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ABSTRACT

Deep neural networks (DNNs) have achieved remarkable accuracy, but they of-
ten suffer from fairness issues, as deep models typically show distinct accuracy
differences among some specific subgroups (e.g., males and females). Existing
research addresses this critical issue by employing fairness-aware loss functions
to constrain the last-layer outputs and directly regularize DNNs. Although the
fairness of DNNs is improved, it is unclear how the trained network makes a fair
prediction, which limits future fairness improvements. In this paper, we investi-
gate fairness from the perspective of decision rationale and define neuron parity
scores to characterize the fair decision process of networks by analyzing neuron
behaviors in various subgroups. Extensive empirical studies show that the unfair
issue could arise from the unaligned decision rationales of subgroups. Existing
fairness regularization terms fail to achieve decision rationale alignment because
they only constrain last-layer outputs while ignoring intermediate neuron align-
ment. To address the issue, we formulate the fairness as a new task, i.e., decision
rationale alignment that requires DNNs’ neurons to have consistent responses
on subgroups at both intermediate processes and the final prediction. To make
this idea practical during optimization, we relax the naive objective function and
propose gradient-guided parity alignment, which encourages gradient-weighted
consistency of neurons across subgroups. Extensive experiments on a variety of
datasets show that our method can improve fairness while maintaining high accu-
racy and outperforming other baselines by a large margin. We have released our
codes at https://anonymous.4open.science/r/fairer_submission-F176/.

1 INTRODUCTION

In the current society, there is a desperate desire for social fairness among individuals. However, as
deep learning is increasingly adopted for many applications that have brought convenience to our
daily lives (He et al., 2016; Devlin et al., 2019; Deng et al., 2013), DNNs still suffer from the fairness
problem and often exhibit undesirable discrimination behaviors (News, 2021; 2020). For example,
for an intelligent task (e.g., salary prediction), a trained DNN easily presents distinct accuracy values
in different subgroups (e.g., male and female). The discriminatory behaviors contradict with people’s
growing demand for fairness, which would cause severe social consequences. To alleviate such
fairness problems, a line of mitigation strategies has been constantly proposed (Zemel et al., 2013;
Sarhan et al., 2020; Wang et al., 2019).

A direct regularization method to improve fairness is to relax fairness metrics as constraints in
the training process (Madras et al., 2018). This regularization method is designed to reduce the
disparities between different subgroups in the training and testing data (See Fig. 1 (a) vs. (b)).
Although this method easily improves the fairness of DNN models, it is still unclear how the trained
network makes a fair decision. For example, we do not know how the fairness regularization terms
actually affect the final network parameters and let them make a fair prediction. Without such an
understanding, we would not know the effective direction for further fairness enhancement. Existing
work does not address this question and the majority of them concentrate on the last-layer outputs
(i.e., predictions) while ignoring the internal process. In this work, we propose to study the fairness
from the perspective of decision rationale and analyze existing fairness-regularized methods through
a decision-rationale-aware analysis method. The term ‘decision rationale’ is known as the reason for
making a decision and could be represented as the behaviors of neurons in a DNN (Khakzar et al.,
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Figure 1:
Schematic
diagrams of
two existing
solutions and
the proposed
one. (a) and
(b) represent
results of the
standard trained
network and
the regularized
fairness network.
(c) show the
results of
the decision
rationale-
aligned
network.

2021). Specifically, for each intermediate neuron (i.e., a parameter of the DNN), we can calculate the
loss change on a subgroup before and after removing the neuron. As a result, we can characterize
the decision rationale of a network on the subgroup by collecting the loss changes of all neurons.
For example, the solid green and yellow lines in Fig. 1 represent the neurons leading to high loss
changes at each layer and characterize the decision rationales of the two subgroups. Then, we define
the neuron parity score as the decision rationale shifting across different subgroups, which actually
reveals the influences of intermediate neurons (i.e., parameters) to the decision rationale changes.
With the new analysis tool, we find that the network fairness is directly related to the consistency
of the decision rationales on different subgroups and existing fairness regularization terms could
partially achieve this goal (Compare the solid lines in Fig. 1 (b)) since they only add constraints to
the final outputs. Intuitively, we could define new regularization terms to minimize parity scores
of all neurons and encourage them to have similar behaviors across subgroups. We name this new
task as the decision rationale alignment that requires DNNs to have consistent decision rationales as
well as final predictions on different subgroups. Although straightforward, the task is challenging
for two reasons: First, the decision rationale and parity score are defined based on a dataset and it is
impractical to calculate them at each iteration during the training process. Second, different neurons
have different effects on fairness and such differences should be carefully considered.

To address the above two challenges, we propose the gradient-guided parity alignment method by
relaxing the calculation of decision rationale from the dataset-based strategy to the sample-based
one. As a result, the corresponding regularization term is compatible with the epoch-based training
process. Moreover, we use the first-order Taylor expansion to approximate the parity score between
decision rationales and the effects of different neurons to the fairness are weighted via their gradient
magnitudes automatically. Overall, the proposed method can achieve much higher fairness than
state-of-the-art methods. In summary, the work makes the following contributions:

1. To understand how a network makes a fair decision, we define neuron parity score to
characterize the decision rationales of the network on different subgroups. We reveal that
the fairness of a network is directly related to the consistency of its decision rationales on
different subgroups and existing regularization terms cannot achieve this goal.

2. To train a fairer network, we formulate the decision rationale alignment task and propose the
gradient-guided parity alignment method to solve it by addressing the complex optimization
challenges.

3. Extensive experiments on three public datasets, i.e., Adult, CelebA, and Credit, demonstrate
that our method can enhance the fairness of DNNs effectively and outperform others largely.

2 RELATED WORK

Fairness in deep learning. There are different methods to evaluate fairness in deep learning, among
which individual fairness (Zhang et al., 2020; 2021; George John et al., 2020), group fairness (Louppe
et al., 2016; Moyer et al., 2018; Gupta et al., 2021; Garg et al., 2020), and counterfactual fairness (Kus-
ner et al., 2017) are the mainstream. We focus on group fairness which is derived by calculating and
comparing the predictions for each group. There is a line of work dedicated to alleviating unjustified
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bias. For example, Wang et al. (2020) compare mitigation methods including oversampling, adversar-
ial training, and other domain-independent methods. Some work proposes to disentangle unbiased
representations to ensure fair DNNs. On the contrary, Du et al. (2021) directly repair the classifier
head even though the middle representations are still biased. To improve fairness, it is also popular
to constrain the training process by imposing regularization. Woodworth et al. (2017) regularize
the covariance between predictions and sensitive attributes. Madras et al. (2018) relax the fairness
metrics for optimization. Although such methods are easy to be implemented and integrated into the
training process, these constraints suffer from overfitting (Cotter et al., 2019). The model with a large
number of parameters could memorize the training data, which causes the fairness constraints to fit
well only in the training process. Chuang & Mroueh (2021) ensure better generalization via data
augmentation (e.g., mix-up) to reduce the trade-off between fairness and accuracy.

However, these methods barely pay attention to the rationale behind the fair decision results. In
this paper, we further analyze the decision rationales behind the fair decision results in the training
process and reveal that ensuring the fair decision rationale could further improve fairness.

Understanding DNNs decision rationale. There are some interpretable methods enabling DNNs
models to present their behaviors in understandable ways to humans (Zhang & Zhu, 2018; Fong &
Vedaldi, 2017; Koh & Liang, 2017). Specifically, there is a line of work that decompose DNNs to
depict the decision rationale. Routing paths composed of the critical nodes (e.g. neurons with the
most contribution to the final classification on each layer) can be extracted in a learnable way to
reflect the network’s semantic information flow regarding to a group of data (Khakzar et al., 2021).
Conquering the instability existing in the learnable method, Qiu et al. (2019) propose an activation
based back-propagation algorithm to decompose the entire DNN model into multiple components
composed of structural neurons. Meanwhile, Xie et al. (2022) base the model function analysis on
the neuron contribution calculation and reveal that the neuron contribution patterns of OOD samples
and adversarial samples are different from that of normal samples, resulting in wrong classification
results. Zheng et al. (2022) analyze neurons sensitive to individual discrimination and generate testing
cases according to sensitive neuron behaviors. However, these post-hoc methods decompose the
DNNs and extract the neuron contributions pattern via static analysis or in a learnable way. These
analysis methods result in huge time overhead, making their integration into the training process
difficult, which restricts these methods to be applied in optimizing the training process.

In our paper, we follow the spirit of decomposing DNNs to understand the model decision rationale.
Different from these previous methods, our method successfully simplifies the estimation process of
neuron contribution and can be easily integrated into the training process to optimize the model.

3 PRELIMINARIES: GROUP FAIRNESS VIA REGULARIZATION LOSSES

3.1 PROBLEM FORMULATION

In general, given a dataset D containing data samples (i.e., x ∈ X ) and corresponding labels (i.e.,
y ∈ Y), we can train a DNN to predict the labels of input samples, i.e., ŷ = F(x) with ŷ ∈ Y being
the prediction results. In the real word, the samples might be divided into subgroups according to
some sensitive attributes a ∈ A such as gender and race. Without loss of generality, we consider the
binary classification and binary attribute setup, i.e., y ∈ {0, 1} and a ∈ {0, 1}. For example, a = 0
and a = 1 could represent male and female, respectively. A fair DNN (i.e., F(·)) is desired to obtain
a similar accuracy in the two subgroups.

3.2 FAIRNESS REGULARIZATION

Existing fairness works (Feldman et al., 2015; Hardt et al., 2016; Madras et al., 2018; Chuang &
Mroueh, 2021) focus on designing fairness regularization terms and adding them to the loss function,
which encourages the targeted DNN to predict similar results across subgroups. Specifically, Feldman
et al. (2015) develop the demographic parity (DP) regularization term to encourage the predicted
label to be independent of the sensitive attribute (i.e., a), that is, P (ŷ|a = 0) = P (ŷ|a = 1) which
means that the probability distribution of ŷ condition on a = 0 should be the same as the condition
on a = 1. Hardt et al. (2016) further propose the equalized odds (EO) regularization to consider the
ground truth label y and make the prediction and sensitive attribute conditionally independent w.r.t. y,
i.e., P (ŷ|a = 0, y) = P (ŷ|a = 1, y). Although straightforward, it is difficult to optimize the above
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regularization terms and Madras et al. (2018) propose relaxed counterparts:

∆DP(F) = |Ex∼P0
(F(x))− Ex∼P1

(F(x))| , (1)

where P0 = P (x|a = 0) and P1 = P (x|a = 1) are the distributions of x condition on a = 0 and
a = 1, respectively, and the function E(·) is to calculate the expectation under the distributions.

∆EO(F) =
∑

y∈{0,1}

∣∣∣Ex∼Py
0
(F(x))− Ex∼Py

1
(F(x))

∣∣∣ , (2)

where P 1
0 = P (x|a = 0, y = 1) denotes the distribution of x condition on the a = 0 and y = 1, and

we have similar notations for P 0
0 , P 1

1 , P 0
1 if we set the DNN for a binary classification task and have

the label y ∈ 0, 1. We can add Eq. (1) and Eq. (2) to the classification loss (e.g., cross-entropy loss)
to regularize the fairness of the targeted DNN, respectively, and obtain the whole loss function

L = E(x,y)∼P (Lcls(F(x), y)) + λLfair(F), (3)

where P denotes the joint distribution of x and y, Lcls is the classification loss, and the term Lfair could
be ∆DP(F) or ∆EO(F) defined in Eq. (1) or Eq. (2). We can minimize the above loss function and
get fairness-regularized DNNs. Although effective, the above method presents some generalization
limitations. To alleviate this issue, Chuang & Mroueh (2021) embed the data augmentation strategy
into the fairness regularization method and propose FairMixup with novel DP- and EO-dependent
regularization terms. Please refer to Chuang & Mroueh (2021) for more details. Our method is also
applicable to other fairness metrics that quantify the expected difference between groups. More
analysis is put in supplementary materials.

Overall, we get several fairness regularization methods via different regularization terms. Specifically,
we denote the methods without augmentation as FairReg(∆DP, noAug) and FairReg(∆EO, noAug)
based on regularization functions (i.e., Eq. (1) and Eq. (2)). We denote the methods equipped with
data augmentation as FairReg(∆DP,Aug) and FairReg(∆EO,Aug), respectively.

3.3 LIMITATIONS

Figure 2: Accuracy and fairness comparison of five different
methods on the Adult dataset. The hyperparameter λ increases
from 0.2 to 0.6 along the −DP axis as it becomes larger.

Although the above methods are able to enhance
the fairness of DNNs, they still present some lim-
itations. We conduct an experiment on the Adult
dataset (Dua & Graff, 2017a) with a neural network
with 3-layer MLPs. Specifically, we train the net-
work with two fairness regularization methods (i.e.,
FairReg(∆DP, noAug) and FairReg(∆DP,Aug) 1)
and five different λ ∈ {0.2, 0.3, 0.4, 0.5, 0.6}, that
is, for each method, we get five trained networks.
Then, we can calculate the accuracy scores and fair-
ness scores of all networks on the testing dataset. We
employ average precision for the accuracy score and
−DP for the fairness score since a smaller DP means
better fairness. For each method, we can draw a plot
w.r.t. different λ. Besides, we also train a network without the fairness regularization term and
denote it as w.o.FairReg. Based on w.o.FairReg, we can conduct oversampling on the training
samples to balance the samples across different subgroups (Wang et al., 2020) and denote it as
w.o.FairReg-Oversample. As shown in Figure 2, we see that: ❶ The standard trained network via
w.o.FairReg presents an obvious fairness issue and the oversampling solution has limited capability
to fix it. ❷ When we use the regularization methods and gradually increase the weight λ in Eq. (3)
from 0.2 to 0.6, FairReg(∆DP, noAug) is able to generate fairer networks with higher fairness scores
(i.e., higher -DP) than the one from w.o.FairReg. However, the corresponding accuracy decreases by
a large margin, that is, existing methods could hardly generate enough fair networks under similar
accuracy. ❸ The data augmentation-based method (i.e., FairReg(∆DP,Aug)) can alleviate such an
issue to some extent and achieves higher fairness than FairReg(∆DP, noAug) under similar accuracy.

Such methods only provide fairness metric results but neglect the decision-making process. Although
intuitively, the consistent decision process of different groups could improve the fairness performance,

1We have similar observations on the ∆EO-based methods and remove them for a clear explanation.
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to explore the concrete relationship between the decision-making process and fairness, we provide an
analysis method by extending the decision rationale-aware explainable methods in Sec. 4. Specifically,
instead of using the final fairness metrics, we define the neuron parity score for each parameter of a
network that measures whether the parameter is fair, that is, whether it has consistent responses to
different subgroups.

4 DECISION RATIONALE-AWARE FAIRNESS ANALYSIS

In recent years, decision rationale-aware explainable methods are developed and help understand
how a trained network makes a decision (Khakzar et al., 2021; Wang et al., 2018). In these works, the
decision rationale is represented by measuring the importance of intermediate neurons. Inspired by
this idea, to understand a fair decision, we study the decision process of networks by analyzing their
neuron behaviors under different subgroups and define the decision rationales for different subgroups.
Then, we define the parity score for a network that actually measures whether the decision rationales
on different subgroups are consistent. Besides, we can use the parity score to compare the networks
trained with different regularization terms.

4.1 NEURON PARITY SCORE

Inspired by recent work on understanding the importance of the neuron for the classification
loss (Molchanov et al., 2019), we define the neuron parity score based on the independent as-
sumption across neurons (i.e., parameters). When we have a trained network F(·) with its parameters
W = {w0, . . . , wK}, we can calculate classification losses on samples from two distributions
P0 = P ((x, y)|a = 0) and P1 = P ((x, y)|a = 1), which correspond to the training subsets of
two subgroups (i.e., a = 0 and a = 1) and get the losses J (F, P0) and J (F, P1), respectively.
Meanwhile, we can modify F(·) by removing a specific parameter wk and denote the new counterpart
as Fwk=0, and we can also obtain losses via J (Fwk=0, P0) and J (Fwk=0, P1). Then, for each
subgroup (i.e., P0 or P1), we calculate the loss change before and after removing the parameter wk

by

ca=i
k = C(F, wk, Pi) = |J (F, Pi)− J (Fwk=0, Pi)|2, ∀i ∈ {0, 1}, k ∈ [0,K], (4)

where the function J (F, Pi) is to calculate the classification loss (i.e., Lcls in Eq. (3)) of examples in
Pi with ∀i ∈ {0, 1} based on the network F. With a subgroup Pi and a K-neuron network F, we can
get ca=i

F = [ca=i
0 , ca=i

1 , . . . , ca=i
K ] that is regarded as a representation of the decision rationale on the

subgroup Pi (Khakzar et al., 2021).

Then, we define the parity score of the parameter wk as the difference between ca=0
k = C(F, wk, P0)

and ca=1
k = C(F, wk, P1), i.e.,

dk = |C(F, wk, P0)− C(F, wk, P1)|2. (5)

Intuitively, if the network F is fair to a kind of sensitive attribute, each parameter should have consistent
responses to different subgroups, and the changes before and after removing the parameter should be
the same. As a result, a smaller dk means that the parameter wk is less sensitive to the attribute changes.
For the entire network with K neurons, we get K parity scores and ca=i

F = [ca=i
0 , ca=i

1 , . . . , ca=i
K ],

and can represent the network with dF = [d0, d1, . . . , dK ] and aggregate all scores for a network-level
parity score, i.e., dF =

∑K
k=0 dk = |ca=0

F − ca=1
F |1, which measures whether the decision rationales

on the two subsets are consistent (i.e., properly aligned).

4.2 RELATIONSHIP BETWEEN PARITY SCORE AND FAIRNESS

With the neuron parity score, we conduct an empirical study based on the Adult dataset and a
neural network with 3-layer MLPs. Specifically, we train six networks with the regularization
terms defined in Sec. 3.3, e.g., the ∆DP-based regularization terms with six different weights (i.e.,
FairReg(∆DP, noAug) with λ ∈ {0.0, 0.2, 0.3, 0.4, 0.5, 0.6}). Note that, FairReg(∆DP, noAug)
with λ = 0.0 represents the standard trained network without fair regularization terms (i.e.,
w.o.FairReg). Then, for each method, we can train a neural network and calculate the parity score,
i.e., dF =

∑K
k=0 dk = |ca=0

F − ca=1
F |1 to measure the decision rationale shifting across subgroups

and the fairness score defined by −DP. As reported in Table 1, we see that: ❶ the parity score of
the network gradually decreases as the -DP becomes higher, which demonstrates that the fairness

5



Under review as a conference paper at ICLR 2023

Table 1: Parity scores, fairness scores, and the first-order Taylor approximation of the parity scores of networks trained via FairReg(∆DP, noAug)
with different λ in Eq. (3). For each network, we train 10 runs with different seeds and the average results are reported.

FairReg(∆DP, noAug)
λ = 0.0 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

Parity score (dF) 0.624± 0.555 0.391± 0.338 0.101± 0.084 0.070± 0.045 0.046± 0.023 0.039± 0.029

Fairness (−DP) −0.160± 0.012 −0.084± 0.009 −0.048± 0.004 −0.022± 0.006 −0.020± 0.003 −0.010± 0.003

Approx. (−
∑L

l=0 cos(⃗ca=0
l , c⃗a=1

l )) −0.670± 0.042 −1.380± 0.093 −1.530± 0.111 −1.630± 0.187 −1.630± 0.156 −1.800± 0.108

of a network is highly related to the decision rationale shifting across subgroups. ❷ adding the
fairness regularization term on the last-layer outputs (i.e., λ > 0) can decrease the decision rationale
shifting to some extent. However, such an indirect way could hardly achieve the optimized results
and a more effective way is to actively align the decision rationale explicitly. Note that we can
observe similar results on other regularization methods and focus on FairReg(∆DP, noAug) due to
the limited space. We conclude that the existing fairness regularization-based methods can encourage
the consistency between decision rationales of the network on different subgroups to some extent and
get smaller neuron parity scores than the standard trained network. This inspires our method in Sec.5
that conducts alignment of the decision rationales of different subgroups explicitly.

5 DECISION RATIONALE ALIGNMENT

5.1 FORMULATION AND CHALLENGES

According to Eq. (5), we can achieve a fairer network by aligning the decision rationales of subgroups
and a straightforward way is to set the parity score dF =

∑K
k=0 dk as an extra loss function and

minimize it directly, that is, we can add a new loss to Eq. (3) and have,

L = E(x,y)∼P (Lcls(F(x), y)) + λLfair(F) + β

K∑
k=0

dk, (6)

where dk is the parity score of the kth neuron and calculated by Eq. (5). Such a loss should calculate
parity scores for all neurons and all samples in a dataset, leading to a high cost and is not practical.

5.2 GRADIENT-GUIDED PARITY ALIGNMENT

To address the challenges, we relax Eq. (4) to the sample-based counterpart
ca=i
k = C(F, wk, Pi) =|E(x,y)∼Pi

(Lcls(F(x), y)− E(x,y)∼Pi
(Lcls(Fwk=0(x), y))|2, (7)

∀i ∈ {0, 1}, k ∈ [0,K].

We use the first-order Taylor expansion to approximate ca=i
k similar to Molchanov et al. (2019) and

get

ĉa=i
k = Ĉ(F, wk, Pi) = (ga=i

k · wk)
2, ∀i ∈ {0, 1}, k ∈ [0,K]. (8)

where ga=i
k denotes the gradient of the kth neuron (i.e., wk) w.r.t. the loss function on the examples

sampled from the distribution of the ith subgroup (i.e., Pi). Intuitively, the above definition means
that we should pay more attention to the neurons with higher gradients and make them have similar
responses to different subgroups. However, neurons (i.e., parameters) of different layers may have
different score ranges. To avoid this influence, we further normalize ĉa=i

k by ĉa=i
k

|ĉa=i
l | ∀i ∈ {0, 1}, k ∈

Kl, where Kl contains the indexes of the neurons in the lth layer, and parity scores of neurons in the
lth layer (i.e., {ĉa=i

k |k ∈ Kl}) form a vector ĉa=i
l = vec({ĉa=i

k |k ∈ Kl}). Then, we can get a new

vector for the lth layer c⃗a=i
l = vec({ ĉa=i

k

|ĉa=i
l | |k ∈ Kl}) by normalizing each element. Then, we can

update Eq. (6) by minimizing the distance between c⃗a=0
l and c⃗a=1

l ∀l ∈ [0, L], i.e.,

L = E(x,y)∼P (Lcls(F(x), y)) + λLfair(F)− β

L∑
l=0

cos(⃗ca=0
l , c⃗a=1

l ), (9)

where L denotes the number of layers in the network, and the function cos(·) is the cosine sim-
ilarity function. The last two terms are used to align the final predictions and the responses
of the intermediate neurons across subgroups, respectively. To validate the approximation (i.e.,
−
∑L

l=0 cos(⃗ca=0
l , c⃗a=1

l )) can reflect the decision rationale alignment degree like the parity score∑K
k=0 dk. We conduct an empirical study on FairReg(∆DP, noAug) as done in Sec. 4.2 and calcu-

late the value of −
∑L

l=0 cos(⃗ca=0
l , c⃗a=1

l ) for all trained networks. From Table 1, we see that the
approximation has consistent variation trend with the parity score under different λ.
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Algorithm 1: Gradient-guided Parity Alignment
Data: Network F with parametersW = {w0, . . . , wK}, epoch index set E , training data D, batch size B,

network layers L, neurons in the lth layer Kl,hyper-parameters λ and β, learning rate η.
// Training process for DP

1 for e ∈ E do
// Sampling B samples from different subgroups in D

2 (X0,Y0)← Sample(D, a = 0, B); (X1,Y1)← Sample(D, a = 1, B);
// Calculating loss and updating the model

3 Lcls(F(X0),Y0), Lcls(F(X1),Y1); Lfair = ∆DP(F,X0,X1);
4 for l ∈ L do
5 for k ∈ Kl do
6 ga=0

k = ∂(Lcls(F(X0),Y0))
∂wk

; ga=1
k = ∂(Lcls(F(X1),Y1))

∂wk
;

7 ĉa=0
k ← (ga=0

k · wk)
2; ĉa=1

k ← (ga=1
k · wk)

2;

8 c⃗a=0
l = [ĉa=0

0 , ĉa=0
1 , ..., ĉa=0

|Kl|]; c⃗
a=1
l = [ĉa=1

0 , ĉa=1
1 , ..., ĉa=1

|Kl|];

9 L ← Lcls(F(X0),Y0) + Lcls(F(X1),Y1) + λLfair − β
∑L

l=0 cos(⃗c
a=0
l , c⃗a=1

l );
10 w ← w − η∇wL, ∀w ∈ W.

5.3 IMPLEMENTATION DETAILS

We detail the whole training process in Algorithm 1. In particular, given a training dataset D, we
first sample two groups of samples (ie, (X0,Y0) and X1,Y1) from the two subgroups in the dataset,
respectively (See line 2). Then, we calculate the cross-entropy loss for both samples (See line 3) and
calculate the fairness regularization loss (i.e., Lfair = ∆DP(F,X0,X1). After that, we can calculate
the gradient of each parameter (i.e., neuron wk) w.r.t. the classification loss (See line 6) and calculate
the decision rationale for each neuron and layer (See line 7 and 8). Finally, we calculate the cosine
similarity between c⃗a=0

l and c⃗a=1
l and use the whole loss to update the parameters. We defer the

algorithm depiction for the EO metric to the Supplementary Materials.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. In our experiments, we use two tabular benchmarks (Adult and Credit) and one image
dataset (CelebA) that are all for binary classification tasks: ❶ Adult (Dua & Graff, 2017a). The
original aim of the dataset Adult is to determine whether a person makes salaries over 50K a year.
We consider gender as the sensitive attribute, and the vanilla training will lead the model to predict
females to earn less salaries. ❷ CelebA (Liu et al., 2015). The CelebFaces Attributes dataset is to
predict the attributes of face. We split into two subgroups according to the attribute gender. Here we
consider two attributes classification tasks. For the task to predict whether the hair in an image is
wavy or not, the standard training will show discrimination towards the male group; when predicting
whether the face is attractive, the standard training will result in a model prone to predict males as
less attractive. ❸ Credit (Dua & Graff, 2017b). This dataset is to give an assessment of credit based
on personal and financial records. In our paper, we take the attribute gender as the sensitive attribute.

Models. For tabular benchmarks, we use the MLP (multilayer perception) (Bishop, 1996) as the
classification model, which is commonly adopted in classifying tabular data. For the CelebA dataset,
we use AlexNet (Krizhevsky et al., 2012) and ResNet-18 (He et al., 2016), both of which are popular
in classifying image data (Alom et al., 2018). We mainly show the experimental results of predicting
wavy hair using AlexNet. More results and training details are in supplementary materials.

Metrics. For fairness evaluation, we take two group fairness metrics DP and EO as we introduced in
the section 3.2 and define −DP and −EO as fairness scores since smaller DP and EO mean better
fairness. We use the average precision (AP) for classification accuracy evaluation. A desired fairness
method should achieve smaller DP or EO but higher AP (i.e., the top left corner in Fig. 3).

Baselines. Following the common setups in Chuang & Mroueh (2021), we compare our method
with several baselines: ❶ Standard training based on empirical risk minimization (ERM) princi-
ple (i.e., w.o.FairReg). DNNs are trained only with the cross entropy loss. ❷ Oversample (i.e.,
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(a) Adult (b) CelebA (c) Credit

Figure 3: Comparing different methods on AP vs. (-DP/-EO). According to the common setups, we evaluate ∆DP -based and ∆EO-based
methods via DP and EO, respectively. We train networks with the compared methods for 10 times and the averaging results are reported.

w.o.FairReg-Oversample) (Wang et al., 2020). This method samples from the subgroup with rare
examples more often, making a balanced sampling in each epoch. ❸ FairReg(∆DP or ∆EO, noAug)
(Madras et al., 2018). This method is to directly regularize the fairness metrics, i.e., ∆DP or ∆EO. ❹
FairReg(∆DP or ∆EO,Aug) (i.e., FairMixup) (Chuang & Mroueh, 2021). This method regularizes
the models on paths of interpolated samples between subgroups to achieve fairness. ❺ Adversarial
(Zhang et al., 2018). This method minimizes the adversary’s ability to predict sensitive attributes. ❻
Post-processing (Bellamy et al., 2018). This method modifies the predictions of an accurate model
with a fairness objective.

6.2 FAIRNESS IMPROVEMENT PERFORMANCE

As shown in Fig. 3, we have following observations: ❶ With the Adult and CelebA datasets, our
method (i.e., DRAlign) achieves higher fairness (i.e., higher -DP or -EO scores) than all baseline
methods when they have similar accuracy. In particular, on the Adult dataset, DRAlign has relative
41.6% DP improvement over the second best method (i.e., FairReg(∆DP,Aug)) when both get
around 0.770 AP. Overall, our method can enhance the fairness significantly with much less accuracy
sacrifice. ❷ Data augmentation method does not always improve DNN’s fairness. For example, on the
dataset Adult, FairReg(∗, noAug) presents slightly higher fairness score (i.e., higher -DP or -EO) than
FairReg(∗,Aug). A potential reason is that the augmented data becomes less realistic due to the rich
information in the image modality, which leads to less effective learning. ❸ Although oversampling
could improve fairness to some extent, it is less effective than the fairness regularization-based
methods (i.e., FairReg(∗, noAug)). For example, on the CelebA dataset, w.o.FairReg-Oversample
only obtains -0.069 -EO score with the 0.812 AP score, while FairReg(∗, noAug) achieves the -
0.054 -EO score with 0.817 AP score. The networks trained by FairReg(∗, noAug) are not only
fairer but also of higher accuracy. On the tabular dataset, w.o.FairReg-Oversample outperforms the
w.o.FairReg by a small margin. ❹ On the Credit dataset, FairReg(∆DP , Aug) achieves better results
than DRAlign under the DP metric although our method still outperforms the regularization-based
one. A potential reason is that the data size of the Credit is small (i.e., 500 training samples) and the
data augmentation can present obvious advantages by enriching the training data significantly. The
data augmentation and our decision rationale alignment are two independent ways to enhance fairness.
Intuitively, we can combine the two solutions straightforwardly. We do further experiments and find
that our DRAlign could still improve FairReg(∆DP , Aug). More details are put in supplementary
materials.

6.3 DISCUSSION AND ANALYSIS

Connection with over-parameterization. To better understand the cause of the decision rationale
misalignment, we further investigate the connection between decision rationale misalignment and
model over-parameterization. We conduct an empirical study on the Adult dataset using 3-layer MLP
networks based on FairReg(∆DP, noAug). Specifically, we explore 4 MLP architectures, where the
hidden sizes are set as 10, 20, 50, and 200, respectively. The corresponding parameter sizes of the 4
networks are 1331, 2861, 8651, and 64601. For each architecture, we draw a plot w.r.t. different λ for
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(a) (b)

Figure 4: (a) : corre-
lation between λ and
decision rationale sim-
ilarity score. (b) layer-
wise analysis for corre-
lation between λ and
decision rationale simi-
larity score.

FairReg(∆DP, noAug) to show the decision rationale similarity score (i.e.,
∑L

l=0 cos(⃗ca=0
l , c⃗a=1

l )
in Sec. 5.2). We denote the four trained models as FairReg(∆DP,noAug) (c10), FairReg(noAug)
(c20), FairReg(∆DP,noAug) (c50), and FairReg(∆DP,noAug) (c200), respectively, according to their
hidden sizes. More results under ∆EO metric are put in Supplementary Materials. With Fig. 4 (a),
we have the following observations: ❶ The decision rationale similarity consistently ascends when
λ increases. When λ becomes 0.5, decision rationale similarities of FairReg(∆DP,noAug) (c10),
FairReg(∆DP,noAug) (c20)and FairReg(∆DP,noAug) (c50) reach the same maximum score (i.e.,
3.0 for any 3-layer MLP network). We conclude that larger λ (stricter fairness constraint) results in
a higher decision rationale similarity. ❷ The misalignment of decision rationale is more likely to
occur in the over-parameterized networks. For the largest network FairReg(∆DP ,noAug) (c200),
even when the λ is set as 0.6 for a strict fairness constraint, the decision rationale similarity score
only reaches 1.8 which is much smaller than the values on other variants and infers that the decision
rationale is still far from being aligned.

Furthermore, we also report the results of augmentation-based method, i.e., FairReg(∆DP,Aug).
We find that data augmentation can generally mitigate the misalignment but still fails to completely
align the decision rationale (See the plot of FairReg(∆DP ,noAug) (c200)). Our method DRAlign
is able to achieve the maximum similarity on all λ settings even on the architecture with hidden
size 200. This enlightens us that common methods such as data augmentation that aims to address
over-parameterization can not completely solve the misalignment, while our gradient-guided parity
alignment method can directly improve the alignment.

Layer-wise decision rationale alignment analysis. We further conduct a layer-wise analysis to
understand which layer owns better decision rationale alignment. We calculate the decision rationale
similarity for the 1st and 2nd layer (i.e., cos(⃗ca=0

l=0 , c⃗
a=1
l=0 ) and cos(⃗ca=0

l=1 , c⃗
a=1
l=1 )). From Fig. 4 (b), we

see that: for both layers, the layer-wise similarity score ascends when λ increases. This is consistent
with the observation that stricter fairness constraint results in a higher decision rationale similarity.
As we compare the 1st and 2nd layers, we can observe that the similarity score of the first layer is
generally higher. Moreover, we can see that for smaller models (i.e., models with hidden size 50), the
similarity gap between the first layer and the second layer is relatively trivial. However, for models
with hidden size 200, the similarity score of the second layer is rather low (i.e., the score is 0.113
even when the λ is 0.6). We conclude that the misalignment of the deeper layer is severer.

7 CONCLUSIONS AND FUTURE WORK

In this work, we have studied the fairness issue of deep models from the perspective of decision
rationale and defined the neuron parity score to characterize the decision rationale shifting across
subgroups. We observed that such a decision rationale-aware characterization has a high correlation
to the fairness of deep models, which means that a fairer network should have aligned decision
rationales across subgroups. To this end, we formulated fairness as the decision rationale alignment
(DRAlign) and proposed the gradient-guided parity alignment to implement the new task. The results
on three public datasets demonstrate the effectiveness and advantages of our methods and show that
DRAlign is able to achieve much higher fairness with less accuracy sacrifice than all existing methods.
Although promising, our method also presents some drawbacks: (1) it requires the computation
of second-order derivatives; and (2) the gradient-guided parity alignment method is limited to
the layer-wise DNN architecture. In the future, we are interested in solving these limitations.
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