regularization during network training [21,33,37,47,51] or

have used it to post-process [2,18,22] flickering videos. The

most widely adopted consistency regularization is based on

dense correspondences (e.g., optical flow), which enforces

the intensity of aligned pixels in different frames to be the

same [21, 37, 51]. However, such a flow-based approach is

sensitive to the quality of the estimated dense correspon-

dences [12, 42] and ignores the natural changes in videos.

Without optical flows, Lei et al. [22] obtained temporally

consistent videos by developing a video prior method which

needs time-consuming test-time training. Besides, the ef-

fectiveness of the approach relies on a temporally consis-

tent video input which is different from our case. Some
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(a) (b) (c)
Figure 3. The problems of flow-based temporal consistency. The

first two rows are two consecutive frames, and the last row visu-

alizes the warping error using RAFT [42]. (a) Intensity changes

when the person walks from shadow to sunlight. (b), (c) show

misalignment between two frames.

approaches [13, 32, 48] improve temporal consistency of

CNN predictions by augmenting a single frame to multiple

frames and enforcing their consistency. Unfortunately, the

moiré pattern in videos is difficult to simulate which makes

augmentation-based methods ineffective. Compared to pre-

vious works, our relation-based regularization is simple and

can take the natural changes of videos into account. Without

using optical flows, our method also avoids suffering from

the issues caused by inaccurate optical flow estimation.

3. Method
We first present the characteristics of video moiré pat-

terns in Sec. 3.1, which inspires the design of our base-

line video demoiréing model. Then, we elaborate on the

key components of our baseline model (Fig. 4) including

frame alignment, feature aggregation, and demoiré recon-

struction in Sec. 3.2. Further, we analyze the weakness of

flow-based temporal consistency and detail our newly pro-

posed relation-based consistency regularization in 3.3. Fi-

nally, we show our training objectives in Sec. 3.4.

3.1. Characteristics of Moiré Patterns in Video

The color, shape and location of moiré patterns are

generally influenced by camera viewpoints, as shown in

Fig. 2 (a) and (b). Under a mild video-capturing setting

using hand-held cameras, we observe the following char-

acteristics of moiré patterns in captured videos. First, as

a video plays, the degraded areas have a chance to be

clean due to their change of appearing locations (Fig. 2

(a): the white box at different positions), which can provide

valuable information to recover distorted regions in nearby

frames. Second, the unavoidable hand shaking while shoot-

ing videos will slightly change camera viewpoints and in-

duce different moiré patterns in nearby video frames (Fig. 2

(b): the different text color), which can be leveraged to

better distinguish moiré regions by comparing such appear-
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Figure 4. The overview of our method. Our video demoiréing net-

work mainly consists of three parts: First, the PCD [49] takes con-

secutive frames as inputs to implicitly align frames in the feature

space. Second, the feature aggregation module merges aligned

frame features at different scales by predicting blending weights.

Third, the merged features are sent to the demoiré model with

dense connections to realize moiré artifacts removal.

ance changes. Third, the strength of moiré patterns varies

in different video frames due to the auto-change of focal

length [26], offering a chance to leverage less influenced

“lucky‘’ frames to restore severely degraded ones (Fig. 2

(c): the sky with and without moiré patterns).

Based on the above analysis, our baseline video

demoiréing network (Sec. 3.2) aligns multiple frames for

the purpose of appearance comparisons, effectively ag-

gregates features from nearby frames, and incorporates a

blending mechanism to select valuable information from

nearby frames in a learnable manner.

3.2. Baseline Video Demoiréing Network

Our baseline video demoiréing network shown in

Fig. 4 takes as inputs multiple consecutive video frames

(It−1, It, It+1) and outputs restored prediction Ot (equal to

Ot
s1 ), leveraging multiple nearby video frames for restoring

It. Note that we take three adjacent frames to illustrate our

model without loss of generality.

Given the inputs (It−1, It, It+1), we first incorpo-

rate a pyramid cascading deformable (PCD) model

in [28] to extract and generate implicitly aligned features

(F t−1, F t, F t+1). To deal with large moiré patterns in high-

resolution videos, we apply pixel shuffle to down-sample

the inputs before feeding them into the PCD module which

can effectively enlarge the receptive field of the model with-

out sacrificing original information.

Then, a pyramid feature aggregation (PFA) module
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Figure 5. The pipeline of producing video demoiréing dataset.

(Fig. 4: green box) is developed to selectively aggregate

aligned features at multiple scales (s1, s2, s3). Specifically,

the aligned features are down-sampled using convolution

layers with a stride of 2 to produce a feature pyramid that

allows feature aggregation to be performed at different res-

olutions to handle multi-scale moiré patterns. At each scale

si, the aligned features are concatenated together and used

to predict normalized blending weights (ωt−1
si , ωt

si , ω
t+1
si ∈

(0, 1)). The aggregated features F t
m si are further generated

through a pixel-wise weighted summation of aligned fea-

tures, which enables selective feature aggregation.

Finally, the demoiré reconstruction module produces the

demoiréd image Ot. We densely connect features at differ-

ent scales to allow them to communicate with each other

following [46, 50] (Fig. 4: blue box). We apply more con-

volutional blocks at lower resolution branches to capture a

large field of view, benefiting from identifying and remov-

ing large moiré patterns and using less convolutional blocks

at higher resolution branches to preserve image details.

3.3. Temporal Consistency

Although our baseline video demoiréing network can

generate high-quality frame-level results, it cannot ensure

video-level consistency. Here, we study the problem of

how to generate temporally consistent video demoiréing re-

sults. In the following, we start by analyzing classic flow-

based temporal consistency regularization which tends to

degrade frame-level qualities, and then elaborate on our

simple relation-based temporal consistency loss.

Flow-Based Temporal Consistency Regularization.
Classic methods achieve temporal consistency by esti-

mating the pixel correspondences in nearby video frames

with mostly optical flow methods and building a loss as

Eq. (1) to enforce the intensity of matched pixels to be the

same [18, 51, 52].

Lf = ||M · (Wt+1→t(O
t+1,Ft+1→t)−Ot)||1, (1)

where M represents the occlusion map to rule out the influ-

ence of occluded pixels, Wt+1→t means the flow-based im-

age warp [16] to align pixels based on optical flow Ft+1→t,

and Ot, Ot+1 are nearby output frames.

Key Observations. We carried out a systematic study on

flow-based temporal consistency loss and have the follow-

ing key observations. First, a video often undergoes natural

changes as time passes due to environmental factors such

as lighting and view directions [34], and thus a temporally

satisfactory video does not necessarily mean that the inten-

sity of the same region never changes (Fig. 3 (a): a person

from shadow to sunlight). However, such natural changes

will incur a large loss (Fig. 3 (a) third row: the warping er-

ror) in flow-based temporal consistency regularization, vi-

olating the natural phenomenon. Second, the effectiveness

of flow-based temporal consistency is adversely affected by

the inaccurate estimation of optical flows. Even the existing

state-of-the-art flow estimation method, RAFT [42], suffers

from many failure modes (Fig. 3 (b) and (c): warping er-

rors due to inaccurate flow estimations), especially in ob-

jects’ boundaries and repetitive textures. These mistakenly

matched pixels will incur a penalty that does not exist. Fi-

nally, the above inaccurate penalties will force the model

to trade off frame-level quality for temporal consistency,

e.g., averaging matched pixels, leading to blurry and low-

contrast results (please see videos and experiments).

Relation-Based Temporal Consistency. Human beings

can assess whether a video is temporally consistent or not

by directly observing consecutive video frames without us-

ing explicitly aligned frames, which motivates us to rethink

whether pre-aligned correspondences are needed to learn

temporally consistent results and study how to learn tem-

porally consistent results directly from ground-truth refer-

ence videos, as they are naturally consistent. Here, in or-

der to learn temporal consistency patterns from reference

videos, we propose matching the direct temporal relations

of predicted video frames (Ot, Ot+1) to those of the refer-

ence ones (Gt, Gt+1), where G indicates the ground-truth

video. The simplest temporal relation can be built by com-

paring the pixel intensity between video frames; we also

investigate other options for temporal relations below.

Basic Relation Loss. The most basic relation we consider

is the difference between two frames, as Eq. (2):

Lr = ||(Ot+1 −Ot)− (Gt+1 −Gt)||1. (2)

As opposed to the flow-based temporal consistency loss

in Eq. (1), which constrains aligned predictions to have the

same intensity values, the basic relation loss requires that

the difference of outputs and reference frames should be

similar, i.e., the predicted results should follow the temporal

change of the reference videos.

17625



(a) INPUT (b) U-Net (c) DMCNN (d) MBCNN (e) Ours_S (f) Ours (h) GT
Figure 6. Qualitative Comparisons. We compare with other baselines and obtain better results on the moiré artifacts removal.

Multi-Scale Region-Level Relation Loss. Besides pixel-

level relations, we also consider region-level relations that

follow human habits [8,30]. Biologically, the retinal cell re-

ceives light from a region instead of a point, and the region

size is determined by the distance between retinal cells and

observed objects. For region-level relations, we use pixel

statistics, such as the mean value of pixel intensities, to

build the relation loss. We empirically find the mean value

works very well in practice. The reason might be that the

mean of a patch reflects the brightness of that area, which is

closely related to flickers [9]. Specifically, we use patches

with different sizes k ∈ C to take account of various recep-

tive fields, extract the statistics from these patches, and con-

struct a multi-scale region-level relation loss as in Eq. (3).

Moreover, we only penalize the scale that incurred the mini-

mum difference to protect temporally consistent predictions

from nearby potential flickering regions.

Lmbr =
1

N

N∑

n=1

Lk∗
n |k∗=argmink{|(Tk(O

t+1)−Tk(O
t))n|},k∈C ,

Lk
n = |((Tk(O

t+1)− Tk(O
t))n − (Tk(G

t+1)− Tk(G
t))n|,

(3)

where Tk indicates the operation of calculating the statistics

of a patch with size k ∈ C (C = {1} is the basic relation-

based loss), and n is the pixel position index.

Analysis. The relation-based loss is simple without need-

ing to estimate dense correspondences and thus avoids the

problem of misalignment caused by optical flow estimation,

and the natural changes in ground-truth videos can be trans-

ferred to output frames. Meanwhile, the model can learn

to produce temporally consistent results by mimicking the

temporal relations of the reference video, which naturally

encompasses temporal consistency priors.

3.4. Training Objectives
Our overall training objective Ltrain, in Eq. (4), is the

combination of the frame-level demoiréing loss Lt
d, Lt+1

d ,
which regresses outputs at different scales to the ground
truths, and the relation loss Lmbr of temporal consistency.

Ltrain = Lt
d + Lt+1

d + λtLmbr, (4)

λt is used to control the degree of temporal consistency.

To construct Ld, we adopt L1 and perceptual loss [17],

which guide the regression process. Apart from the loss on

the original resolution, deep supervisions [20] are applied

at different scales to assist the network training. The frame-

level demoiréing loss Lt
d is formulated as Eq. (5):

Lt
d =

∑

i,l

||Ot
si −Gt

si ||1 + λ||Φl(O
t
si)− Φl(G

t
si)||1, (5)

where Ot
si and Gt

si are output and corresponding ground

truth at the si scale, respectively. Φl is a set of VGG-16

layers, and λ is the weight used to balance different parts.

4. Video Demoiréing Dataset
We collect the first video demoiréing dataset captured by

hand-held cameras, e.g., a smartphone camera. The cap-

turing pipeline to ensure spatial and temporal alignments

between camera-recorded and original videos is shown in

Fig. 5 and elaborated below.

First, the 720p high-quality source videos displayed on

the screen consist of videos from REDS [29], MOCA [19],

and videos taken by ourselves. To ensure the diversity of

collected videos, we manually choose videos covering var-

ious scenarios, including human beings, landscapes, texts,

sports, and animals (examples in Fig. 5 (a)). We collect 290

videos, and each video has 60 frames.

Second, it is difficult to align videos recorded by cam-

eras and source videos played on the screen considering

different frame rates and asynchronous start timestamps.

For example, if the camera frame rate is not divisible by

the video frame rate, the recorded frame will contain multi-

frame information (occurs when switching frames) from the

source video, which results in blurry images. Even though

the frame rate meets the requirement, different start times-

tamps (i.e., start to play and record the video) also cause the

problem of multi-frame confusion. For these obstacles, we

adjust the frame rates and insert start/end flags into videos.

Specifically, we set camera and source video frame rates

to 30 fps and 10 fps, respectively, and extend source videos
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(a) (b) (c) (d)
Figure 7. Different types of temporal consistency. (a) Flow-based temporal consistency. (b) Ours with basic relation loss. (c) The full

version of our method. (d) Results without temporal constraints (reference). We can observe that (c) preserves details best.

with a few white frames at the beginning and the end of each

video. What’s more, we follow the data collection process

in [40] to add some black blocks surrounding the frame to

provide more robust keypoints (Fig. 5 (b) and (c)).

Third, given the source video, mobile phone, and mon-

itor, the moiré pattern can be produced by adjusting the

camera view points. While capturing, the mobile phone is

hand-held by a person to simulate practical video record-

ing senarios, and different shooting angles and distances are

adopted to increase the diversity of moiré patterns (Fig. 5

(c)). After recording, we can obtain 180 frames (three times

the source video) from each video after removing the pre-

inserted white frames (Fig. 5 (d)), and the final moiré frame

is sampled among three consecutive frames. Here, we sam-

ple the intermediate one since it is not sensitive to frame

transitions (Fig. 5 (e)).

Finally, to obtain training pairs (Fig. 5 (f)), source and

captured frames should be aligned through frame corre-

spondences, such as optical flow and homography matrix.

In this work, we adopt the homography matrix to align

two frames (Fig. 5 (e)). Instead of using only keypoints

(ORB [36]) detected on image regions [15] or auxiliary

black regions [40], we utilize both of them to estimate the

homography matrix using the RANSAC [45] algorithm.

5. Experiments
In this section, we first introduce training details

(Sec. 5.1), then qualitatively and quantitatively compare our

method with other baselines at the frame level (Sec. 5.2) and

the video level (Sec. 5.3). Finally, we validate our video

demoiréing model and the relation-based consistency regu-

larization (Sec. 5.4).

5.1. Training Details

The video demoiréing network takes three consecutive

frames as inputs to predict one restored image. To train

the model, we automatically divide the video demoiréing

dataset into 247 train videos and 43 test videos, and the hy-

perparameters λ and λt are set to 0.5 and 50, respectively.

Furthermore, we adopte four region sizes C = {1, 3, 5, 7}
to simulate different receptive fields. The optimizer in our

implementation is Adam with a cosine learning rate [27]. In

total, we train 60 epochs with batch size 1 on one NVIDIA

2080Ti GPU, and the temporal consistency loss is invoked

in the last 10 epochs for training stability.

5.2. Frame-Level Comparisons

We compare our approach with image demoiréing meth-

ods (i.e., MBCNN [54] and DMCNN [40]) and other widely

used backbones, such as U-Net [35]. In order to verify the

effectiveness of video demoiréing without being affected by

other factors (e.g., number of parameters and the choice of

loss function), we adopt our video demoiréing model but

change the input to repetitions of a single frame (Ours S,

see Fig. 8 (b)). To quantitatively measure the performance

of demoiréing, we adopt PSNR, SSIM, and LPIPS [53] that
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is more aligned with human perception as our metrics. (’↑’:

larger value is better, ’↓’: smaller value is better.)

Methods LPIPS ↓ PSNR ↑ SSIM ↑
MBCNN [54] 0.260 21.534 0.740

DMCNN [40] 0.321 20.321 0.703

U-Net [35] 0.225 20.348 0.720

Ours S 0.212 21.772 0.729

Ours 0.202 21.725 0.733

Table 1. Demoiréing performance of different methods. (Red:

best, Blue: second best)

Methods FID ↓ warping error ↓ user study ↑ LPIPS↓
Ours S 0.094 5.98 14% 0.212

Ours 0.084 5.65 25% 0.202

Ours+F 0.109 2.70 9% 0.339

Ours+R 0.088 4.79 42% 0.211

Ours+M 0.085 5.03 - 0.201

GT 0.000 4.56 - 0.000

Table 2. Temporal consistency measurements when λt is 50.

Ours S: video demoiréing model with three repetitive frames,

Ours: video demoiréing model with multiple frames, Ours +F:

add flow-based consistency loss, Ours+R: add basic relation-based

consistency loss, Ours+M: add multi-scale relation-based consis-

tency loss. In user study, all other baselines are compared with

Ours+M, and this table reports the percentage of each baseline be-

ing selected (Ours+M outperforms all baselines).

Qualitative Comparison. In Fig. 6, we show images re-

stored by different methods. It clearly shows that our ap-

proach has advantages over other methods for removing

moiré artifacts, such as the moiré patterns on the fountain,

white T-shirt and floor. We attribute the superiority of our

method to its ability to utilize auxiliary information from

the nearby video frames.

Quantitative Comparison. Frame-level quantitative re-

sults are reported in Table 1. Under the circumstance

of single image demoiréing, our method (Ours S) outper-

forms previous methods (above the dotted line). Moreover,

the performance is further improved using multiple frames

(Ours), especially LPIPS, which manifests the effectiveness

in leveraging multiple frames to improve perception results.

5.3. Video-Level Comparisons

Following previous works [7, 47], we adopt FID and

warping error to measure video-level performance. Here,

FID measures the distance between output and ground-truth

videos in the feature domain using I3D [4], and the warping

error calculates differences between two frames aligned by

optical flows [42]. Note that the warping error cannot accu-

rately reflect the video temporal consistency due to inaccu-

rate optical flow and natural changes in videos. To illustrate

it, we calculate the warping error of ground-truth videos

(Table 2: last row), which is still very large. Besides, we

also conduct user studies to assist video-level comparisons.

For the user study, participants are asked to choose one out
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Figure 8. Visualization of weight maps. (a) Three consecutive

frames and the weight maps. (b) Replace consecutive frames with

repetitions of a single frame and the weight maps.
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Figure 9. Demoiréing performance when increasing λt.

of two videos based on video quality or mark them as in-

distinguishable; they are given sufficient time to make the

decision. In the process of our user study, two videos pro-

duced by different methods are displayed in random order,

and participants can replay videos with various frame rates.

In total, 14 individuals participated in our experiments.

As our baseline video demoiréing model (Ours) obtains

better results than other compared methods, we take it as

the baseline model for video-level evaluation. Specifically,

we compare the video temporal consistency and quality

with the results of single image demoiréing (Ours S), clas-

sic flow-based consistency regularization (Ours+F, replace

Lmbr loss with Lf loss in Eq. (1)) and multi-scale relation-

based consistency regularization (Ours+M, Lmbr loss).

As shown in Table 2, the multi-frame demoiréing

(Ours) is more consistent than the single-frame demoiréing

(Ours S). Also, the FID indicates that videos restored by

multiple frames are closer to ground-truth videos with

higher quality. By incorporating temporal constraints, the

video temporal consistency is improved. Specifically, the

flow-based method (Ours+F) has the best warping error, but

the LPIPS shows that the frame-level quality may drop sig-

nificantly. Furthermore, only 9% of users preferred this

type of videos when compared with the full version of

our method (Ours+M). In contrast, our multi-scale relation-

based loss (Ours+M) can improve the video temporal con-

sistency while maintaining the frame-level quality (LPIPS

is similar to the method without using temporal consistency

regularization, 0.201 v.s. 0.202). More users preferred these

results in comparison with all over baselines.

More Analysis on Temporal Consistency. In the fol-

lowing, we perform more analysis to demonstrate the ro-

bustness of our relation-based loss. We plot the curve of
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(a) input (b) w/o pixel-shuffle (c) with pixel-shuffle

Figure 10. Different receptive fields. A large receptive field (with

pixel-shuffle) benefits the moiré artifacts removal.

demoiréing performance at different weights λt of the tem-

poral consistency loss. The results are shown in Fig. 9,

where the dotted line represents the performance with-

out temporal constraints (Ours). With the increase of λt,

the flow-based (Ours+F) consistency regularization leads to

worse LPIPS and SSIM. On the contrary, our multi-scale

relation-based approach (Ours+M) learns consistency pri-

ors directly from ground-truth videos without sacrificing

video quality (please refer to our videos).

We show visual comparisons in Fig. 7. When com-

pared with reference images (Fig. 7 (d)) without temporal

constraints (Ours), the flow-based method (Ours+F) heav-

ily blurs image details, such as repetitive textures of the

grass and cracks on the stone. By contrast, the multi-scale

relation-based method (Ours+M) preserves image details

well (Fig. 7 (c)), which is comparable to reference images

with improved temporal consistency.

5.4. Ablation Studies
Components of Networks. We validate our network de-

signs from the following two aspects. 1) Receptive field
enlargement due to the pixel shuffle operation: we remove

the pixel shuffle operation to reduce the network’s recep-

tive field and evaluate the performance. From results in Ta-

ble 3, we observe that the performance degrades without

using pixel shuffle. Besides, a large receptive field bene-

fits high-resolution images and large moiré patterns. This

can be seen in Fig. 10, where moiré artifacts on the lake

are removed under the large receptive field. 2) Analysis of
blending weights: to better understand the role of blending

weights in our model, we visualize the weight maps (see

Fig. 8) that are used to merge multi-frame features. The

weight maps can reflect moiré patterns and choose valu-

able information from nearby frames for fusion, as shown

in Fig. 8 (a). Moreover, we compare with a special sce-

nario where the inputs are repetitions of a single frame. Un-

der this circumstance, it is difficult to infer moiré patterns

without clues from auxiliary frames, as shown in weight

maps (Fig. 8 (b)). Consequently, the final demoiréing re-

sults (Fig. 8 last column) become worse.

Deep Supervision Loss. To illustrate this, we build the

loss function only on the original image scale. From Ta-

ble 3, we observe that the deep supervision loss boosts the

performance regarding all three metrics. A possible expla-

nation is that deep supervision loss forces each branch to

learn more reasonable demoiréing representations and fa-

Methods LPIPS ↓ PSNR ↑ SSIM ↑
no pixel-shuffle 0.205 21.372 0.733

no deep supervision loss 0.216 21.153 0.728

Ours 0.202 21.725 0.733

Table 3. Ablation study on the network and loss.

cilitate the optimization process.

Relation-Based Temporal Consistency. We validate two

variants of relation-based losses: the multi-scale relation-

based loss (Ours+M) and the basic relation-based loss

(Ours+R). From Fig. 7 (b), the textures are a bit blurry

with the basic relation-based loss and are worse than results

(Fig. 7 (c)) from our multi-scale design. The reason might

be that region-level statistics (i.e., mean) help reduce nega-

tive impacts of temporal-consistency regularization, which

tends to average and erase image details. In comparison

with the multi-scale design in Table 2, less users (42%)

selected the basic single-scale design. More importantly,

the multi-scale based regularization can well maintain the

frame-level qualitative performance (see LPIPS in Fig. 9).

6. Limitations and Broader Impacts
Although we have designed a pipeline to ensure the

alignment of captured data pairs, it is difficult to perfectly

align them under different camera views. Currently, our

model also suffers from generalization issues if evaluated

on data captured using new devices (e.g., different ISP and

Bayer filters) and screens (e.g., different resolution). Ex-

panding the scale of the dataset is one potential solution

that will be our future work. In addition, the relation-based

loss is generic and can potentially be applied to other video

tasks, such as video stabilization. In practice, we have found

that the video instability caused by frame misalignments has

been reduced. One possible explanation is that stabilization

priors are learned from ground-truth videos.

7. Conclusion
In this work, we construct the first video demoiréing

benchmark, including a hand-held video demoiréing

dataset, and develop a baseline video demoiréing model,

effectively leveraging multiple frames. More importantly,

we design an effective relation-based consistency regular-

ization, which simultaneously boosts video temporal con-

sistency and maintains visual quality. Detailed analyses are

carried out to assist the understanding of video moiré pat-

terns and the weaknesses of flow-based consistency regu-

larization. Finally, extensive experiments demonstrate the

superiority of our method.
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