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ABSTRACT

Multiple instance learning (MIL) is a popular weakly-supervised learning model
on the whole slide image (WSI) for AI-assisted pathology diagnosis. The recent
advance in attention-based MIL allows the model to find its region-of-interest
(ROI) for interpretation by learning the attention weights for image patches of
WSI slides. However, we empirically find that the interpretability of some related
methods is either untrustworthy as the principle of MIL is violated or unsatisfac-
tory as the high-attention regions are not consistent with experts’ annotations. In
this paper, we propose Bayes-MIL to address the problem from a probabilistic
perspective. The induced patch-level uncertainty is proposed as a new measure of
MIL interpretability, which outperforms previous methods in matching doctors an-
notations. We design a slide-dependent patch regularizer (SDPR) for the attention,
imposing constraints derived from the MIL assumption, on the attention distribu-
tion. SDPR explicitly constrains the model to generate correct attention values.
The spatial information is further encoded by an approximate convolutional con-
ditional random field (CRF), for better interpretability. Experimental results show
Bayes-MIL outperforms the related methods in patch-level and slide-level metrics
and provides much better interpretable ROI on several large-scale WSI datasets.

1 INTRODUCTION

In real-world applications of deep learning, data like images or texts are often associated with in-
sufficient labels, due to the expensive annotation cost. For example, the whole slide images (WSI)
for medical diagnosis have about 105 ⇥ 105 pixels per image, but are tagged with single categorical
labels (Zhang et al., 2019; Campanella et al., 2019). Weakly-supervised learning methods are de-
signed for learning representations and making decision in these cases. Multiple instance learning
(MIL) is a popular weakly-supervised learning model for the application of WSI recognition (Ilse
et al., 2018; Lu et al., 2021). Concretely, a large WSI slide is sliced into a bag of image patches
(instances) with a moderate size.1 MIL builds an end-to-end parametric model that aggregates the
learned features from instances and only learns from bag-level labels. The rule of aggregation is
implementing the key principle of MIL: for binary classification, a bag is negative when all instances
are negative, and a bag is positive when there is one or more positive instance (Ilse et al., 2018).

Recent advances study the attention-based MIL for re-weighing the instances for better performance.
This attention mechanism for MIL is extensively explored and used as a measure of interpretability
in various downstream tasks for medical diagnosis, like prostatic cancer (Zhang et al., 2021), breast
cancer (Naik et al., 2020), etc. Specifically, the high attention weights are used to indicate that
its associated instances are positive instances, e.g, the cancerous image patches. However, this
rule is not formally justified and it is not clear whether the negative instances (i.e., benign) would
be assigned a high attention value or the other way around. We first analyze the convergence of
attention and provide validity of this rule under binary labels. Based on this rule, we conduct an
empirical study on a large scale WSI dataset for how the attention mechanism in the related MIL
methods performs. The study shows two clear flaws of the related methods:

1We define the following interchangeable terms for simplicity: “bag” and “slide”; “instance” and “patch”.
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Figure 1: The overview of our Bayes-MIL framework and zoom-in views for clear visualization of inter-
pretability. (1) The basic Bayes-MIL improves patch-level localization performance (Sec. 3.1). (2) The slide-
dependent patch regularizer makes attention densely concentrated on the positive area, improving its inter-
pretability (Sec. 3.2). (3) The convolutional CRF improves the localization by smoothing the uncertainty over
different patches (Sec. 3.3). (bottom) The ablation results on a few metrics show the improvement of inter-
pretability. The full ablation results are in Sec. 5.

• The interpretability for negative bags is untrustworthy because some methods violate the

key principle of MIL by placing high attention values on negative bags, thus indicating
positive instances.

• The interpretability for positive bags is unsatisfactory because the high attention values
could not well match experts’ annotations of positive instances.

In this paper, we address the problems from a probabilistic perspective. First, a basic framework
of Bayesian MIL (Bayes-MIL) is proposed, for inducing uncertainty over the attention weights.
The uncertainty is potentially an accurate measure for guessing whether the instances are positive
or negative, as a replacement of attention. Second, a regularizer is designed by deduction from
the MIL principle and implemented via the variational inference framework, which sets specific
constraints for the attention distributions of positive and negative bags. Third, to encode the spatial
information of instances for medical imaging application, we propose an approximate operation to
the convolutional conditional random field, which benefits the localization of the region of interest
(ROI). The final classifier is modeled in a Bayesian way, in order to provide calibrated uncertainty of
the bag-level prediction. The overview of our proposed method is shown in Fig. 1. The contributions
of this paper are listed as follows:

• We analyze the attention-based MIL on the interpretability-critic medical application and
point out the flaws by directly using attention for interpretation.

• To address these problems, we propose the first Bayesian MIL for WSI with 3 key com-
ponents: a probabilistic instance-wise attention module for uncertainty visualization, the
slide-dependent patch regularizer for learning the correct attention distribution, and an ap-
proximate convolutional conditional random field for encoding spatial information. Our
model provides well-calibrated uncertainties, which is crucial for safety in medical appli-
cations.

• The evaluation on large-scale MIL datasets shows Bayes-MIL outperforms the related
methods in instance-level interpretation and bag-level prediction under various evaluation
metrics. The visualized distribution of data uncertainty shows a strong correlation of the
designed regularizer, which validates the soundness of regularizer and explains why uncer-
tainty is useful in MIL interpretation.

2 FORMULATION AND ANALYSIS OF MULTIPLE INSTANCE LEARNING

Multiple instance learning formulation We follow the standard formulation of Attention-based
Multiple Instance Learning (MIL) (Ilse et al., 2018; Lu et al., 2021). In MIL, the input is a bag
of instances, X = {x1, . . . ,xK},xk 2 RD. K is the number of instances, which varies for
different bags. There is a bag-level label Y . We further assume the instances also have corresponding
instance-level labels {y1, . . . , yK}, which are unknown during training. There are N such bag-label
pairs constituting the dataset D = {Xn, Yn}Nn=1. The objective of MIL is to learn an optimal
function for predicting the bag-level label with the bag of instances as input. To this end, the MIL
model should be able to aggregate the information of instances {xk}Kk=1 to make the final decision.
A well-adopted aggregation method is the embedding-based approach which maps X to a bag-level
representation z 2 RD and use z to predict Y . Ilse et al. (2018) extends the embedding-based
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aggregation approach by leveraging the attention mechanism, namely attention-based deep MIL
(ABMIL). First, a transformation g(·) computes a low-dimensional embedding hk = g(xk)2 RD

for each instance xk. The attention module aggregates the set of embeddings {hk}Kk=1 into a bag
level embedding z, z =

PK
k=1 akhk, where the attention for the k-th instance is computed via a

softmax function,

ak = f⇡(H)k = exp{mT (tanh(V T
1 hk)�sigmoid(V T

2 hk))}PK
j=1 exp{mT (tanh(V T

1 hj)�sigmoid(V T
2 hj))}

. (1)

where the attention function f⇡ : RD⇥K ! RK with parameters ⇡ = {m,V1,V2}, and f⇡(H)k
denotes the k-th output of f . H = [h1, . . . ,hK ] 2 RD⇥K is the matrix of embeddings. The bag
embedding z is then mapped to the logits u with a feed forward layer with parameter W for the
bag-level classification, u = W

T
z.

Multiple instance learning for medical imaging WSI is a type of high-dimensional image data
format (up to 105 ⇥ 105 pixels per image) widely adopted in the medical area. Due to the scarcity
of experts and the high annotation cost, only class labels (e.g., diagnosis results) are available for
most WSIs. The high resolution of data and lack of precise annotations raise challenges for machine
learning-assisted classification. To fit the data in modern computation hardware, the high-resolution
image slides (slide) are partitioned into image patches (patch) before further processing. MIL fits
the classification task of WSI by corresponding the slides to bags, and patches to instances. The
transformation g(·) is the feature extractor from a pre-trained convolutional neural network. The
MIL model only predicts the slide-level label, e.g., whether a slide is cancerous or not. However,
the interpretation of the patches is crucial, e.g., which patches indicate the cancer, as users always
check the interpretation before trusting the prediction. ABMIL uses the attention weights to tell
which patches the MIL model focuses on, and several works DSMIL (Li et al., 2021), CLAM (Lu
et al., 2021), TransMIL (Shao et al., 2021) study the variants of attention for better interpretability.

Ilse et al. (2018) suggested that, with binary classification label Y 2 {0, 1}, the high attention
weights in ABMIL could locate the positive area (yk = 1) in an ideal case. The followup works
from ABMIL use the high attention weights to indicate the positive patches in a black-box manner.
However, there is no formal justification for this claim, and it is still unclear whether a high attention
weight could also be assigned to a negative area during training. Therefore, we analyze the general
attention-based MIL framework to provide this justification.
The convergence of attention Assume that the jth input patches in ith slide is hij , the classifier
weight is w 2 RD, the attention variable is a 2 (0, 1)K⇥1. The output of the network ŷi and loss
function Li for the i-th slide are

ŷi = �(wT
Hia+ b), Li = �Yi log(Ŷi)� (1� Yi) log(1� Ŷi). (2)

The Hi is all patches in ith slide, where the l2 norm of all hi,j is upper bounded by 1, and �(x) =
1/(1 + exp(�x)) is the sigmoid function. Assume the positive and negative patches are linear
separable and there is an optimal w⇤, where kw⇤k = 1 and the margin is � = mini,j |w⇤T

hi,j |.
If a slide Hi is negative, then all patches in Hi are negative, i.e., w⇤T

hi,j < 0, 8j if Yi = 0. If
a slide Hi is positive, then the first Kp patches are positive and the last Kn patches are negative,
i.e., w⇤T [hi,1, · · · ,hi,Kp ] > 0 and w

⇤T [hi,Kp+1, · · · ,hi,Kp+Kn ] < 0 if Yi = 1. There is an
optimal a⇤ so that the first Kp dimension is (1 � ✏)/Kp and the last dimension is ✏, where ✏ is an
infinitesimal, e.g., 1e-5. For the initialization of a, we assume w

⇤T
Hia > ⇣ > 0, 8i. The a is

output of softmax function, a = s(u), where aj =
exp(uj)PK

k=1 exp(uk)
.

Lemma 1. If we train the w and a as described in Appendix 1, the w converges to the optimal w
⇤

in at most 4/max(�, ⇣)2 steps and a converges to the desired a
⇤
, where the first Kp elements are

large and the last Kn elements are small.

Lemma 1 indicates that MIL is guaranteed to converge to the desired attention variable under the
ideal condition. Note that in reality, the position of positive patches is not fixed so we use a pa-
rameterized function to make the attention variable aj depend on the patch feature hi,j . Lemma 1
provides a guarantee for the validity of visualization and the design of our framework. However, in
reality, the convergence of weight and attention variables depends on their initialization. Thus, ex-
isting methods may not have a good match between high-attention patches and ground-truth positive
patches. The following empirical study is performed to illustrate this.
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Figure 2: The visualization of normal and tumor slides and the ROIs provided by different models. The patch-
level annotations for the tumor image are shown in green color in (F). The attention values a are normalized to
the same range by a�mina

maxa�mina
. The mina and maxa are the same for all methods for better visualization.

Empirical study of interpretability We use the attention {ak}Kk=1 as the patch-level predic-
tion confidence and compare with the patch-level ground-truth {yk}Kk=1, using the related MIL
approaches. One key discovery from the related methods is that high attention values are still

generated, indicating positive patches, for negative slides, as shown in Fig. 2B 2C 2D. Another dis-
covery is that the high attention values are not concentrated on the doctor’s annotation well during
inference time, as shown in Fig. 2G 2H 2I. (see numerical results in Tab. 1)
The need for Bayesian modelling of MIL The empirical study constitutes one motivation for our
probabilistic approach: bring more stochasticity to the optimization process so that the convergence
of weight and attention variables does not heavily depend on the initialization. Thus, we study the
probabilistic counterpart of MIL, namely Bayes-MIL, which is further potentially beneficial in the
following three aspects:

• Better optimization: Besides stochasticity in optimization, by turning a to stochastic nodes,
explicit regularization could be imposed for generating correct attention (see Fig. 2E 2J).

• New measure of interpretability: By learning a proper posterior over the param-
eters p(⇡|D), we can induce the uncertainty over patches by p(a|H⇤,D) =R
p(a|⇡,H⇤)p(⇡|D)d⇡, where H

⇤ is the testing data. Patch-level uncertainty can po-
tentially indicate which patches the model is uncertain about, becoming a new measure of
interpretability for MIL. In other words, the patch-level uncertainty is leveraged for local-
izing positive areas.

• Calibrated uncertainty: A properly learned posterior p(Y |H⇤,D) provides a calibrated

uncertainty on Y , which is crucial in the application of medical imaging but ignored in
existing methods.

3 BAYESIAN MULTIPLE INSTANCE LEARNING

3.1 INSTANCE-LEVEL DISENTANGLED UNCERTAINTY

The basic framework of Bayes-MIL is introduced in this section. To obtain uncertainty over the at-
tention, the principled way is to assume a prior distribution p(⇡) on the parameters of attention func-
tion f⇡(·), and let the model learn a posterior p(⇡|D). The other way is to directly learn an empirical
posterior distribution p(⇡|D), e.g., ensembles. The posterior induces the uncertainty over the atten-
tion by p(a|H⇤,D) =

R
p(a|⇡,H⇤)p(⇡|D)d⇡ ⇡ 1

S

PS
s=1 f⇡s(H

⇤),⇡s ⇠ p(⇡|D), where the at-
tention function directly models the conditional distribution, i.e., p(a|⇡,H) = f⇡(H) = f(⇡,H).

For making p(a|⇡,H) a strict distribution, the softmax function in (1) could be leveraged for nor-
malization,

P
k ak = 1. Then, a is a vector over the simplex, representing one categorical dis-

tribution. However, in this case, we could only calculate the uncertainty for the single categor-
ical distribution. To extract the patch-level uncertainty, there should be one probabilistic distri-
bution for the attention of each patch. Therefore, we need to model the distribution for patches,
p(ak|⇡,H) = f⇡(H)k = f(⇡,H)k and normalize for each patch. To this end, we replace the
softmax function in (1) by an element-wise sigmoid function,

ak = 1
1+exp{�mT (tanh(V1hT

k )�sigmoid(V2hT
k ))} , z = 1P

k ak

X
k
akhk (3)

where the parameters ⇡ = {m,V1,V2} are shared across all patches. The second normalization
when computing z is for numerical stability.
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(a) Accuracy (") (b) AUROC (") (c) NLL (") (d) ECE (#)
Figure 3: The comparisons of multiplicative Gaussian, concrete dropout and BatchEnsemble for modelling
probabilistic MIL weights. The slide-level results are reported. NLL is negative log-likelihood and ECE is the
expected calibration error for measuring uncertainty calibration.

With this treatment, the patch-level model uncertainty and data uncertainty for each patch ak could
be extracted by (Houlsby et al., 2011; Gal et al.; 2017b):

I[ak,⇡|H⇤,D]| {z }
ModelUncertainty

= H[Ep(⇡|D)[p(ak|⇡,H⇤)]]
| {z }

Total Uncertainty

�Ep(⇡|D)[H[p(ak|⇡,H⇤)]]
| {z }

DataUncertainty

(4)

We explore three different methods for modeling the probabilistic weights ⇡: Batch-Ensemble (Wen
et al., 2020; Dusenberry et al., 2020) as the empirical posterior, Concrete Dropout (Gal et al., 2017a)
and multiplicative Gaussian noise (Kingma et al., 2015; Molchanov et al., 2017; Cui et al., 2021)
that assume prior on ⇡ and derive the posterior based on variational inference. As there is no direct
indication of which set of posterior and prior, we should choose, we validate them empirically with
the proposed framework. The experiments are conducted on CAMELYON16 dataset with 5 splits
of training and validation sets. For the Batch-Ensemble, we use an ensemble of size 4. For Concrete
Dropout and multiplicative Gaussian noise, we take 4 samples from the learned posterior during
inference time. The multiplicative Gaussian method is selected for the probabilistic weights due to
a high accuracy and a low NLL, shown in Fig. 3.

For neural networks, computing the posterior distribution using the Bayes rule requires computing
intractable integrals over ⇡. In this paper, to be consistent with the stochastic attention function
modelling, we use variational inference for approximating the posterior. Specifically, the pos-
terior p(⇡|D) is approximated by q�(⇡), by minimizing the Kullback-Leibler (KL) divergence
KL[q�(⇡)||p(⇡|D)], where � are the variational parameters. This is equivalent to maximizing the
evidence lower bound:

max
�

L� = LD(�)�KL[q�(⇡)||p(⇡)], LD(�) =
XN

i=1
Eq�(⇡)[log p(Yi|Hi,⇡)], (5)

where LD(�) is the expected data log-likelihood and p(⇡) is the prior over p(⇡).

3.2 SLIDE-DEPENDENT PATCH REGULARIZER

Although the proposed model can naturally visualize different types of uncertainty at the patch level
and better localize the ROI, we can further leverage the slide-level information for building a strong

regularization on the ROI localization. The aim is to explicitly encode the underlying logic of MIL
into the training process, instead of letting the model explore implicit decision rules during training.

Recall Y is the slide-level label and {yk}Kk=1 are the labels for patches which are unknown during
training. The intuition is based on the logic under the MIL framework that a slide is negative when all
patches are negative, while a slide is positive when there are one or more positive patches. For binary
label, Y = 0 iff

P
k yk = 0, and Y = 1 otherwise. The following design principle can be drawn by

simple deduction: When Y = 0, the attention distributions {p(ak|⇡,H)}Kk=1 must concentrate on
the negative side (ak = 0) to guarantee yk = 0. When Y = 1, the attention distributions are free to
select either the positive (ak = 1) or negative sides. However, for precise localization, the attention
distributions must concentrate on either the positive or negative side with high confidence.

This design principle is implemented by a variational inference framework by finding a regularizer
on patches that is dependent on the slide label. Specifically, we choose the logit-normal distribution
for ak, due to its expressiveness over the simplex. The regularizer (a non-strict prior) is defined as

p(ak|Y ) = (1� Y )LN (µ0,�0) + Y LN (µ1,�1), (6)

where LN (ak|µ,�) = 1
�
p
2⇡

1
ak(1�ak)

e�
logit(ak)�µ

2�2 is the logit-normal distribution. {µ0,�0} and
{µ1,�1} are the pairs of mean and variance for the negative slides and the positive slides, respec-
tively. As shown in Fig. 4, by setting the parameters for the regularizer, we implement the design
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principle: p(ak|µ0,�0) concentrates on the negative side and p(ak|µ1,�1) allows selecting either
the negative or the positive side with high confidence.

For the MIL model, we divert {ak}Kk=1 from induced distributions to stochastic nodes. The ap-
proximate posterior is defined as q(ak|µ,�) = LN (µk = fµ(⇡,H)k,�k = f�(⇡,H)k) andP

k KL[q(ak|µ,�)||p(ak|Y )] is used as a regularization term during training, which we denote as
the slide-dependent patch regularizer (SDPR). When a negative slide is given, the mode of the atten-
tion posterior is pushed to the negative side, generating low attention values over all patches. When
a positive slide is given, the posterior will be trained to select a positive mode or a negative mode,
with only high concentration. This produces dense localization of the ROI. The derivation of KL
divergence for the regularization is in the Appendix.

Figure 4: The visualization of density (curves) of the regularizer
for the (left) negative and (right) positive slides. Samples bars are
visualized with color based on the attention value.

The SDPR is also beneficial for im-
proving the slide-level performance
of MIL. The reason is it explicitly
constrains the model to generate low
attention values for all patches from
the negative slides. Note that the
major obscurity in MIL comes from
the positive slides, where positive
patches and negative patches coexist.

There is no obscurity for negative slides as all patches are negative by definition. However, the
previous MIL models are still free to generate high attention for patches from negative slides, which
neglect the underlying logic of MIL.

3.3 ENCODING SPATIAL INFORMATION VIA APPROXIMATION TO CONVOLUTIONAL CRF

Slide-Dependent
Patch Regularizer

Convolutional 
CRF

! "

# $
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Figure 5: The graphical repre-
sentation of Bayes-MIL. Boxes
are deterministic nodes. Circles
are stochastic nodes. Dashed cir-
cles are nodes of induced distri-
butions.

The spatial information between patches are important for mod-
elling of MIL for WSI recognition and localization, as there exist
patches are spatially correlated (Shao et al., 2021). Here, we study
how to encode the spatial information from a Bayesian perspective.
The intuition is to let the neighboring attention posteriors q(ak) in-
flurence each other.

One principled method for encoding the spatial information is to use
conditional random field (CRF). Assume ā is the output attention
variable of CRF and ⇥ is the input variable in CRF, from data. With
CRF, the distribution of p(ā|m) could be directly modelled with m

as the spatial features of patches (Zheng et al., 2015; Teichmann &
Cipolla, 2018).

p(ā|m) = 1
Z(m)e

�E(ā|m), (7)

E(ā|m) =
X

k
 u(āk|m) +

X
k 6=j

 p(āk, āj |m)

where m = [!,⌘,a] contains the coordinates of the each patch over the slide, ! = [!1, . . . ,!K ]T

and ⌘ = [⌘1, . . . , ⌘K ]T .  u is the unary potential that contains information only from the single
patch and  p is the pair-wise potential that captures the pair-wise correlation between patches. How-
ever, calculating the pair-wise correlation between patches has O(K2) complexity. For efficiency,
we only consider the local dependency around ak, by setting the non-local pair-wise correlation
to be 0. This is equivalent to applying a softmax normalization and a convolution operation for
the provided input a. We define an function for the proposed convolutional CRF, ā = Cw,h(a).
Specifically, ã = softmax(a), â = reshape(w,h, ã), ā = convolution(â,K), where K is a con-
volutional kernel with predefined hyperparameters. The detailed derivations and algorithms for the
full convolutional CRF for BayesMIL are in the Appendix. For a precise estimation of the variable
ā, the following Monte-Carlo estimator is required,

E[ā] = Eq(a|µ,�)[Cw,h(a)] ⇡ 1
S

XS

s=1
[Cw,h(as)], as ⇠ q(a|fµ(⇡,H), f�(⇡,H)) (8)

The full convolutional CRF has the most promising results on real-world datasets. However, the
repetitive sampling makes the training less efficient. To bypass the heavy-load of sampling, we use
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a first-order Taylor expansion to approximate the expectation (see Appendix). The final format of
approximation could be written as

q(āk|µ̄ = Cw,h(µ),�) = LN (µ̄k = Cw,h(fµ(⇡,H))k,�k = f�(⇡,H)k), (9)

for imposing slide-level patch regularizer, as well as uncertainty disentanglement and visualization.

3.4 PUTTING IT ALL TOGETHER

The graphical model for the Bayes-MIL is shown in Fig. 5. For the classifier with parameter W , we
also use a multiplicative Gaussian modelling (Kingma et al., 2015) as the posterior and posterior for
calibrated uncertainty. The final objective is:

max
�

LD(�)� �0R⇡,W (�)� �1Rā(�) (10)

LD(�) =
NX

i=1

Eq�(⇡,W )[log p(Yi|Hi,⇡,W )], R⇡,W (�) = KL[q�(⇡,W )||p(⇡,W )],

Rā(�) =
NX

i=1

KX

k=1

KL[q(āk|Cw,h(fµ(⇡,Hi)), f�(⇡,Hi))||p(āk|Yn)]

where R⇡,W (�) is KL term for the probabilistic weights and Rā(�) is the SDPR for the attention.
�0 and �1 are the trade hyperparameters for two terms respectively.

4 RELATED WORK

Attention-based multiple instance learning For improving interpretability and performance of
multiple instance learning (MIL), ABMIL (Ilse et al., 2018) first introduces the attention mecha-
nism for embedding-based MIL. DSMIL (Li et al., 2021) considers contrastive learning for feature
extraction and builds the global connection between patch attentions. TransMIL (Shao et al., 2021)
proposes a correlated MIL and implements it by multi-head self-attention and spatial information
encoding for full global correlation. CLAM (Lu et al., 2021) extends ABMIL to the case of multi-
ple classes and builds integrated toolbox for visualizing the uncertainty. Although the attention has
been extensively adopted for the MIL intrepretability, wrong attention is still being generated for the
negative bags (see Fig. 2 and Fig. 6). This is not tolerable in the application of medical imaging,
where the intrepretability of model is crucial. The reason is, no methods verify the convergence of
attention and impose the constraint on correcting attention from the MIL principle. In this work,
these issues are carefully resolved and a new probabilistic framework is proposed.
Orthogonal works Chen et al. (2022) proposes a large-scale vision transformer solution to simul-
taneously learn the feature and classifier for WSI. Bayes-MIL freezes the feature extractor during
training following a normal setup in MIL. Zhang et al. (2022) proposes a two-stage feature distil-
lation MIL framework for enhancing the performance. Bayes-MIL studies the fundamental inter-
pretability problem in the one-stage MIL framework. See Appendix for a review of uncertainty in
DNNs.
5 EXPERIMENTS
The proposed methods are evaluated on two standard WSI datasets: CAMELYON16 (Bejnordi et al.,
2017) and CAMELYON17 (Bandi et al., 2018). CAMELYON16 contains 400 hematoxylins and
eosin (H&E) stained WSI of sentinel lymph node for breast cancer, labeled as normal or tumor
classes. CAMELYON17 contains 1000 WSI of the same type, labeled with normal or different
stages (pN-stage) of the breast tumor. Since our paper mainly studies the interpretation of MIL, we
treat these stages as one class, generating binary slide-level labels (normal and tumors). We leverage
the CLAM testbed for the implementation. A ResNet-50 is used for feature extraction, consistent
with previous methods. Each result is obtained with 10-fold splits of training/validation/testing sets,
which is a more thorough evaluation than previous papers. Other hyperparameters are listed in the
Appendix. The codes are submitted as supplemental. In our evaluation, we consider 3 variants
of BayesMIL: 1) Bayes-IL-Vis is the basic Bayesian MIL in Sec. 3.1; 2) Bayes-MIL-SDPR is the
model with slide-dependent patch regularizer from Sec. 3.2; 3) Bayes-MIL-Full is the whole model,
The hyperparameters are �0 = 10�8 and �1 = 10�12. Results on CAMELYON17 show our
method is better than the CLAM baseline in Patch-localization and Slide-classification, shown in
the Appendix.
Patch-level tumor region localization We first evaluate the patch-level results on tumor region
localization. The tumor region localization uses the Patch-Precision, Patch-FROC and Patch-AUC
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Table 1: Results on CAMELYON16: (left) Patch-level localization results using Patch-FROC (P-FROC), Patch-
Precision (P-Prec.), Patch-AUROC (P-AUC); (right) Slide-level classification results using Slide-Accuracy (S-
Acc.), Slide-AUROC (S-AUC) and Slide-Calibration (S-ECE).

Patch-level Slide-level
P-Prec. (") P-FROC (") P-AUC (") S-Acc. (") S-AUC (") S-ECE (#)

DSMIL 0.1030 0.4443 0.7719 0.8682±0.05 0.8944±0.06 0.3798±0.06
CLAM 0.6068 0.4792 0.8839 0.8650±0.06 0.9177±0.04 0.1738±0.06

CLAM-T 0.7068 0.4830 0.8884 — — —
TransMIL 0.1726 0.4797 0.8644 0.8837±0.02 0.9307±0.04 0.1436±0.04

Bayes-MIL-Vis 0.7140 0.4797 0.8995 0.8825±0.05 0.9164±0.06 0.1702±0.05
Bayes-MIL-SDPR 0.7458 0.4856 0.9001 0.8875±0.05 0.9432±0.05 0.1621±0.05

Bayes-MIL-APCRF 0.8107 0.4919 0.9129 0.9000±0.04 0.9479±0.05 0.122±0.04

Table 2: The patch-level localization results when using probabilistic attention values, model uncertainty and
data uncertainty for our methods, evaluated on CAMELYON16.

P-Prec. (") P-FROC (")
Attn Model Unc. Data Unc. Attn Model Unc. Data Unc.

Bayes-MIL-Vis 0.7107 0.6999 0.7140 0.4796 0.4788 0.4797
Bayes-MIL-SDPR 0.7445 0.7396 0.7458 0.4781 0.4856 0.4849

Bayes-MIL-APCRF 0.8078 0.8033 0.8107 0.4813 0.4919 0.4879

metrics. The Patch-Precision is calculated by averaging the precision of classifying the patches.
Each method provides a measure (attention ak or normalized uncertainty value Uk) for its ROI.
For calculating the precision, we compare the measure with three thresholds (0.1, 0.5, 0.9) for all
methods and report the best results. Concretely, if ak or Uk is greater than the threshold, the patch
is predicted as positive, otherwise negative. The Patch-FROC is defined as the average sensitivity
(recall) at 6 predefined false positive rates: 1/4, 1/2, 1, 2, 4 and 8 FPs per WSI (Li et al., 2021).
The Patch-AUROC evaluates the averaged area under ROC over patches. The ground truth is the
doctor’s marking the region of the tumor.
For TransMIL, we take the diagonal of attention map from the last multi-head attention mod-
ule as the measure. We add another baseline, CLAM-T, on CLAM training with temperature
T = [0.2, 0.5, 2, 5] on softmax function, a = softmax(·, T ), as a method for manually adjusting
the density of localization, and select the best results for different metrics. For the Bayes-MIL-Vis,
Bayes-MIL-SDPR and Bayes-MIL-APCRF methods, we take the best results from the normalized
data uncertainty, the normalized model uncertainty and the probabilistic attention, with MC integra-
tion over 16 samples.
The results for patch-level localization of tumor regions are shown in Tab. 1 (left). The Bayesian
modelling of MIL (Bayes-MIL-Vis) generally improves the patch-level visualization over other
methods. Tuning the temperature for MIL attention (CLAM-T) could marginally improve localiza-
tion results, however, it requires exhaustively tuning the temperature. For Bayes-MIL, the precision
is improved by a large margin (by 0.1072-0.611), showing the advantage of using uncertainty for
localizing positive area. Including SDPR and the approximate CRF improve the patch-level results
consistently, and the full model Bayes-MIL-APCRF achieves the best performance on the 3 metrics.

Tab. 2 shows the detailed results with probabilistic attention, model uncertainty and data uncertainty
for the three proposed methods. The probabilistic attention benefits from the Bayes-MIL model,
making it competitive at tumor region localization. The best results for precision are from the
disentangled data uncertainty, indicating the data uncertainty is able to precisely localize the tumor
region. The reason is that data uncertainty captures the rareness of features of positive patches
indicating anomalies, such as cancerous cells, in the whole dataset. The model uncertainty is better
on the P-FROC metric, which evaluates the recall at different false positive rates. This shows that
the uncertainty induced from parameter distributions in ⇡ tends to cover the positive patches better.

Slide-level evaluation We next evaluate the slide-level classification performance. Tab. 1 (right)
shows the slide-level performance on CAMELYON16, measured by Accuracy, AUC, and ECE. The
results of DSMIL and TransMIL are from their papers, as their reported performance is better than
our reimplementation. Compared with DSMIL and CLAM, Bayes-MIL-Vis has a higher accuracy, a
lower calibration error and a similar AUC. When including our SDPR, Bayes-MIL-SDPR has better
accuracy and AUC than TransMIL.
Why is Bayes-MIL good at slide classification and ROI localization? To understand the reason
behind the good performance of the proposed framework, we visualize attention distribution in
Fig. 6. As shown in Fig. 6a and Fig. 6b, DSMIL and CLAM generate similar attention distributions
for positive and negative slides. For the negative slides, DSMIL still generates a nearly normal
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(a) DSMIL (b) CLAM (c) TransMIL

(d) Bayes-MIL-Vis Attn (e) Bayes-MIL-SDPR Attn. (f) Bayes-MIL-APCRF Attn.

Figure 6: The log-scale histogram of attention for different methods. The pink and blue curves are for positive
and negative slides, respectively. All testing images in CAMELYON16 are used, which contain 2M positive
and 2M negative patches.

(a) BMIL-Vis M-Unc. (b) BMIL-Vis D-Unc. (c) BMIL-SDPR M-Unc. (d) BMIL-SDPR D-Unc.

Figure 7: The log-scale histogram of normalized uncertainty for Bayes-MIL. M and D stand for model and
data. APCRF has similar histograms as SDPR, thus not shown for saving space.

distribution of attention, which deviates from the MIL principle. For positive slides, the densities
on the positive side (a ⇡ 1) of DSMIL and CLAM are low. Note that the vanilla version BMIL-
Vis has different attention distributions for positive and negative slides, but does not generate high
density on the positive side for positive slides. Bayes-MIL with SDPR is able to push the attention
of negative slides to the negative side (a ⇡ 0, the blue curve in Fig. 6e), while generating a U-shape
distribution for the positive slides (red curve in Fig. 6e), which corresponds to our design of SDPR
with the ideal case shown in Fig. 4. This design benefits the following aspects:

• For visualization, Bayes-MIL generates concentrated high attention values for positive
slides, while only generates correct values (a ⇡ 0) for negative slides.

• For classification, learning correct attention guided by SDPR for the negative slides will
benefit the classification of patches in the positive slides. TransMIL captures this attention
distribution to some degree, so it performs well in slide-level classification.

Bayes-APCRF performs a smoothing operation on the mean of the stochastic attention nodes. This
pushes the histogram to have a more distinct U-shape (the red U-shape curve in Fig. 6f) by ag-
gregating over neighboring positive patches, which benefits the localization and obtains the best
visualization scores in Tab. 1.
Correctly Visualized ROI Fig. 2 shows the visualization results on the negative (normal) and
positive (tumor) WSI. The related methods all generate high attention for the negative slides, which
is against of MIL principle. TransMIL only generates a small area of high attention for negative
slides, however the performance on positive slides is poor. Bayes-MIL is the only method that

generate correct values (a ⇡ 0) for the negative slides, while performing the best in localization on

positive slides.

Measure of uncertainty The measure of data uncertainty (Fig. 8b and Fig. 7d) naturally captures
the information from the patch distribution. It shows a similar distribution with the attention of
Bayes-MIL-SDPR and the ideal case of SDPR in Fig. 4. This might be the reason why data un-
certainty has the best performance in localizing the ROI. Furthermore, based on this observation on
data uncertainty, the soundness of SDPR is empirically validated.

6 CONCLUSION
This paper analyzes the interpretability problem in existing attention-based multiple instance learn-
ing (MIL) models. Directly taking attention as a measure of the important instances empirically
violates the MIL principle. To address this problem, we propose a probabilistic solution Bayes-MIL
that provides new measures for interpretability. To ensure the validity of interpretation in MIL, a
regularizer on attention is required. A slide-dependent patch regularizer is proposed for imposing
explicit constraints to let the model learn under the MIL principle, which also improves the slide-
level performance. The spatial information is further encoded, which improves both slide-level and
patch-level performance. The analysis and visualization of data uncertainty distribution further val-
idate the main idea and soundness of SDPR.
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