
Under review as a conference paper at ICLR 2023

MIXED-PRECISION INFERENCE QUANTIZATION: RAD-
ICALLY TOWARDS FASTER INFERENCE SPEED, LOWER
STORAGE REQUIREMENT, AND LOWER LOSS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model quantization is important for compressing models and improving computing
speed. However, current researchers think that the loss function value of the
quantized model is usually higher than the full-precision model. This study provides
a methodology for acquiring a mixed-precision quantization model with a lower
loss without "fine-tuning" than the full-precision model. Using our algorithm in
different models on different datasets, we gain lower loss quantized models than
full-precision models.

1 INTRODUCTION

Neural network storage, inference, and training are computationally intensive due to the massive
parameter sizes of neural networks. Therefore, developing a compression algorithm for machine
learning models is necessary. Model quantization, based on the robustness of computational noise, is
one of the most important compression techniques. The primary sources of noise are truncation and
data type conversion errors. In the quantization process, the initial high-precision data type used for a
model’s parameters is replaced with a lower-precision data type. Both PyTorch and TensorFlow have
quantization techniques that translate floats to integers. Various quantization techniques share the
same theoretical foundation, which is the substitution of approximation data for the original data in
the storage and inference processes. A lower-precision data format requires less memory, and using
lower-precision data requires fewer computer resources and less time. In quantization, the precision
loss in different quantization level conversions and data type conversions is the source of the noise.

Current works, on the other hand, raise the following issues:1. No study examines how to reduce the
loss function value of a model using quantization technology. There is the myth that the quantized
model’s loss is higher than the full-precision model. 2. The background of some work is against
current computation device requirements: current computation devices have to use the same two data
types in one computation process, which means the layer’s weight and the input of the layer have
to be the same quantization level. 3. No one has examined which types of models are stable in the
quantization process and why.

The purpose of this paper is mainly to discuss the question of whether quantization technology always
leads to the model’s loss function increasing and how to gain a better performance quantized model by
quantization method. In current papers, the main target of the current algorithm is to gain a quantized
model whose loss function value is not much higher than a full-precision model. However, we want
to give an algorithm that can find the quantized model that is better than the full precision model, i.e.,
the quantized model’s loss function value is lower than the full precision model, based on the current
computation device’s requirements.

This research provides a basic analysis of the computational noise robustness of neural networks.
Furthermore, we present a method for acquiring a quantized model with a lower loss than the model
with full precision by using the floor and ceiling functions in different layers, with a focus on
layerwise post-training static model quantization.

1

Under review as a conference paper at ICLR 2023

As an added benefit in algorithm analysis, we give the theoretical result to answer the question that
which types of models are stable in the quantization process and why when the noise introduced by
quantization process can be covered by the neighborhood concept.

2 RELATED WORK

Model compression methods include pruning methodsHan et al. (2015); Li et al. (2016); Mao
et al. (2017) , knowledge distillationHinton et al. (2015), weight sharingUllrich et al. (2017) and
quantization methods. From the perspective of the precision layout, post-training quantization
methods can be mainly divided into channelwise Li et al. (2019); Qian et al. (2020), groupwise Dong
et al. (2019b) and layerwise Dong et al. (2019a) methods. Layerwise mixed-precision layout schemes
are more friendly to hardware. Parameters of the same precision are organized together, making full
of a program’s temporal and spatial locality. Some works give the relationship between the weight
and input of layer’s best quantization analysisSakr et al. (2017); Sakr & Shanbhag (2018). But in
current computation architectures, the quantization level for weight and input should be the same. A
common problem definition for quantizationDong et al. (2019a); Morgan et al. (1991); Courbariaux
et al. (2015); Yao et al. (2020) is as follows Gholami et al. (2021).

Problem 1 The objective of quantization is to solve the following optimization problem:

min
q∈Q
‖q(w)− w‖2

where q is the quantization scheme, q(w) is the quantized model with quantization q, and w represents
the weights, i.e., parameters, in the neural network.

Although problem 1 gives researchers a target to aim for when performing quantization, the current
problem definition has two shortcomings: 1. The search space of all possible mixed-precision layout
schemes is a discrete space that is exponentially large in the number of layers. There is no effective
method to solve the corresponding search problem. 2. There is a gap between the problem target and
the final task target. As we can see, no terms related to the final task target, such as the loss function
or accuracy, appear in the current problem definition.

3 BACKGROUND ANALYSIS

3.1 MODEL COMPUTATION, NOISE GENERATION AND QUANTIZATION

Compressed models for the inference process are computed using different methods depending on
the hardware, programming methods and deep learning framework. All of these methods introduce
noise into the computing process. One reason for this noise problem is that although it is common
practice to store and compute model parameters directly using different data types, only data of the
same precision can support precision computations in a computer framework.

Therefore, before performing computations on nonuniform data, a computer will convert them into
the same data type. Usually, a lower-precision data type in a standard computing environment will
be converted into a higher-precision data type; this ensures that the results are correct but require
more computational resources and time. However, to accelerate the computing speed, some works on
artificial intelligence (AI) computations propose converting higher-precision data types into lower-
precision data types based on the premise that AI models are not sensitive to compression noise. The
commonly used quantization technology is converting data directly and using a lower-precision data
type to map to a higher-precision data type linearly.

We use the following example to illustrate quantization method, which is presented in Yao et al.
(2020). Suppose that there are two data objects input1 and input2 are to be subjected to a computing
operation, such as multiplication. After the quantization process, we have Q1 = int(input1

scale1
) and

Q2 = int(input2
scale2

), and we can write

Qoutput = int(
input1 ∗ input2
scaleoutput

) ≈ int(Q1Q2
scale1 ∗ scale2
scaleoutput

)

scaleoutput, scale1 and scale2 are precalculated scale factors that depend on the distributions of
input1, input2 and the output; Qi is stored as a lower-precision data type, such as an integer. All

2

Under review as a conference paper at ICLR 2023

scale terms can be precalculated and established ahead of time. Then, throughout the whole inference
process, only computations on the Qi values are needed, which are fast. In this method, the noise is
introduced in the int(·) process. This basic idea gives rise to several variants, such as (non)uniform
quantization and (non)symmetrical quantization.

When we focus on quantization strategy, i.e. round function in quantization framework like Micronet,
we can have at least three strategy: round up, i.e., ceil function in python, round down, i.e., floor
function in python and rounding, i.e., round function in python. usually, rounding is the most
common method to deal with quantization. But, in this paper, we will show that how to mixed use
round up/round down to gain a mixed precision quantized model which is better than full precision
model.

3.2 NEURAL NETWORKS

In this paper, we mainly use the mathematical properties of extreme points to analyze quantization
methods. This approach is universal to all cases, not only neural networks. However, there is a myth
in the community that it is the neural network properties that guarantee the success of quantization
methodsWang et al. (2019); Morgan et al. (1991); Demidovskij & Smirnov (2020). To show that the
properties of the extreme points, not the properties of the neural network, are what determine the
ability to quantize, i.e. the ability to handle noise, we must first define what a neural network is.

The traditional definition of a neural network Denilson & Barbosa (2016) as a human brain simulation
is ambiguous; it is not a rigorous mathematical concept and cannot offer any analyzable information.
The traditional descriptions of neural networks Denilson & Barbosa (2016) focus on the inner products
of the network weights and inputs, the activation functions and directed acyclic graphs. However,
with the development of deep learning, although most neural networks still consist of weighted
connections and activation layers, many neural networks no longer obey these rules, such as the
network architectures for position embedding and layer norm operations in Transformers. Moreover,
current deep learning frameworks, such as PyTorch and TensorFlow, offer application programming
interfaces (APIs) to implement any function in a layer. Therefore, we propose that the definition of a
neural network adheres to the engineering concept indicated by the definition 1 rather than a precise
mathematical definition; that is, a neural network is a way for implementing a function.

Definition 1 The neural network is the function which is implemented in composite function form.

A neural network can be described in the following Eq. 1 form.
model(x) = h1(h2,1(h3,1(...), ..., h3,k, w2,1), h2,2(h3,k+1(...), ..., w3), ..., w2,2), ..., w1) (1)

where hi,j , i ∈ [2, ..., n], are the (n− i+ 1)th layers in the neural network; wi,j is the parameter in
hi,j(·).

Definition 1 means that a neural network, without training, can be any function. With definition 1, a
neural network is no longer a mathematical concept, but this idea is widely used in practice Roesch
et al. (2019). We can see from definition 1 that the requirement that a neural network is in composite
function form is the only mathematical property of a neural network that can be used for analysis.

In practice, the loss function is one method to evaluate a neural network. A lower loss on a dataset
means a better performance neural network. For example, the training process optimises the model’s
loss, i.e., following Eq. 2.

min
w
f(w) = Esample`(w, sample) =

1

m

∑
(xi,yi)∈D

`(w, xi, yi) (2)

where f(·) is the loss for model on a dataset, w represents the model parameters, D is the dataset, m
is the size of the dataset, `(·) is the loss function for a sample and (xi, yi) represents a sample in the
dataset and its label.

In this paper, we mainly use the sequential neural network to describe the conclusion for the sequential
neural network is easily described, and the whole conclusion is non-related to the structure of the
neural network. For a sequential n-layer neural network, `(·) can be described in the following Eq.3
form.

`(w, xi, yi) = L(modeln(xi, w), yi)

modeln = h1(h2(h3(h4(· · ·hn(hn+1, wn) · · · , w4), w3), w2), w1) (3)

3

Under review as a conference paper at ICLR 2023

where L(·) is the loss function, such as the cross-entropy function; hi, i ∈ [1, ..., n], is the (n−i+1)th
layer in the neural network; w = (wT

n , w
T
n−1, · · · , wT

1)T , wi is the parameter in hi(·); and for a
unified format, hn+1 stands for the sample x.

4 ALGORITHM AND BASIC ANALYSIS

4.1 START POINT

4.1.1 ANALYSIS BASE

Quantization methods for inference are complex. Different algorithms use different assumption
to solve the problem. Most of them pay much attention to the noise on parameters in NNDong
et al. (2019a); Yao et al. (2020); Gholami et al. (2021); Nagel et al. (2020). However, in addition to
the noise added to the parameters directly, noise is also introduced between different layers in the
inference process because different quantization levels or data types of different precisions are used
in different layers.

After quantization, the quantized loss for a sample, i.e.¯̀(·), in the inference process is as follows.
¯̀(w, xi, yi) = L(h1(h2(· · ·hn(hn+1 + εn, wn + δn) + εn−1 · · · , w2 + δ2) + ε1, w1 + δ1), yi)

where δi, i ∈ 1, · · · , n, and εi, i ∈ [1, ..., n], are the minor errors that are introduced in model
parameter quantization and in data type conversion in the mixed-precision layout scheme, respectively.

Thus, we obtain the following expression based on the basic total differential calculation.

¯̀(w, xi, yi)− `(w, xi, yi) =

n∑
i=1

∂`

∂hi+1
· εi +

∂`

∂wi
· δi (4)

where · is inner product and ∗ is the scalar product in following parts. For the loss on whole dataset,
we can gain

min
ε∈E

f̄(w)− f(w) =
1

m

∑
(xj ,yj)∈D

n∑
i=1

∂`

∂hi+1
· εi +

∂`

∂wi
· δi =

1

m

n∑
i=1

∑
(xj ,yj)∈D

∂`

∂hi+1
· εi (5)

where f̄(w) = 1
m

∑ ¯̀(·). The reason for second equation in Eq. 5 is for a well-trained model,
the expectation of `(·)’s gradient for parameters is zero, i.e., for the

∑
(xj ,yj)∈D

∂`
∂w components,

∂`
∂wi

= 0.

4.1.2 TARGET AND ALGORITHM GUARANTEE

The key is to choose the appropriate ε vector to gain a lower loss model. When the loss of the inner
product, i.e.,

∑
(xi,yi)∈D

∂`
∂hi+1

· ε, is negative, the loss for the quantized model, i.e., f̄ , is lower

than for the full precision model. An appropriate ε to produce a negative
∑

(xi,yi)∈D
∂`

∂hi+1
· ε is our

algorithm target.

A frequently asked question is why
∑

(xj ,yj)∈D
∂`
∂w is zero but

∑
(xi,yi)∈D

∂`
∂hi+1

is non-zero. The

optimization algorithm is to optimize w in the training process. Thus,
∑

(xi,yi)∈D
∂`

∂hi+1
is random in

the final model except for the layers with bias terms like the batch norm layer. The bias term will
absorb the gradient and train them in the optimization process. What is more, in the model, which
mainly consists of identity mapping,

∑
(xi,yi)∈D

∂`
∂hi+1

is close to zero vector, and we will show this
in the next chapter.

Our problem setting for quantization is different from previous works like HAWQDong et al. (2019a);
Yao et al. (2020); Dong et al. (2019b); Nagel et al. (2020) because these methods do not take the error
in the layer’s input into consideration, which prevents their work and analysis in the mixed-precision
computing area. As a result, these works can only be used to store a compressed neural network on a
disk. When the compressed model is stored in memory for inference, these compressed models have
to be recovered into the full precision model.

4

Under review as a conference paper at ICLR 2023

Figure 1: When the predicted point(xp) is out
of the neighborhood range but not pretty far
from x0, secant lines between the x0 and x1
perform significantly better than tangent lines.
The choice of x1 is the maximum quantization
noise in practice.

Figure 2: Different directions have different
secant line in prediction process.

4.2 THE MAP FROM MATHEMATICAL ANALYSIS TO REAL ENGINEERING

In the above analysis, the whole process is under the condition that ε vector is small enough, which
can be used in the total differential method. However, in practice, the scope of ε may be within
[-0.1,0.1], which would escape the concept of neighborhood. What is more, mapping ε vector into
round operation should be fully discussed. This part will show how to deal with the above gap
between analysis and engineering.

4.2.1 ROUND FUNCTION CHOICE

We use the convenient language of probability theory to describe ∂`
∂hi+1

· ε for ε is a stochastic
vector naturally. We set ε = [e1, e2, .., ek] and ei is i.i.d. random variable. We also set that

∂`
∂hi+1

= [p1, p2, ..., pk] and pi is i.i.d. random variable 1. e and p are independence to each other.

Then, we have ∂`
∂hi+1

· ε =
∑k

i=1 ei ∗ pi = kep and following Eq. 6.

E
∂`

∂hi+1
· ε = E

k∑
i=1

ei ∗ pi = Ekep = kEeEp (6)

For a trained model, the Ep can be computed as Ep = 1
k ∗

∂`
∂hi+1

· ~1. Then to gain a negative

E ∂`
∂hi+1

· ε, the Ee should be different signs with Ep.

To gain the suitable ε vector, we use the different round functions to ensure the sign of Ee. The
roundup function, i.e., the ceil function in python, will produce an error vector whose all elements
are positive. The round down function, i.e., the floor function, will produce an error vector whose
all elements are negative. Thus, we are sure that the Ee is positive and negative by round methods.
Although the parameters in layers have strong noise robustness, we still try to add less noise to them.
Thus, in the parameters quantization process, we use the rounding method, i.e., the round function
in python, to quantize parameters for the rounding method exerts less noise on original data.

4.2.2 REPLACE GRADIENT WITH SECANT LINE SLOPE

Although the elements in the ε vector are not small enough to use the total differential directly, the
elements in the ε vector are still small. For example, when using INT8 to quantize the res14 model
without identity mapping, the element in the ε vector is less than 0.01. The above fact shows that
‖εi‖ ∗ ‖εi‖ is small, which has a tiny influence on the final loss function. Thus, we can use the slope
of the secant line to replace the gradient in the total differential, which is shown in figure 1.

1We also can treat pi as the random variable with different distributions or directly use E ∂`
∂hi+1

vector in
following analyses. The conclusions are the same or close with current analysis.

5

Under review as a conference paper at ICLR 2023

Algorithm 1: Radical Mixed-Precision Inference Layout Scheme
Input: Neural network M , quantization levels [q1, q2, ..., qn], errormin, errormax, µ,

calibration dataset D
Output: Quantized neural network M̄
Arrange Q = [q1, q2, ..., qn] in ascending order Q = [qi1 , qi2 , ..., qin] based on the the size of

parameters under qi;//For example Q=[INT8,INT4,INT16] into Q=[INT4,INT8,INT16]
for qi in Q do

for Layeri in M do
if Layeri is quantized then

continue
end
Compute the error ∆ of hi+1 under qi quantization level on D
if ∆ < errormin then

quantize Layeri’s parameters and input by rounding method on qi quantization level.
end
if ∆ > errormax then

continue
end
Compute secant+(hi,∆) and secant−(hi,∆)
if ‖secant±(·)‖ < µ then

continue
end
Choice = max(‖max(secant−(hi,∆), 0)‖,‖min(secant+(hi,∆)0)‖,)
if Choice == secant−(hi,∆) then

quantize Layeri’s input by round down method on qi quantization level.
end
if Choice == secant+(hi,∆) then

quantize Layeri’s input by round up method on qi quantization level.
end
if Choice != 0 then

quantize Layeri’s parameters by rounding method on qi quantization level.
end

end
end
return M̄

Because in different direction, the secant line is different, which is shown in figure 2, so we have
to define the following secant+(hi,∆),∆ ∈ R1+ and secant−(hi,∆),∆ ∈ R1+. ∆ is the
maximum error which is introduced by quantization. For example, the scale parameter in Section
3.1’s example is the max error introduced by quantization.

¯̀±
j (w, xi, yi) = L(h1(h2(· · ·hj(hj+1(· · ·)±∆ ∗~1, wn) · · · , w2), w1), yi),∆ > 0

f̄j
±

(w) =
1

m

∑
xi,yi∈Dataset

¯̀±
j (·), secant(hi,∆)± =

f± − f
±∆

In the algorithm, we will use scant±(·) to replace ∂`
∂hi+1

± · ~1. We use this definition because 1.
Compared to computing by the definition of secant, the secant function is easy to be computed. 2. If
slope of secant line is [sec1, sec2..., seck], secant(hi,∆)± = Esec.

Although we know the element in ε vector is less than 0.01 empirically, we still have to set a
mechanism in real algorithm design to keep the analysis map into algorithm practice. Thus, we have
to set a value errormax, which ε is small enough for the final loss function. When ∆ > errormax,
we can choose more bits quantization level or full precision in this layer.

When ε is close to zero, i.e., we use more bits quantization level. For ‖ ∂`
∂hi+1

· εi‖ ≤ ‖ ∂`
∂hi+1

‖‖εi‖,
the performance loss or improvement is small on this layer. So, we directly quantize these parameters

6

Under review as a conference paper at ICLR 2023

and layer’s input with this quantization level to reduce computation resources. In algorithm design,
we can use errormin to control this case.

4.2.3 THE PROBABILITY OF GETTING A BETTER MODEL

To show the probability of getting positive ∂`
∂hi+1

· ε, we use chebyshev’s theorem, we have following
Eq. 7.

P (
∂`

∂hi+1
ε ≥ 0) < P (‖ ∂`

∂hi+1
ε−Ekep‖ ≥ ‖Ekep‖) ≤ V ar(kep)

‖Ekep‖2 =
V ar(e)V ar(p)

‖EeEp‖2 +
V ar(e)

‖Ee‖2 +
V ar(p)

‖Ep‖2
(7)

Based on Eq.7, we know that to gain a better model performance, for the layer whose ‖ ∂`
∂hi+1

·~1‖ is
large and V ar(p) is small, we can use high quantization level to gain a model which is better than
full precision model with high probability. To guarantee the success probability is high, we can set a
algorithm parameter µ. Algorithm quantize Layeri only when ‖Ep‖ > µ.

4.3 ALGORITHM DESCRIPTION

Based on the above map between analysis and engineering, we can get algorithm 1. Algorithm 1 is a
radical probability algorithm. In algorithm 1, we use a high quantization level as a priority to gain a
small quantized model. Under the appropriate µ setting, algorithm 1 would give a better model with
a high probability.

5 THE LIMITATION OF ALGORITHM 1 AND MODEL ROBUSTNESS

Although algorithm 1 provides a better model, yet in experiments, we find that ResNet50 / ResNet101
are hard to gain a significant improvements, which makes us think our algorithm have the limitations.
To show this limitations is rooted in the model properties, we will prove a stronger conclusion in this
section.

The neural network is under the description of the probably approximately correct (PAC) learning
frameworkDenilson & Barbosa (2016). A neural network hypothesis class H consists of the neural
networks which share the same structure. The learning algorithms, A , are SGD and SGD’s variants
for the neural network hypothesis class. Identity mapping is when the input to some layer is passed
directly or as a shortcut to some other layer. The neural networks, which mainly consist of identity
mappings, like ResNet or DenseNet, succeed in the CV area. Then, we can gain the following
propositions.

Proposition 1 There is a set of function G . For any random variable vector x and any random
variable vector y, ∃g ∈ G which satisfies Eg(x) ·Ey ≤ 0 and g(x) belongs to ~0’s neighborhood.

For a well-trained neural network model∗n ∈ Hn by learning algorithm A , there exists a
modeln+1 ∈ Hn+1 which is slightly better than model∗n. The difference between Hn and Hn+1

is the modeln+1 ∈Hn+1 have one more residual block than modeln+1 ∈Hn and the function in
residual block is in G .

Brief proof: From the analysis in algorithm 1, we can find an appropriate Eε that E ∂`
∂hi+1

· ε ≤ 0. We
can use g ∈ G to replace ε. Then, proposition 1 is proved, which is also shown in figure 3.

The set, which consists of Relu(Conv(·)), satisfies the requirements of G . Proposition 1 tells us how
to structure a deep residual network. Repeatedly using proposition 1 and retraining the new model
would show that for the neural networks consisting of residual blocks like ResNet, the deeper, the
better. It is shown in figure 4. Using proposition 1 in a different place, we can get different networks,
like Resnet or DenseNet.

Based on the proposition 1’s structure process, we can prove the following proposition 2.

Proposition 2 For a dataset’s SOTA or close to SOTA residual network, all E ∂`
∂hi+1

are close to zero.

7

Under review as a conference paper at ICLR 2023

Brief proof: The SOTA model implies that adding new layers will not improve model performance, i.e.,
for well-trainedmodel∗n ∈Hn and well-trainedmodel∗n+1 ∈Hn+1, EsampleL(model∗n, sample)−
EsampleL(model∗n+1, sample) = 0. So for any i and any appropriate Eε, we have the following Eq
8.

E
∂`

∂hi+1
· ε = EsampleL(model∗n, sample)−EsampleL(modeln+1, sample)

< EsampleL(model∗n, sample)−EsampleL(model∗n+1, sample) = 0 (8)

Because i and Eε can be chosen at random, we can tell that E ∂`
∂hi+1

is zero or very close to zero.

Proposition 2 shows one of the residual network’s SOTA criterion. Then, we can prove the following
theorem 1.

Theorem 1 When quantization noise is under the concept of neighborhood, SOTA or near to SOTA
residual networks in a dataset exhibit high noise robustness.

Brief proof: Based on Eq.5 and proposition 2, we know

‖f̄(w)− f(w)‖ = ‖
n∑

i=1

E
∂`

∂hi+1
· εi‖ ≤

n∑
i=1

‖E ∂`

∂hi+1
‖‖Eεi‖ = 0 (9)

which means the noise would have higher-order infinitesimal, i.e., o(noise), influence. Thus, SOTA
or near to SOTA residual networks in a dataset exhibit high noise robustness



Layeri

Layeri+1

Outputi

Inputi
)(g output

Layeri

Layeri+1

Outputi

Inputi

Layeri

Layeri+1

Outputi

Inputi

Layernew(i.e.,g(output))

Figure 3: Proof of proposition 1

Hn Hn+1

*modeln

1model n

*
1model n

)model()(model 1
*

 nn LL

A
)model()(model *

11   nn LL

Figure 4: The deeper the neural
network is, the better.

Theorem 1 shows that the robustness is stronger with increase of number of layers and identity
mapping when quantization noise is under the concept of neighborhood. Based on Theorem 1, we
can gain followint corollary.

Corollary 1 When the quantization noise is small, algorithm 1 cannot improve SOTA or near SOTA
model’s performance too much.

6 EXPERIMENT

In this section, we evaluate the performance of algorithm 1. Our objective is to show that the quantized
model gained by algorithm 1 is better than the full precision model without "fine-tuning" technology.

6.1 EXPERIMENT SETTING

6.1.1 DATASET AND MODEL

We make use of datasets from MNIST, CIFAR 10, CIFAR 100, and ImageNet-100. The calibration
and training datasets are separated from the training dataset. The calibration dataset’s size is also the
same as the test dataset’s.

We employ a DNN as a benchmark in the MNIST dataset that is in accordance with the workSakr
et al. (2017). ReLU layer is between each layer in the model’s 784-512-256-128-64-10 design. We
apply ResNet8/14 and VGG11/13 to the CIFAR 10 dataset. We employ VGG13, ResNet34, and
mobilnet in the CIFAR 100 dataset. The mobilenet dataset for ImageNet-100 is used. We remove
the identity mapping structure from the Resnet model in our experimental models to magnify the
outcomes of the tests.

8

Under review as a conference paper at ICLR 2023

model_dataset full model’s loss quantized model quantization level
vgg13_cifar10 0.0091 0.0086 INT8&FLOAT
vgg11_cifar10 0.0019 0.0017 INT8&FLOAT
res8_cifar10 0.3896 0.3782 INT8&FLOAT
res14_cifar10 0.3634 0.3576 INT8&FLOAT
CNN_mnist 0.0792 0.0774 INT8&INT4&FLOAT
CNN_mnist 0.0792 0.0786 INT8&FLOAT
CNN_mnist 0.0792 0.0813 INT8&INT4
vgg13_cifar100 1.2726 1.2503 INT8&FLOAT
vgg13_cifar100 1.2726 1.2384 INT8&INT4&FLOAT
vgg13_cifar100 1.2726 2.4891 INT8&INT4&int2&FLOAT
mobilenet_cifar100 1.5653 1.5631 INT8&FLOAT
mobilenet_cifar100 1.5653 2.7669 INT8&INT4&FLOAT
res34_cifar100 1.3383 1.3293 INT8&FLOAT
res34_cifar100 1.3383 1.7104 INT8&INT4&FLOAT
mobilenet_imagenet 1.6358 1.6245 INT8&FLOAT
mobilenet_imagenet 1.6358 1.7313 INT8&INT4&FLOAT

Table 1: Experimental results

6.1.2 ALGORITHM SETTING

Before quantization process, we will process whole calibration dataset in full precision and find the
min and max value in dataset for a layer’s input and compute ∆. We use this setting because we want
to enlarge the noise and get a obvious experimental results. In CIFAR 10 VGG experiments, under
this setting, we cannot find an appropriate layer to quantize because all ∆s are large or Choices
variable are zero. Thus, we use the min/max on current quantization vector like HAWQ’sDong et al.
(2019a) experiments to compute ∆. To gain a high performance model as radically as possible, we set
errormin = 0, errormax = 0.1. For CIFAR100 and ImageNet-100 experiments, we uses µ = 0.6
in experiments, in MNIST and CIFAR10 dataset, the µ is 0.4. And the value of µ is adjusted during
our experiments.

6.2 EXPERIMENTAL RESULTS

In this part, we also show the range of noise which is introduced by the different quantization level in
the input of the layer. In our experiments, we find that INT8 quantization level brings less than 1e-2.
Only few layers would be larger than this level (usually less than 5e-1), For INT4, the quantization
noise is less than 5e-2 and few layers would larger than 1, and these layers whose noise larger than 1
should omit in quantization level.

In our algorithm, we substitute secant line for gradient in Eq. 5, which expands the applicability of
Fig . 5 beyond the mathematical neighborhood concept into the 1e-2 ball. Actually we find that the
gradient can used in Eq.5 only when the noise is less than 3e-4. However, secant line would fail when
the noise is larger than 5e-2, which is smaller than the noise by INT4.

In INT8 level quantization, our algorithm can find a model with a lower loss function value than
full-precision models. When the quantization noise is larger than 5e-2, secant line would fail in some
cases.

7 CONCLUSION

This paper shows that quantization technology can improve the model’s performance, i.e., gain a
lower loss. Moreover, based on our analysis, we propose a Radical Mixed-Precision Inference Layout
Scheme, which could produce a quantized model which is better than the full-precision model. We
also show that residual networks are very resistant to noise. This means that the performance of a
SOTA residual network is stable for any quantization algorithms.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing
systems, pp. 3123–3131, 2015.

A. Demidovskij and E. Smirnov. Effective post-training quantization of neural networks for inference
on low power neural accelerator. In 2020 International Joint Conference on Neural Networks
(IJCNN), 2020.

Denilson and Barbosa. Understanding machine learning: from theory to algorithms. Computing
reviews, 57(4):238–238, 2016.

Z. Dong, Z. Yao, A. Gholami, M. Mahoney, and K. Keutzer. Hawq: Hessian aware quantization of
neural networks with mixed-precision. IEEE, 2019a.

Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and
Kurt Keutzer. Hawq-v2: Hessian aware trace-weighted quantization of neural networks. arXiv
preprint arXiv:1911.03852, 2019b.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

R. Li, Y. Wang, F. Liang, H. Qin, and R. Fan. Fully quantized network for object detection. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally.
Exploring the regularity of sparse structure in convolutional neural networks. arXiv preprint
arXiv:1705.08922, 2017.

Nelson Morgan et al. Experimental determination of precision requirements for back-propagation
training of artificial neural networks. In Proc. Second Int’l. Conf. Microelectronics for Neural
Networks, pp. 9–16. Citeseer, 1991.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

X. Qian, V. Li, and C. Darren. Channel-wise hessian aware trace-weighted quantization of neural
networks. 2020.

J. Roesch, S. Lyubomirsky, M. Kirisame, J. Pollock, and Z. Tatlock. Relay: A high-level ir for deep
learning. 2019.

C. Sakr and N. Shanbhag. An analytical method to determine minimum per-layer precision of
deep neural networks. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018.

C. Sakr, Y. Kim, and N. Shanbhag. Analytical guarantees on numerical precision of deep neural
networks. In International Conference on Machine Learning, 2017.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression.
arXiv preprint arXiv:1702.04008, 2017.

10

Under review as a conference paper at ICLR 2023

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization with mixed precision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8612–8620, 2019.

Z. Yao, Z. Dong, Z. Zheng, A. Gholami, and K. Keutzer. Hawqv3: Dyadic neural network quantization.
2020.

11

	Introduction
	Related Work
	Background Analysis
	Model Computation, Noise Generation and Quantization
	Neural Networks

	Algorithm and Basic Analysis
	Start point
	Analysis Base
	Target and Algorithm Guarantee

	 The Map from Mathematical Analysis to Real Engineering
	Round function choice
	Replace gradient with secant line slope
	The Probability of Getting a Better Model

	Algorithm Description

	The Limitation of Algorithm 1 and Model Robustness
	Experiment
	Experiment Setting
	Dataset and Model
	Algorithm Setting

	Experimental Results

	Conclusion

