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ABSTRACT

Recent work has compared neural network representations via similarity-based
analyses, shedding light on how different aspects (architecture, training data, etc.)
affect models’ internal representations. The quality of a similarity measure is
typically evaluated by its success in assigning a high score to representations
that are expected to be matched. However, existing similarity measures perform
mediocrely on standard benchmarks. In this work, we develop a new similarity
measure, dubbed ContraSim, based on contrastive learning. In contrast to com-
mon closed-form similarity measures, ContraSim learns a parameterized measure
by using both similar and dissimilar examples. We perform an extensive experi-
mental evaluation of our method, with both language and vision models, on the
standard layer prediction benchmark and two new benchmarks that we develop:
the multilingual benchmark and the image–caption benchmark. In all cases, Con-
traSim achieves much higher accuracy than previous similarity measures, even
when presented with challenging examples.

1 INTRODUCTION

Representation learning is a key property in deep neural networks. But how can we assess the simi-
larity of representations learned by two models? A recent line of work is concerned with developing
similarity measures and using them to analyze the models’ internal representations. Similarity-based
analyses may shed light on how different datasets, architectures, etc., change the model’s learned
representations. For example, a similarity analysis showed that lower layers in different models are
more similar to each other, while fine-tuning affects mostly the top layers (Wu et al., 2020).

Various similarity measures have been proposed for comparing representations, among them the
most popular ones are based on centered kernel alignment (CKA) (Kornblith et al., 2019) and canon-
ical correlation analysis (CCA) (Hotelling, 1936; Morcos et al., 2018). They all share a similar
methodology: given a pair of feature representations of the same input, they estimate the similar-
ity between them, without considering other examples. However, they all perform mediocrely on
standard benchmarks. Motivated by that, we propose a new learnable similarity measure.

In this paper, we introduce ContraSim, a new similarity measure, based on contrastive learning (CL)
(Chen et al., 2020; He et al., 2020). In contrast to prior work, which defines closed-form general-
purpose similarity measures, ContraSim is a task-specific learnable similarity measure that uses
examples a high similarity (the positive set) and examples that have a low similarity (the negative
set), to train an encoder that maps representations to the space where similarity is measured. In the
projected space, we maximize the representation similarity with examples from the positive set, and
minimize it with examples from the negative set.

We experimentally evaluate ContraSim on one standard similarity metrics benchmark and two new
benchmarks we introduce in this paper, and demonstrate its superiority compared to common simi-
larity measures. First, we use the known layer prediction benchmark (Kornblith et al., 2019), which
assesses whether high similarity is assigned to two architecturally-corresponding layers in two mod-
els differing only in their weight initialization. Second, in our proposed multilingual benchmark, we
assume a multilingual model and a parallel dataset of translations in two languages. A good simi-
larity measure should assign a higher similarity to the (multi-lingual) representations of a sentence
in language A and its translation in language B, compared to the similarity of the same sentence in
language A and a random sentence in language B. Third, we design the image–caption benchmark,
based on a similar idea. Given an image and its text caption, and correspondingly a vision model
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and a language model, a good similarity measure should assign a high similarity to representations
of the image and its caption, compared to the similarity of the same image and a random caption.

In both of our new benchmarks, we investigate a more challenging scenario, where instead of choos-
ing a random sentence, we retrieve highly similar sentences as confusing examples, using the Face-
book AI Similarity Search (FAISS) library (Johnson et al., 2019). While other similarity measures
are highly affected by this change, our method maintains a high accuracy with a very small degra-
dation. We attribute this to the highly separable representations that our method learns.

Finally, in all benchmarks, we show that if we change the training procedure of the encoder to only
maximize the similarity of similar examples, the projected representations have poor separation,
indicating that the CL procedure is a crucial part of the method’s success.

In summary, this work makes the following contributions:

• We introduce a new similarity measure – ContraSim. Inspired by contrastive learning, it
uses positive and negative sets to train an encoder that maps representations to the space
where similarity is measured.

• We propose two new benchmarks for the evaluation of similarity measures: the multilingual
benchmark and the image–caption benchmark.

• We show that ContraSim outperforms existing similarity measures in all benchmarks, and
maintains a high accuracy even when faced with more challenging examples.

2 RELATED WORK

Comparing different models allows one to analyze how different aspects like network architecture,
training set, and model size affect the model’s learned representations. For instance, Kornblith et al.
(2019) showed that adding too many layers to a convolutional neural network, trained for image
classification, hurts its performance. Using CKA, they found that more than half of the network’s
layers are very similar to the last. They further found that two models trained on different image
datasets (CIFAR-10 and CIFAR-100, Krizhevsky et al. 2009) learn representations that are similar
in the shallow layers. Similar findings were noted for language models by Wu et al. (2020). The
latter also evaluated the effect of fine-tuning on language models, and found that the top layers are
most affected by fine-tuning.

Investigating the effect of layer width, Kornblith et al. (2019) and Morcos et al. (2018) found that
increasing the model’s layer width results in more similar representations between models, and that
networks are generally more similar to networks with the same layer width than to networks with
a relatively larger width. Raghu et al. (2017) provided an interpretation of the learning process by
comparing the similarity of representations at some layer during the training process compared to
the final representations. They found that networks converge from bottom to top, i.e., layers closer to
the input converge to their final representation faster than deeper layers. Based on that insight, they
proposed frozen training, where they successively freeze lower layers during training, updating only
the deeper layers. They found that frozen training leads to classifiers with a higher generalization.
Cianfarani et al. (2022) used similarity measures to analyze the effect of adversarial training on
deep neural networks trained for image classification. Using CKA, they compared representations
of adversarially trained neural networks with representations of regularly trained and discovered
that adversarial examples have little effect on early layers. They further found that deeper layers
overfit during adversarial training. Moreover, they found high similarity between representations of
adversarial images generated with different threat model.

All prior work computes similarity only between examples that are similar, using functional closed-
form measures. In contrast, we utilize both positive and negative samples in a learnable similarity
measure, which allows adaptation to specific tasks.

3 PROBLEM SETUP

Let X = {(x(i)
1 , x

(i)
2 )}Ni=1 denote a set of N examples, and A = {(a(i)

1 ,a
(i)
2 )}Ni=1 the set of repre-

sentations generated for the examples in X. A representation is a high-dimensional vector of neuron
activations. Representations may be created by the same or different models, by different layers of
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the same model, etc. For instance, x(i)
1 and x

(i)
2 may be the same input, with a

(i)
1 and a

(i)
2 represen-

tations of that input in different layers. Alternatively, x(i)
1 can be an image and x

(i)
2 its caption, with

a
(i)
1 and a

(i)
2 their representations from a vision model and a language model, respectively.

Our goal is to obtain a scalar similarity score, which represents the similarity between the two sets
of representations, a(i)

1 and a
(i)
2 , and ranges from 0 (no similarity) to 1 (identical representations).

That is, we define X1 ∈ RN×p1 as a matrix of p1 activations of N data points, and X2 ∈ RN×p2

as another matrix of p2 activations of N data points. We seek a similarity measure, s(X1,X2).

4 CONTRASIM

In this section we introduce ContraSim, a similarity index for measuring the similarity of neural
network representations. Our method uses a trainable encoder, which first maps representations to a
new space and then measures the similarity of the projected representations. Formally, let eθ denote
an encoder with trainable parameters θ, and assume two representations a1 and a2. In order to
obtain a similarity score between 0 and 1, we first apply L2 normalization to the encoder outputs:
z1 = eθ(a1)/∥eθ(a1)∥ (and similarly for a2). Then their similarity is calculated as:

s(z1, z2) (1)

where s is a simple closed-form similarity measure for two vectors. Throughout this work we use
dot product for s.

For efficiency reasons, we calculate the similarity between batches of the normalized encoder rep-
resentations, dividing by the batch size n:

1

n

n∑
i=1

(
zi
1 · zi

2

)
(2)

Training. None of the current similarity measures uses negative examples to estimate the sim-
ilarity of a given pair. Using two examples, their output is usually a scalar that represents the
similarity between them, without leveraging data from other examples. However, based on knowl-
edge from other examples, we can construct a better similarity index. In particular, for a given
example x(i) ∈ X with its representation ai we construct a set of positive examples indices,
P (i) = {p1, ..., pq}, and a set of negative examples indices, N(i) = {n1, ..., nt}. The choice
of these sets is task-specific and allows one to add inductive bias to the training process.

We train the encoder to maximize the similarity of ai with all the positive examples, while at the
same time making it dis-similar from the negative examples. We leverage ideas from contrastive
learning (Chen et al., 2020; He et al., 2020), and minimize the following objective:

L =
∑
i∈I

−1

|P (i)|
log

∑
p∈P (i) exp(ai · ap/τ)∑
n∈N(i) exp(ai · an/τ)

(3)

with scalar temperature parameter τ > 0. Here ap and an are representations from the positive and
negative groups, respectively.

Our work uses negative examples and a trainable encoder for constructing a similarity measure.
We evaluate these aspects in the experimental section, and show that using negative examples is
an important aspect of our method. We show that the combination of the two leads to a similarity
measure with superior results over current similarity measures.

5 SIMILARITY MEASURE EVALUATION

We use three benchmarks to evaluate similarity measures: the known layer prediction benchmark,
and two new benchmarks we design: the multilingual benchmark and the image–caption benchmark.
We further propose a strengthened version of the last two using the FAISS software.
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Figure 1: Layer prediction benchmark. Given two models differing only in weight initialization,
A and B, for each layer in the first model, among all layers of the second model, a good similarity
measure is expected to assign the highest similarity for the architecturally-corresponding layer.

5.1 LAYER PREDICTION BENCHMARK

Proposed by Kornblith et al. (2019), a basic and intuitive benchmark is to assess the invariance of a
similarity measure against changes to the random seed. Given two models, with the same architec-
ture and training configuration (i.e., same training set, same hyperparameters, etc.), differing only in
their weight initializations, for each layer in the first model, among all layers of the second model,
one can expect that a good similarity measure assigns the highest similarity for the architecturally-
corresponding layer. Formally, let f and g be two models with k layers, and define as fi and gi as
the ith layer of f and g models, respectively. After calculating the similarity of fi with each layer of
g (g1, . . . , gk), the pair with the highest similarity is expected to be (fi, gi). The benchmark counts
the number of layers for which this pair was indeed assigned the highest similarity, and divides by
the total number of pairs. An illustration is found in Figure 1.

The intuition behind this benchmark is that each layer captures different information about the input
data. For example Jawahar et al. (2019) showed that different layers of the BERT model (Devlin
et al., 2018) capture different semantic information. Kornblith et al. (2019) showed, using CKA
similarity, that indeed there exists a correspondence between layers of models trained with different
seeds. Thus, although trained from different seeds, the same layers are expected to capture the same
information and therefore have a high similarity.

5.2 MULTILINGUAL BENCHMARK

Multilingual models, such as Multilingual-BERT (Devlin et al., 2018), learn to represent texts in
different languages in the same representation space. Interestingly, these models show cross-lingual
zero-shot transferability, where a model is fine-tuned in one language and evaluated in a different
language (Pires et al., 2019). Muller et al. (2021) analyzed this transferability and found that lower
layers of the Multilingual-BERT align the representations between sentences in different languages.

Since multilingual models share similarities between representations of different languages, we ex-
pect that a good similarity measure should assign a high similarity to two representations of a sen-
tence in two different languages. In other words, we expect similarity measures to be invariant to
the sentence source language. Consider a multilingual model f and dataset X, where each entry in
it consists of the same sentence in different languages. Let (x(i)

1 , x
(i)
2 ) ∈ X be a sentence written

in two languages – language A and language B. The similarity between f(x
(i)
1 ) and f(x

(i)
2 ) should

be higher than the similarity between f(x
(i)
1 ) and the representation of a sentence in language B

randomly chosen from X, i.e., f(x(j)
2 ), where (x

(j)
1 , x

(j)
2 ) ∈ X is a randomly chosen example from

X. The benchmark calculates the fraction of cases for which the correct translation was assigned the
highest similarity. An illustration is found in Figure 2.

Additionally, we suggest a strengthened version of the multilingual benchmark, using FAISS, a
library for efficient similarity search. Instead of sampling random sentences in language B, we use
FAISS to find the pair (x(j)

1 , x
(j)
2 ) ∈ X, where x

(j)
2 ̸= x

(i)
2 , with the representation f(x

(j)
2 ) that

is most similar to f(x
(i)
2 ), out of a large set of vectors pre-indexed by FAISS. This leads to a more

challenging scenario, as the similarity between x
(i)
1 and FAISS sampled x

(j)
2 is expected to be higher

than the similarity between x
(i)
1 and randomly chosen x

(j)
2 , increasing the difficulty of the similarity

measure to correctly identify the pair (x(i)
1 , x

(i)
2 ) as the highest-similarity pair.
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Figure 2: The multilingual benchmark. rE1
and rG1 denote the representations of the same
sentence in different languages, and S1 is
their similarity. rE2 represents the random
sentence representation, and S2 is the simi-
larity between it and rG1 . We expect S1 to be
higher than S2.

Figure 3: The image–caption benchmark. rC1
and ri denote the representations of the cap-
tion and the image pair, respectively, and S1

is their similarity. rC2 denotes the random
caption representation, and S2 is the similar-
ity between it and ri. We expect S1 to be
higher than S2.

5.3 IMAGE-CAPTION BENCHMARK

Let X be a dataset of images and their textual descriptions (captions), f be a computer vision model
and g a language model. Given a pair of an image and its caption, (m(i), c(i)) ∈ X, a good similarity
measure is expected to assign a high similarity to their representations – f(m(i)), g(c(i)). In partic-
ular, this similarity should be higher than that of the pair of the same image representation f(m(i))
and some random caption’s representation g(c(j)), where c(j) is a randomly chosen caption from
dataset X. The intuition behind this benchmark is that an image and its caption represent the same
scene in a different way. Thus, their representations should have a higher similarity than that of the
same image and some random caption. An illustration is found in Figure 3.

As in the multilingual benchmark, we also propose a strengthened variant for the image–caption
benchmark using FAISS. Rather than sampling a random caption c(j), we use FAISS to find the pair
(m(j), c(j)) ∈ X, where c(j) ̸= c(i), with the representation g(c(j)) that is most similar to g(c(i)).

6 EXPERIMENTS

Baselines and Ablations. We compare ContraSim with the following standard baselines.

• Centered Kernel Alignment (CKA): Proposed by Kornblith et al. (2019), CKA computes
a kernel matrix for each matrix representation input, and defines the scalar similarity index
as the two kernel matrices’ alignment. We use a linear kernel for CKA evaluation, as the
original paper reveals similar results for both linear and RBF kernels. CKA is our main
point of comparison due to its success in prior work and wide applicability.

• PWCCA: Proposed by Morcos et al. (2018), PWCCA is an extension of Canonical Cor-
relation Analysis (CCA). Given two matrices, CCA finds bases for those matrices, such
that after projecting them to those bases the correlation between the projected matrices is
maximized. While in CCA the scalar similarity index is computed as the mean correlation
coefficient, in PWCCA that mean is weighted by the importance each canonical correlation
has on the representation.1

See Appendix A.4 for more details on each method. Appendix A.5 report additional baseline results.

In addition, we report the results of two new similarity measures, which use an encoder to map
representations to the space where similarity is measured. However, in both methods we train fθ to
only maximize the similarity between positive pairs:

Lmax = −s(z1, z2) (4)

1PWCCA requires the number of examples to be larger than the feature vector dimension, which is not
possible to achieve in all benchmarks. Therefore, we compare with PWCCA in a subset of our experiments.
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where z1 and z2 are representations whose similarity we wish to maximize, where for a batch of
size n similarity is measured as: 1

n

∑n
i=1 s

(
zi
1, z

i
2

)
. We experiment with two functions for s—

dot-product and CKA—and accordingly name these similarity measures DeepDot and DeepCKA.
These methods provide a point of comparison where the similarity measure is trained, but without
negative examples, to examine whether contrastive learning is crucial to our method’s success.

Encoders details. In all experiments, the encoder fθ is a two-layer multi-layered perceptron with
hidden layer dimensions of 512 and 256, and output dimension of 128. We trained the encoder for 50
epochs for the layer prediction and 30 epochs for the multilingual and image–caption benchmarks.
We used the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 and a batch size of
1024 representations. We used τ = 0.07 for ContraSim training.

6.1 LAYER PREDICTION BENCHMARK

6.1.1 SETUP

Recall that this benchmark evaluates whether a certain layer from one model is deemed most similar
to its architecturally-corresponding layer from another model, where the two models differ only in
their weight initialization. We repeat this process for all layers and 5 different model pairs, and
report average accuracy. We experiment with both language and vision setups.

Models. For language experiments, we use the recent MultiBERTs (Sellam et al., 2021), a set of 25
BERT models, differing only in their initial random weights. For vision experiments, we pre-train 10
visual transformer (ViT) models (Dosovitskiy et al., 2020) on the ImageNet-1k dataset (Russakovsky
et al., 2015). Then we fine-tune them on CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al.,
2009). Further training details are available in Appendix A.3.

Datasets. For language experiments, we experiment with word-level contextual representations
generated on two English text datasets: the Penn Treebank (Marcus et al., 1993) and WikiText
(Merity et al., 2016). For Penn TreeBank we generate 5005 and 10019 representations for the test
and training sets, respectively; for WikiText we generate 5024/10023 test/training representations.
For vision experiments, we experiment with representations generated on CIFAR-10 and CIFAR-
100. For both we generate 5000 and 10000 test and training representations, respectively.

Positive and Negative sets. Given a batch of representations of some model i at layer j, we define
its positive set as the representations at the same layer j of all models that differ from i. The negative
set is all representations from layers that differ from j (including from model i).

6.1.2 RESULTS

The results are shown in Table 1. In both language and vision evaluations, CKA achieves better
results than PWCCA, consistent with the findings by (Ding et al., 2021). DeepDot and DeepCKA
perform poorly, with much lower results than PWCCA and CKA, revealing that maximizing the
similarity is not satisfactory for similarity measure purposes. Our method, ContraSim, achieves
excellent results. When trained on one dataset’s training set and evaluated on the same dataset’s
test set, ContraSim achieves perfect accuracy under this benchmark, with a large margin over CKA
results. This holds for both language and vision cases.

Even when trained on one dataset and evaluated over another dataset, ContraSim surpasses other
similarity measures results, showing the transferability of the learned encoder projection between
datasets. This is true both when transferring across domains (in text, between news texts from the
Penn Treebank and Wikipedia texts), and when transferring across classification tasks (in images,
between the 10-label CIFAR-10 and the 100-label CIFAR-100).

6.2 MULTILINGUAL BENCHMARK

6.2.1 SETUP

This benchmark assesses whether a similarity measure assigns a high similarity to multilingual rep-
resentations of the same sentence in different languages. Given a batch of (representations of) sen-
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Table 1: Layer prediction benchmark accuracy results for language and vision cases. For encoder-
based methods we report mean and std over 5 random initializations. For ContraSim, we experiment
with training with different datasets (rows) and evaluating on same or different datasets (columns).

Language Vision

Penn TreeBank WikiText CIFAR-10 CIFAR-100

PWCCA 38.33 55.00 PWCCA 47.27 45.45
CKA 71.66 76.66 CKA 78.18 74.54
DeepDot 15.55 ± 1.69 14.00 ± 2.26 DeepDot 14.90 ± 1.78 14.18 ± 2.67
DeepCKA 16.66 ± 3.16 19.66 ± 1.63 DeepCKA 17.09 ± 2.95 13.09 ± 4.20

ContraSim ContraSim
Penn 100 ± 0 85.45 ± 1.62 CIFAR-10 100 ± 0 90.54 ± 2.90
Wiki 94.00 ± 4.66 100 ± 0 CIFAR-100 85.81 ± 5.68 100 ± 0

tences b(i) in language Li and their translations b(j) in language Lj , we compute the similarity
between b(i) and b(j), and the similarities between b(i) and 10 randomly chosen batches of repre-
sentations in language Lj . If b(i) is more similar to b(j) than it is to all other batches, then we mark
success. (Alternatively, in a more challenging scenario, we use FAISS to find for each representation
in each layer the 10 most similar representations in that layer.) We repeat this process separately
for representations from different layers of a multilingual model, over many sentences and multiple
language pairs, and report average accuracy per layer.2 Appendix A.1 gives more details.

Model and Data. We use two multilingual models: multilingual BERT (Devlin et al., 2018)3

and XLM-R (Conneau et al., 2019). We use the XNLI dataset (Conneau et al., 2018), which has
natural language inference examples, parallel in multiple languages. Each example in our dataset is
a sentence taken from either the premise or hypothesis sets. We experiment with 5 typologically-
different languages: English, Arabic, Chinese, Russian, and Turkish. We created sentence-level
representations, with 5000 test 10000 training representations. As a sentence representation, we
experiment with [CLS] token representations and with mean pooling of token representations, since
Del & Fishel (2021) noted a difference in similarity in these two cases. We report results with [CLS]
representations in the main paper and mean pooling results in Appendix A.1; the trends are similar.

Positive and Negative sets. Given a pair of languages and a batch of representations at some
layer, for each representation we define its positive pair as the representation of the sentence in the
different language, and its negative set as all other representations in the batch.

6.2.2 RESULTS

Results with multilingual BERT representations in Table 2 show the effectiveness of our method.
(trends with XLM-R are consistent; Appendix A.1.3). Under random sampling evaluation (left
block), ContraSim shows superior results over other similarity measures, although always being
evaluated on language pairs it has not seen at training time. Using a FAISS-based sampler (right
block) further extends the gaps. While CKA results dropped by ≈ 45%, DeepCKA dropped by
≈ 51%, and DeepDot dropped by ≈ 40%, ContraSim was much less affected by FAISS sampling (≈
17% drop on average and practically no drop in most layers). This demonstrates the high separability
between examples of ContraSim, enabling it to distinguish even very similar examples and assign
a higher similarity to the correct pair. For all other methods, mid-layers have the highest accuracy,
whereas for our method almost all layers are near 100% accuracy, except for the first 3 or 4 layers.

Evaluation results reveals interesting insights that were not found using previous similarity mea-
sures. In FAISS results, we see that there is a much greater difference in accuracy between shallow
and deep layers in ContraSim compared to previous similarity measures. This means that using
previous similarity measures we might infer that there is no difference in the ability to detect the

2For deep similarity measures (DeepCKA, DeepDot, and ContraSim), upon training the encoder on exam-
ples from a pair of languages, (Lr, Lq), r ̸= q, we evaluate it over all other distinct pairs of languages.

3https://huggingface.co/bert-base-multilingual-cased
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Table 2: Multilingual benchmark accuracy results. With random sampling (left block), ContraSim
outperforms other similarity measures. Using FAISS (right block) further extends the gaps.

Random FAISS

Layer CKA DeepCKA DeepDot ContraSim CKA DeepCKA DeepDot ContraSim

1 71.7 ± 5.3 82.0 ± 6.4 63.3 ± 10.4 95.5 ± 5.4 20.1 ± 4.0 10.7 ± 2.6 29.9 ± 8.7 36.0 ± 10.7
2 78.7 ± 4.4 86.4 ± 4.1 68.5 ± 9.9 95.0 ± 7.2 27.2 ± 5.5 12.3 ± 2.9 46.9 ± 9.8 33.0 ± 14.8
3 86.8 ± 3.0 87.1 ± 3.2 70.4 ± 9.7 96.4 ± 6.7 41.9 ± 8.7 17.6 ± 4.2 51.5 ± 10.3 45.4 ± 20.5
4 92.6 ± 1.4 91.5 ± 2.4 95.4 ± 3.4 99.9 ± 0.2 33.4 ± 7.0 15.2 ± 3.7 52.2 ± 8.6 72.4 ± 9.8
5 88.3 ± 3.2 83.5 ± 5.2 94.7 ± 4.8 99.9 ± 0 49.3 ± 4.3 36.9 ± 6.3 42.4 ± 12.9 99.1. ± 0.8
6 88.6 ± 3.4 86.4 ± 5.2 92.5 ± 5.4 100 ± 0 51.4 ± 5.5 39.9 ± 7.2 42.1 ± 12.3 99.5. ± 0.4
7 88.8 ± 3.7 86.9 ± 5.0 92.6 ± 5.0 100 ± 0 53.0 ± 5.8 41.1 ± 7.7 45.7 ± 11.7 99.6. ± 0.3
8 89.3 ± 3.6 85.2 ± 5.7 91.4 ± 7.0 100 ± 0 56.1 ± 5.8 45.0 ± 8.7 43.8 ± 13.4 99.7. ± 0.3
9 88.1 ± 3.8 82.4 ± 5.6 89.1 ± 9.5 100 ± 0 53.3 ± 4.9 42.7 ± 8.5 39.2 ± 12.9 99.6. ± 0.3

10 87.0 ± 3.5 80.3 ± 5.9 85.3± 10.3 100 ± 0 51.5 ± 5.3 42.4 ± 7.8 34.3 ± 12.2 99.5. ± 0.4
11 86.7 ± 4.2 76.6 ± 6.4 79.7± 13.9 99.9 ± 0 52.4 ± 5.3 43.3 ± 8.5 31.4 ± 12.8 99.3. ± 0.5
12 86.4 ± 3.4 63.8 ± 7.9 64.3± 19.7 99.9 ± 0 52.8 ± 4.5 32.3 ± 8.7 26.1 ± 21.9 98.9. ± 0.8

correct pair across different layers. However, ContraSim shows that the difference in the ability to
detect the correct pair dramatically changes from shallow to deep layers.

To further analyze this, we compare the original multilingual representations from the last layer
with their projections by ContraSim’s trained encoder. Figure 5 from Appendix A.1.2 shows UMAP
(McInnes et al., 2018) projections of representations of 5 sentences in English and 5 sentences in
Arabic, before and after ContraSim encoding. The ContraSim encoder was trained on Arabic and
English languages. The original representations are organized according to the source language (by
shape), whereas ContraSim projects translations of the same sentence close to each other (clustered
by color).

6.3 IMAGE–CAPTION BENCHMARK

6.3.1 SETUP

Given a test set X, consisting of pairs of an image representation generated by a computer vi-
sion model and its caption representation from a language model, we split X to batches of size
64. For each batch, we compute the similarity between the image representations and their cor-
responding caption representations. We then sample 10 different caption batches, either randomly
or using FAISS (as before), and compute the similarity between the image representation and each
random/FAISS-retrieved caption representation. If the highest similarity is between the image rep-
resentation and the original caption representation, we mark a success. For trainable similarity
measures, we train with 5 different random seeds and average the results.

Models and Data. We use two vision models for image representations: ViT and ConvNext (Liu
et al., 2022); and two language models for text representations: BERT and GPT2 (Radford et al.,
2019). We use the Conceptual Captions dataset (Sharma et al., 2018), which has ≈3.3M pairs of
images and English captions. We use 5000 and 10000 pairs as test and training sets, respectively.

Positive and Negative sets. Given a batch of image representations with their corresponding cap-
tion representations, for each image representation we define as a positive set its corresponding
caption representation, and as a negative set all other representations in the batch.

6.3.2 RESULTS

Figure 4 demonstrates the strength of ContraSim. Under random sampling (green boxes), Deep-
CKA achieves comparable results to ContraSim, while DeepDot and CKA achieve lower results.
However, using FAISS (red boxes) causes a big decrease in DeepCKA accuracy, while ContraSim
maintains high accuracy.

Another interesting result is that in 3 of 4 pairs we tested, CKA accuracy using FAISS for sampling
was higher than using random sampling. This contradicts the intuition that using similar examples at
the sampling stage should make it difficult for similarity measures to distinguish between examples.
This might indicate that CKA suffers from stability issues.

8
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Figure 4: Image–caption benchmark results for 4 different model pairs. ContraSim works best, and
is the only measure robust to FAISS sampling.

Looking at CKA results we might observe that BERT representations are more similar to computer
vision representations rather than GPT2 model representations. That is because using CKA we
see that the pairs with BERT model achieve higher accuracy compared to pairs with GPT2 model.
Higher accuracy means that it is easier to detect the matching pair, which means that the representa-
tions are more similar. However, ContraSim achieves high accuracy in both BERT pairs and GPT2
pairs, which means that both models share the same similarity to computer vision models, in contrast
to what we may infer from previous similarity measures.

Finally, we report results with the multi-modal CLIP model (Radford et al., 2021) in Appendix 5.
Because the model was pre-trained with contrastive learning, simple dot-product similarity works
very well, so there is no need to learn a similarity measure in this case.

7 CONCLUSION

We proposed a new similarity measure, ContraSim, based on ideas from contrastive learning. By
defining the positive and negative sets we learn an encoder that maps representation to a space where
similarity is measured. Our method outperformed other similarity measures under the common layer
prediction benchmark, and two new benchmarks we proposed: the multilingual benchmark and the
image–caption benchmark. It particularly shines in strengthened versions of said benchmarks, where
random sampling is replaced with finding the most similar examples using FAISS.

Our new similarity measure benchmarks can facilitate work on a similarity-based analysis of deep
neural networks. The multilingual benchmark is useful for work in multilingual language models,
while the image–caption benchmark may help work in multi-modal settings. A drawback of our
method is that it can only compare representations of the same dimensionality. This can be addressed
by using a dimensionality reduction to a shared space. We leave the research of a more sophisticated
method for future work. Moreover, compared to existing methods, ContraSim needs access to a
training set for the encoder training procedure. Compared with closed-form similarity measures,
train time is another trade-off. In addition, since our method learns a parameterized measure, it may
help train models with similarity objectives. We also leave that for future work. Finally, considering
ContraSim’s superiority in all evaluations, it will better fit for interpretability of neural networks.

9



Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

Our work adds to the body of literature on the interpretability of neural networks and may mitigate
their opacity. We do not foresee major risks associated with this work. However, a malicious actor
could train ContraSim adversarially, assign poor similarity estimates, and lead to false analyses.

REPRODUCIBILITY STATEMENT

All the evaluations conducted throughout this paper are fully reproducible. ContraSim training
scheme and architecture were described in Sections 4 and 6. Detailed information regarding each
evaluation is also provided in the Section 6, with further details in Appendix A. Code to reproduce
all the paper results will be made publicly available upon publication.
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Table 3: Multilingual benchmark results with mean pooling.

Random FAISS

Layer CKA DeepCKA DeepDot ContraSim CKA DeepCKA DeepDot ContraSim

1 87.7 ± 6.9 86.3 ± 9.7 43.4 ± 17.7 98.7 ± 2.2 67.6 ± 14.3 54.1 ± 10.9 41.7 ± 19.1 94.2 ± 10.7
2 89.0 ± 6.3 88.7 ± 7.0 51.5 ± 20.0 99.5 ± 0.8 68.2 ± 13.2 49.0 ± 8.3 38.9 ± 17.2 96.6 ± 14.8
3 91.8 ± 4.4 90.7 ± 6.0 63.3 ± 20.8 99.9 ± 0.1 72.2 ± 11.5 55.4 ± 8.1 44.8 ± 16.6 98.8 ± 20.5
4 93.7 ± 3.3 91.3 ± 5.0 73.1 ± 19.4 99.9 ± 0.0 74.3 ± 10.0 55.1 ± 8.0 45.7 ± 16.5 99.5 ± 7.1
5 95.3 ± 3.0 92.1 ± 4.0 83.9 ± 15.6 99.9 ± 0.0 78.2 ± 8.2 56.7 ± 8.1 53.2 ± 17.5 99.8 ± 4.4
6 95.9 ± 2.4 91.8 ± 3.9 91.2 ± 10.6 100 ± 0 77.6 ± 7.9 54.2 ± 8.1 60.1 ± 18.2 99.8 ± 1.7
7 95.4 ± 2.5 90.6 ± 4.1 93.1 ± 9.2 100 ± 0 77.9 ± 7.8 53.3 ± 7.2 63.5 ± 18.5 99.9 ± 0.7
8 94.8 ± 3.2 89.7 ± 4.3 90.3 ± 12.0 100 ± 0 76.7 ± 8.1 52.4 ± 7.4 61.0 ± 19.8 99.9 ± 0.3
9 94.0 ± 3.4 88.5 ± 5.0 86.4 ± 15.1 100 ± 0 73.9 ± 8.8 51.4 ± 7.8 55.5 ± 20.0 99.9 ± 0.1
10 92.6 ± 4.2 85.6 ± 5.9 80.7 ± 18.8 100 ± 0 72.2 ± 8.4 49.3 ± 8.4 49.2 ± 20.6 99.9 ± 0.1
11 91.1 ± 5.1 81.0 ± 6.5 72.2 ± 23.7 99.9 ± 0 70.6 ± 10.1 48.8 ± 9.1 43.2 ± 20.7 99.8 ± 0.1
12 90.8 ± 5.8 71.3 ± 7.6 71.0 ± 21.0 99.9 ± 0 72.7 ± 11.3 40.3 ± 8.7 42.7 ± 17.0 99.4 ± 0.1

A APPENDIX

A.1 MULTILINGUAL BENCHMARK

A.1.1 EVALUATION PARAMETERS

We split the test set, X, into equally sized batches of size 8, {b(1), b(2), ..., b(n)}, where each batch
consists of multilingual BERT representations of the same sentence in 5 different languages: L =
{L1, ..., L5}. Given a pair of different languages, (Li, Lj), i ̸= j, and a batch of representations, b,
we consider the representation of those languages in the batch, (b[i], b[j]), and compute the similarity
between b[i] and b[j] as s0 ≡ s(b[i], b[j]). We also compute the similarity between b[i] and 10
randomly chosen batches (or, 10 batches chosen using FAISS) of representations in language Lj

as {st ≡ s(b[i], bt[j])}10t=1. If argmaxt{st}10t=0 = 0, we count it as a correct prediction. Each
layer’s accuracy is defined as the number of successful predictions over the number of batches, n.
We average results over all possible pairs of different languages.

A.1.2 CONTRASIM PROJECTIONS

Figure 5: Original representations (left) are clustered by the source language (by shape). ContraSim
(right) projects representations of the same sentence in different languages close by (by color).

A.1.3 FURTHER EVALUATIONS

In addition to using the [CLS] token representation as a sentence representation, we also evaluated
the multilingual benchmark using mean pooling sentence representation. We used the same evalu-
ation process as described in Section 6.2. The results, summarized in Table 3, are consistent with
the results in the main paper (Table 2). Under random sampling, ContraSim outperforms all other
similarity measures. Using FAISS causes a big degradation in all other methods’ accuracy, while
ContraSim maintains a high accuracy across all layers.
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In addition, we evaluated the multilingual benchmark with another multilingual model – the XLM-R
(Conneau et al., 2019) model. Results, summarized in Table 4, show a similar pattern to Tables 2
and 3, with ContraSim achieving the highest accuracies across all layers, in both random sampling
and FAISS sampling scenarios.

Table 4: Multilingual benchmark results on XLM-R model.

Random FAISS

Layer CKA DeepCKA DeepDot ContraSim CKA DeepCKA DeepDot ContraSim

1 89.7 ±. 4.6 88.2 ± 3.1 45.0 ± 22.1 99.89 ± 0.31 60.6 ± 11.4 24.6 ± 4.7 24.8 ± 12.4 98.1 ± 2.5
2 90.6 ± 4.1 92.3 ± 2.0 63.1 ± 23.4 99.99 ± 0.02 57.1 ± 11.4 30.7 ± 5.7 31.1 ± 13.5 99.5 ± 0.7
3 92.8 ± 3.1 93.8 ± 1.7 79.5 ±18.9 99.99 ± 0 55.5 ±10.1 33.8 ± 6.4 39.3 ±15.5 99.9 ± 0.1
4 94.7 ± 2.6 94.3 ± 1.7 91.4 ±11.7 100 ± 0 62.3 ± 9.5 36.3 ± 6.8 55.1 ±16.2 99.9 ± 0
5 95.9 ± 2.1 94.6 ± 1.6 94.0 ±10.0 100 ± 0 66.2 ± 8.4 37.2 ± 7.6 64.2 ±16.2 99.9 ± 0
6 95.9 ± 2.1 94.9 ± 1.6 94.6 ± 8.9 100 ± 0 66.7 ± 8.3 41.2 ± 7.6 66.0 ±17.5 99.9 ± 0
7 96.6 ± 2.0 94.9 ± 1.6 94.9 ± 8.5 100 ± 0 71.7 ± 8.5 44.1 ± 8.2 68.8 ±17.5 99.9 ± 0
8 96.1 ± 2.1 94.8 ± 1.7 94.0 ± 9.3 100 ± 0 68.1 ± 8.3 43.6 ± 7.9 65.3 ±18.0 99.9 ± 0
9 94.8 ± 2.2 94.9 ± 1.6 93.3 ± 9.1 100 ± 0 58.5 ± 8.7 42.8 ± 8.0 61.7 ±18.6 99.9 ± 0

10 93.9 ± 2.3 94.3 ± 1.7 92.7 ±10.7 100 ± 0 46.3 ± 8.2 39.1 ± 7.5 56.6 ± 18.9 99.9 ± 0
11 92.0 ± 2.8 93.3 ± 2.2 92.7 ± 10.9 100 ± 0 35.5 ± 7.0 39.1 ± 7.3 57.2 ± 18.3 99.9 ± 0
12 80.7 ± 4.7 89.5 ± 3.0 81.6 ± 13.8 100 ± 0 26.5 ± 5.8 32.3 ± 7.0 34.7 ± 15.1 99.9 ± 0

A.2 IMAGE–CAPTION

In addition to the four model pairs we evaluated in Figure 4, we assessed the multi-modal vision
and language CLIP model (Radford et al., 2021), which was trained using contrastive learning on
pairs of images and their captions. Results in Table 5 show interesting findings. Under random
sampling, dot product, DeepCKA and ContraSim achieve perfect accuracy. However, using FAISS
causes significant degradation in DeepCKA accuracy, and only a small degradation in dot product
and ContraSim results, with equal accuracy for both. We attribute this high accuracy for simple
dot product to the fact that CLIP training was done using contrastive learning, thus observing high
separability between examples.

Table 5: Image–caption benchmark accuracy results using CLIP model

Random FAISS

CKA 93.67 25.31
Dot Product 100 98.73
DeepCKA 100 13.92
DeepDot 29.11 25.31
ContraSim 100 98.73

A.3 VIT TRAINING DETAILS

We used the ViT-base (Dosovitskiy et al., 2020) architecture. We pretrained 10 models on the
ImgaeNet-1K dataset (Deng et al., 2009), differing only in their weight initializations by using ran-
dom seeds from 0 to 9. We used the AdamW optimizer (Kingma & Ba, 2014) with lr = 0.001,
weight decay = 1e − 3, batch size = 128, and a cosine learning scheduler. We trained each model
for 150 epochs and used the final checkpoint.

Then, we fine-tuned the pretrained models on CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al.,
2009). We used AdamW optimizer with lr = 2e − 5, weight decay = 0.01, batch size = 10, and a
linear scheduler. For models fine-tuned on CIFAR-10, the average accuracy on the CIFAR-10 test
set is 96.33%. For models fine-tuned on CIFAR-100, the average accuracy on the CIFAR-100 test
set is 78.87%.
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A.4 DETAILS OF PRIOR SIMILARITY MEASURES

Canonical Correlation Analysis (CCA). Given two matrices, CCA finds bases for those matrices,
such that after projecting them to those bases the projected matrices’ correlation is maximized. For
1 ≤ i ≤ p1, the ith canonical correlation coefficient ρi is given by:

ρi = max
wi

X ,wi
Y

corr(Xwi
X , Y wi

Y )

s.t. ∀j<i Xwi
X ⊥ Xwj

X

∀j<i Y wi
Y ⊥ Y wj

Y .

(5)

where corr(X,Y ) = ⟨X,Y ⟩
∥X∥·∥Y ∥ . Given the vector of correlation coefficients corrs = (ρ1, ..., ρp1),

the final scalar similarity index is computed as the mean correlation coefficient:

SCCA(X,Y ) = ρCCA =

∑p1

i=1 ρi
p1

(6)

as previously used in (Raghu et al., 2017; Kornblith et al., 2019).

Projection-Weighted CCA (PWCCA). Morcos et al. (2018) proposed a different approach to
transform the vector of correlation coefficients, corrs, into a scalar similarity index. Instead of
defining the similarity as the mean correlation coefficient, PWCCA uses a weighted mean and the
similarity is defined as:

SPW =

∑p1

i=1 αiρi∑
i αi

αi =
∑
j

|⟨hi, xj⟩| (7)

where xj is the jth column of X , and hi = Xwi
X is the vector observed upon projecting X to the ith

canonical direction. Code available at: https://github.com/google/svcca.

Centered Kernel Alignment (CKA). CKA, Proposed by Kornblith et al. (2019), suggests com-
puting a kernel matrix for each matrix representation input, and defining the scalar similarity index
as the two kernel matrices’ alignment. For linear kernel, CKA is defined as:

SCKA =
∥Y TX∥2F

∥XTX∥F ∥Y TY ∥F
(8)

Code available at: https://github.com/google-research/google-research/
tree/master/representation_similarity.

A.5 ADDITIONAL SIMILARITY MEASURES

We evaluated three more similarity measures: singular vector CCA (SVCCA) Raghu et al. (2017),
dot product and L2 norm between the difference of the normalized representations (dubbed Norm
in the paper). Given two batch representations, X and Y , SVCCA performs CCA on the truncated
singular value decomposition (SVD) of X and Y .

For two representations, x and y, we defined dis-similarity measure as:

DisNorm(x, y) = ∥(x/∥x∥ − y/∥y∥)∥ (9)

Since this is a dis-similarity measure, we defined the norm similarity measure as:

SNorm = 1−DisNorm(x, y) (10)

For a batch of representations, we define batch similarity as the mean of pairwise norm similarity. In
addition, we evaluated ContraSim with a different similarity measure than dot-product and replaced
it with the norm similarity measure.
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Table 6: Layer prediction benchmark with additional similarity measures.

Penn TreeBank WikiText

SVCCA 46.66 56.66
Dot product 8.33 6.66

Norm 10.00 11.66

ContraSim norm
Penn 100.00 90.00
Wiki 100.00 100.00

Table 7: Multilingual benchmark with additional similarity measures. Left block is with random
sampling, and right block is FAISS sampling.

Random FAISS

Layer Dot
product Norm ContraSim norm Dot

Product Norm ContraSim norm

1 48.93 ± 7.07 68.67 ± 10.86 89.39 ± 14.46 15.00 ± 6.41 20.42 ± 9.32 15.76 ± 6.56
2 31.71 ± 3.31 74.19 ± 9.73 85.40 ± 18.00 20.14 ± 2.75 21.16 ± 11.43 18.83 ± 11.19
3 49.32 ± 6.53 83.92 ± 13.12 85.68 ± 18.88 13.00 ± 4.50 29.42 ± 22.99 26.36 ± 16.01
4 29.60 ± 2.44 99.61 ± 0.41 96.81 ± 5.04 16.20 ± 4.01 57.98 ± 15.68 28.79 ± 9.80
5 99.75 ± 0.29 99.86 ± 0.33 99.86 ± 0.23 82.17 ± 7.36 82.39 ± 7.73 74.04 ± 7.11
6 99.75 ± 0.35 99.84 ± 0.27 99.92 ± 0.13 83.38 ± 7.70 88.24 ± 6.15 77.00 ± 6.68
7 99.52 ± 0.77 99.85 ± 0.29 99.92 ± 0.13 89.72 ± 5.57 89.23 ± 6.98 78.21 ± 6.77
8 99.93 ± 0.13 99.89 ± 0.15 99.94 ± 0.11 93.49 ± 4.07 89.70 ± 6.42 81.97 ± 6.63
9 99.61 ± 0.38 99.76 ± 0.40 99.91 ± 0.17 82.48 ± 9.32 84.85 ± 8.57 81.37 ± 6.53

10 96.64 ± 2.46 99.38 ± 0.58 99.89 ± 0.15 55.02 ± 15.42 81.43 ± 9.77 80.59 ± 6.83
11 87.04 ± 8.13 98.40 ± 1.25 99.83 ± 0.31 29.62 ± 13.82 82.20 ± 9.46 80.74 ± 7.08
12 76.86 ± 15.23 87.25 ± 12.39 99.73 ± 0.36 25.75 ± 26.55 50.11 ± 32.55 80.24 ± 6.63

Similar to PWCCA, SVCCA requires that the number of examples is larger than the vector dimen-
sion, thus we could only evaluate it in the layer prediction benchmark. All other similarity measures
were evaluated with all evaluations - the layer prediction benchmark, the multilingual benchmark
and the image-caption benchmark.

Table 6 shows layer prediction benchmar results. We can observe that SVCCA achieves slightly
better results than PWCCA, and lower than CKA and ContraSim. Both dot product and norm
achieve low accuracies. ContraSim norm achieves same or better results than ContraSim.

Table 8: Image–caption benchmark results for additional similarity measures, on 4 different model
pairs.

Vision Model ViT ConvNext
Language

Model BERT GPT2 BERT GPT2

Random

Dot
Product 6.32 6.32 11.39 8.86

Norm 6.32 7.59 15.19 7.59
ContraSim norm 100 100 100 100

FAISS

Dot
Product 5.06 2.53 7.59 6.32

Norm 5.06 5.06 6.32 10.12
ContraSim norm 93.67 98.73 81.03 93.67
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Multilingual benchmark results, summarized in Table 7 show that both dot product and norm achieve
better results than CKA, although achieve low results under layer prediction and image-caption
benchmarks. This emphasizes the importance of multiple evaluations for similarity measures. Com-
pared to ContraSim, both methods achieve lower results. ContraSim norm achieves lower results
compared to ContraSim, under both random and FAISS sampling.

Image-caption benchmark results, summarized in Table 8, show that under both random sampling
and FAISS sampling dot product and norm achieve low accuracy. Under random sampling, Con-
traSim norm achieves perfect accuracy, while using FAISS sampling shows slight degradation com-
pared to ContraSim.
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