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Abstract

We present Knowledge Distillation with Meta001
Learning (MetaDistil), a simple yet effective002
alternative to traditional knowledge distilla-003
tion (KD) methods where the teacher model004
is fixed during training. We show the teacher005
network can learn to better transfer knowledge006
to the student network (i.e., learning to teach)007
with the feedback from the performance of the008
distilled student network in a meta learning009
framework. Moreover, we introduce a pilot010
update mechanism to improve the alignment011
between the inner-learner and meta-learner in012
meta learning algorithms that focus on an im-013
proved inner-learner. Experiments on various014
benchmarks show that MetaDistil can yield015
significant improvements compared with tradi-016
tional KD algorithms and is less sensitive to017
the choice of different student capacity and hy-018
perparameters, facilitating the use of KD on019
different tasks and models.1020

1 Introduction021

With the prevalence of large neural networks with022

millions or billions of parameters, model compres-023

sion is gaining prominence for facilitating efficient,024

eco-friendly deployment for machine learning ap-025

plications. Among techniques for compression,026

knowledge distillation (KD) (Hinton et al., 2015)027

has shown effectiveness in both Computer Vision028

and Natural Language Processing tasks (Hinton029

et al., 2015; Romero et al., 2015; Zagoruyko & Ko-030

modakis, 2017; Tung & Mori, 2019; Peng et al.,031

2019; Ahn et al., 2019; Park et al., 2019; Passalis032

& Tefas, 2018; Heo et al., 2019; Kim et al., 2018;033

Shi et al., 2021; Sanh et al., 2019; Jiao et al., 2019;034

Wang et al., 2020b). Previous works often train035

a large model as the “teacher”; then they fix the036

teacher and train a “student” model to mimic the037

behavior of the teacher, in order to transfer the038

knowledge from the teacher to the student.039

1The code will be released upon acceptance.

However, this paradigm has the following draw- 040

backs: (1) The teacher is unaware of the stu- 041

dent’s capacity. Recent studies in pedagogy sug- 042

gest student-centered learning, which considers 043

students’ characteristics and learning capability, 044

has shown effectiveness improving students’ per- 045

formance (Cornelius-White, 2007; Wright, 2011). 046

However, in conventional knowledge distillation, 047

the student passively accepts knowledge from the 048

teacher, without regard for the student model’s 049

learning capability and performance. Recent 050

works (Park et al., 2021; Shi et al., 2021) intro- 051

duce student-aware distillation by jointly training 052

the teacher and the student with task-specific objec- 053

tives. However, there is still space for improvement 054

since: (2) The teacher is not optimized for dis- 055

tillation. In previous works, the teacher is often 056

trained to optimize its own inference performance. 057

However, the teacher is not aware of the need to 058

transfer its knowledge to a student and thus usu- 059

ally does so suboptimally. A real-world analogy is 060

that a PhD student may have enough knowledge to 061

solve problems themselves, but requires additional 062

teaching training to qualify as a professor. 063

To address these two drawbacks, we pro- 064

pose Knowledge Distillation with Meta Learn- 065

ing (MetaDistil), a new teacher-student distillation 066

framework using meta learning (Finn et al., 2017) 067

to exploit feedback about the student’s learning 068

progress to improve the teacher’s knowledge trans- 069

fer ability throughout the distillation process. On 070

the basis of previous formulations of bi-level op- 071

timization based meta learning (Finn et al., 2017), 072

we propose a new mechanism called pilot update 073

that aligns the learning of the bi-level learners (i.e., 074

the teacher and the student).We illustrate the work- 075

flow of MetaDistil in Figure 1. The teacher in 076

MetaDistil is trainable, which enables the teacher to 077

adjust to its student network and also improves its 078

“teaching skills.” Motivated by the idea of student- 079

centered learning, we allow the teacher to adjust 080
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Figure 1: The workflow of MetaDistil. (1) We perform experimental knowledge distillation on a selection of
training batches. Instead of updating the student S, we make a temporary copy S′ and update S′. (2) We calculate
a Cross-Entropy loss LCE of S′ on samples from a separate quiz set. We calculate the gradients of LCE with
respect to the parameters of T and update T by gradient descent. (3) We discard S′ and use the updated T to
perform actual knowledge distillation and update S.

its output based on the performance of the student081

model on a “quiz set,” which is a separate reserved082

data split from the original training set. For each083

training step, we first copy the student S to S′ and084

update S′ by a common knowledge distillation loss.085

We call this process a “teaching experiment.” In086

this way, we can obtain an experimental student087

S′ that can be quizzed. Then, we sample from088

the quiz set, and calculate the loss of S′ on these089

samples. We use this loss as a feedback signal090

to meta-update the teacher by calculating second091

derivatives and performing gradient descent (Finn092

et al., 2017). Finally, we discard the experimental093

subject S′ and use the updated teacher to distill into094

the student S on the same training batches. The095

use of meta learning allows the teacher model to096

receive feedback from the student in a completely097

differentiable way. We provide a simple and in-098

tuitive approach to explicitly optimize the teacher099

using the student’s quiz performance as a proxy.100

To test the effectiveness of MetaDistil, we con-101

duct extensive experiments on text and image clas-102

sification tasks. MetaDistil outperforms knowl-103

edge distillation by a large margin, verifying the104

effectiveness and versatility of our method. Also,105

our method achieves state-of-the-art performance106

compressing BERT (Devlin et al., 2019) on the107

GLUE benchmark (Wang et al., 2019) and shows108

competitive results compressing ResNet (He et al.,109

2016) and VGG (Simonyan & Zisserman, 2015)110

on CIFAR-100 (Krizhevsky et al., 2009). Addi-111

tionally, we design experiments to analyze and ex-112

plain the improvement. Ablation studies show the113

effectiveness of our proposed pilot update and dy-114

namic distillation. Also, compared to conventional115

KD, MetaDistil is more robust to different student116

capacity and hyperparameters, which is probably117

because of its ability to adjust its parameters. 118

2 Related Work 119

Knowledge Distillation Recently, many at- 120

tempts have been made to accelerate large neural 121

networks (Xu et al., 2020; Zhou et al., 2020, 2021). 122

Knowledge distillation is a prominent method for 123

training compact networks to achieve comparable 124

performance to a deep network. Hinton et al. (2015) 125

first introduced the idea of knowledge distillation 126

to exploit the “dark knowledge” (i.e., soft label dis- 127

tribution) from a large teacher model as additional 128

supervision for training a smaller student model. 129

Since its introduction, several works (Romero et al., 130

2015; Zagoruyko & Komodakis, 2017; Tung & 131

Mori, 2019; Park et al., 2019; Sun et al., 2019; 132

Jiao et al., 2019) have investigated methods that 133

align different latent representations between the 134

student and teacher models for better knowledge 135

transfer. In the context of knowledge distillation, 136

MetaDistil shares some common ideas with the line 137

of work that utilizes a sequence of intermediate 138

teacher models to make the teacher network better 139

adapt to the capacity of the student model through- 140

out the training process, including teacher assistant 141

knowledge distillation (TAKD) (Mirzadeh et al., 142

2020) and route constraint optimization (RCO) (Jin 143

et al., 2019). However, the intermediate teach- 144

ers are heuristically selected independently of the 145

training process and the evolution of the teacher 146

network is discrete. In contrast, MetaDistil em- 147

ploys meta learning to make the teacher model 148

adapt to the current state of the student model and 149

provide a continuously evolving meta-teacher that 150

can better teach the student. Concurrently, Park 151

et al. (2021) and Shi et al. (2021) propose to update 152

the teacher model jointly with the student model 153

2



with task specific objectives (e.g., cross-entropy154

loss) during the KD process and add constraints155

to keep student and teacher similar to each other.156

Their approaches makes the teacher model aware157

of the student model by constraining the teacher158

model’s capacity. However, the teacher models in159

their methods are still not optimized for knowl-160

edge transfer. In addition, Zhang et al. (2018)161

introduced deep mutual learning where multiple162

models learn collaboratively and teach each other163

throughout the training process. While it is focused164

on a different setting where different models have165

approximately the same capacity and are learned166

from scratch, it also encourages the teacher model167

to behave similarly to the student model. Differ-168

ent from all aforementioned methods, MetaDistil169

employs meta learning to explicitly optimize the170

teacher model for better knowledge transfer ability,171

and leads to improved performance of the resulting172

student model.173

Meta Learning The core idea of meta learning174

is “learning to learn,” which means taking the opti-175

mization process of a learning algorithm into con-176

sideration when optimizing the learning algorithm177

itself. Meta learning typically involves a bi-level178

optimization process where the inner-learner pro-179

vides feedback for optimization of the meta-learner.180

Successful applications of meta learning include181

learning better initialization (Finn et al., 2017), ar-182

chitecture search (Liu et al., 2019), learning to op-183

timize the learning rate schedule (Baydin et al.,184

2018), and learning to optimize (Andrychowicz185

et al., 2016). These works typically aim to ob-186

tain an optimized meta-learner (i.e., the teacher187

model in MetaDistil), while the optimization of the188

inner-learner (i.e., the student model in MetaDis-189

til), is mainly used to provide learning signal for190

the meta optimization process. This is different191

from the objective of knowledge distillation where192

an optimized student model is the goal. Recently,193

there have been a few works investigating using194

this bi-level optimization framework to obtain a195

better inner-learner. For example, meta pseudo196

labels (Pham et al., 2020) uses meta learning to197

optimize a pseudo label generator for better semi-198

supervised learning; meta back-translation (Pham199

et al., 2021) meta-trains a back-translation model200

to better train a machine translation model. These201

methods adapt the same bi-level optimization pro-202

cess as previous works where the goal is to obtain203

an optimized meta-learner. In these approaches,204

during each iteration, the meta-learner is optimized 205

for the original inner-learner and then applied to 206

the updated inner-learner in the next iteration. This 207

leads to a mismatch between the meta-learner and 208

the inner-learner, and is therefore suboptimal for 209

learning a good inner-learner. In this paper, we 210

introduce a pilot update mechanism, which is a 211

simple and general method for this kind of prob- 212

lem, for the inner-learner to mitigate this issue and 213

make the updated meta-learner better adapted to 214

the inner-learner. 215

Meta Knowledge Distillation Recently, some 216

works on KD take a meta approach. Pan et al. 217

(2020) proposed a framework to train a meta- 218

teacher across domains that can better fit new do- 219

mains with meta-learning. Then, traditional KD is 220

performed to transfer the knowledge from the meta- 221

teacher to the student. Liu et al. (2020) proposed a 222

self-distillation network and utilizes meta-learning 223

to train a label-generator, which is a fusion of deep 224

layers in the network, to generate more compatible 225

soft targets for shallow layers. Different from the 226

above, MetaDistil is a general knowledge distilla- 227

tion method that exploits meta-learning to allow 228

the teacher to learn to teach dynamically. Instead 229

of merely training a meta-teacher, our method uses 230

meta-learning throughout the procedure of knowl- 231

edge transfer, making the teacher model compatible 232

for the student model for every training example 233

during each training stage. 234

3 Knowledge Distillation with Meta 235

Learning 236

An overview of MetaDistil is presented in Figure 1. 237

MetaDistil includes two major components. First, 238

the meta update enables the teacher model to re- 239

ceive the student model’s feedback on the distilla- 240

tion process, allowing the teacher model to “learn 241

to teach” and provide distillation signals that are 242

more suitable for the student model’s current ca- 243

pacity. The pilot update mechanism ensures a finer- 244

grained match between the student model and the 245

meta-updated teacher model. 246

3.1 Background 247

3.1.1 Knowledge Distillation 248

Knowledge distillation algorithms aim to exploit 249

the hidden knowledge from a large teacher network, 250

denoted as T , to guide the training of a shallow 251

student network, denoted as S. To help transfer the 252

knowledge from the teacher to the student, apart 253
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from the original task-specific objective (e.g., cross-254

entropy loss), a knowledge distillation objective255

which aligns the behavior of the student and the256

teacher is included to train the student network.257

Formally, given a labeled dataset D of N samples258

D = {(x1, y1) , . . . , (xN , yN )}, we can write the259

loss function of the student network as follows,260

LS (D; θS ; θT ) =
1

N

N∑
i=1

[αLT (yi, S (xi; θS))

+ (1− α)LKD (T (xi; θT ) , S (xi; θS))]

(1)

261

where α is a hyper-parameter to control the relative262

importance of the two terms; θT and θS are the263

parameters of the teacher T and student S, respec-264

tively. LT refers to the task-specific loss and LKD265

refers to the knowledge distillation loss which mea-266

sures the similarity of the student and the teacher.267

Some popular similarity measurements include the268

KL divergence between the output probability dis-269

tribution, the mean squared error between student270

and teacher logits, the similarity between the stu-271

dent and the teacher’s attention distribution, etc.272

We do not specify the detailed form of the loss273

function because MetaDistil is a general framework274

that can be easily applied to various kinds of KD275

objectives as long as the objective is differentiable276

with respect to the teacher parameters.277

3.1.2 Meta Learning278

In meta learning algorithms that involve a bi-level279

optimization problem (Finn et al., 2017), there ex-280

ists an inner-learner fi and a meta-learner fm. The281

inner-learner is trained to accomplish a task T or282

a distribution of tasks with help from the meta-283

learner. The training process of fi on T with the284

help of fm is typically called inner-loop, and we285

can denote f ′i(fm) as the updated inner-learner af-286

ter the inner-loop. We can express f ′i as a function287

of fm because learning fi depends on fm. In return,288

the meta-learner is optimized with a meta objective,289

which is generally the maximization of expected290

performance of the inner-learner after the inner-291

loop, i.e., f ′i(fm). This learning process is called a292

meta-loop and is often accomplished by gradient293

descent with derivatives of L(f ′i(fm)), the loss of294

updated inner-leaner on some held-out support set295

(i.e., the quiz set in our paper).296

3.2 Methodology 297

3.2.1 Pilot Update 298

In the original formulation of meta learning (Finn 299

et al., 2017), the purpose is to learn a good meta- 300

learner fm that can generalize to different inner- 301

learners fi for different tasks. In their approach, the 302

meta-learner is optimized for the “original” inner- 303

learner at the beginning of each iteration and the 304

current batch of training data. The updated meta- 305

learner is then applied to the updated inner-learner 306

and a different batch of data in the next iteration. 307

This behavior is reasonable if the purpose is to opti- 308

mize the meta-learner. However, in MetaDistil, we 309

only care about the performance of the only inner- 310

learner, i.e., the student. In this case, this behavior 311

leads to a mismatch between the meta-learner and 312

the inner-learner, and is therefore suboptimal for 313

learning a good inner-learner. Therefore, we need 314

a way to align and synchronize the learning of the 315

meta- and inner-learner, in order to allow an up- 316

date step of the meta-learner to have an instant 317

effect on the inner-learner. This instant reflection 318

prevents the meta-learner from catastrophic forget- 319

ting (McCloskey & Cohen, 1989). To achieve this, 320

we design a pilot update mechanism. For a batch 321

of training data x, we first make a temporary copy 322

of the inner-learner fi and update both the copy f ′i 323

and the meta learner fm on x. Then, we discard 324

f ′i and update fi again with the updated fm on the 325

same data x. This mechanism can apply the im- 326

pact of data x to both fm and fi at the same time, 327

thus aligns the training process. Pilot update is a 328

general technique that can potentially be applied 329

to any meta learning application that optimizes the 330

inner-learner performance. We will describe how 331

we apply this mechanism to MetaDistil shortly and 332

empirically verify the effectiveness of pilot update 333

in Section 4.2. 334

3.2.2 Learning to Teach 335

In MetaDistil, we would like to optimize the 336

teacher model, which is fixed in traditional KD 337

frameworks. Different from previous deep mu- 338

tual learning (Zhang et al., 2018) methods that 339

switch the role between the student and teacher 340

network and train the original teacher model with 341

soft labels generated by the student model or re- 342

cent works (Shi et al., 2021; Park et al., 2021) that 343

update the teacher model with a task-specific loss 344

during the KD process, MetaDistil explicitly op- 345

timizes the teacher model in a “learning to teach” 346
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fashion, so that it can better transfer its knowledge347

to the student model. Concretely, the optimization348

objective of the teacher model in the MetaDistil349

framework is the performance of the student model350

after distilling from the teacher model. This “learn-351

ing to teach” paradigm naturally fits the bi-level352

optimization framework in the meta learning litera-353

ture.354

In the MetaDistil framework, the student net-355

work θS is the inner-learner and the teacher net-356

work θT is the meta-learner. For each training step,357

we first copy the student model θS to an “experi-358

mental student” θ′S . Then given a batch of training359

examples x and the learning rate λ, the experimen-360

tal student is updated in the same way as conven-361

tional KD algorithms:362

θ′S(θT ) = θS − λ∇θSLS(x; θS ; θT ). (2)363

To simplify notation, we will consider one gradi-364

ent update for the rest of this section, but using365

multiple gradient updates is a straightforward ex-366

tension. We observe that the updated experimental367

student parameter θ′S , as well as the student quiz368

loss lq = LT (q, θ′S(θT )) on a batch of quiz sam-369

ples q sampled from a held-out quiz set Q, is a370

function of the teacher parameter θT . Therefore,371

we can optimize lq with respect to θT by a learning372

rate µ:373

θT ← θT − µ∇θTLT
(
q, θ′S(θT )

)
(3)374

We evaluate the performance of the experimental375

student on a separate quiz set to prevent overfitting376

the validation set, which is preserved for model se-377

lection. After meta-updating the teacher model, we378

then update the “real” student model in the same379

way as described in Equation 2. Intuitively, op-380

timizing the teacher network θT with Equation 3381

is maximizing the expected performance of the382

student network after being taught by the teacher383

with the KD objective in the inner-loop. This meta-384

objective allows the teacher model to adjust its385

parameters to better transfer its knowledge to the386

student model. We apply the pilot update strat-387

egy described in Section 3.2.1 to better align the388

learning of the teacher and student. The complete389

algorithm is shown in Algorithm 1.390

4 Experiments391

4.1 Experimental Setup392

We evaluate MetaDistil on two commonly used393

classification benchmarks for knowledge distilla-394

tion in both Natural Language Processing and Com- 395

puter Vision (see Appendix A). 396

Settings For NLP, we evaluate our proposed ap- 397

proach on the GLUE benchmark (Wang et al., 398

2019). Specifically, we test on MRPC (Dolan 399

& Brockett, 2005), QQP2 and STS-B (Conneau 400

& Kiela, 2018) for Paraphrase Similarity Match- 401

ing; SST-2 (Socher et al., 2013) for Sentiment 402

Classification; MNLI (Williams et al., 2018), 403

QNLI (Rajpurkar et al., 2016) and RTE (Wang 404

et al., 2019) for the Natural Language Inference; 405

CoLA (Warstadt et al., 2019) for Linguistic Ac- 406

ceptability. Following previous studies (Sun et al., 407

2019; Jiao et al., 2019; Xu et al., 2020), our goal 408

is to distill BERT-Base (Devlin et al., 2019) into 409

a 6-layer BERT with the hidden size of 768. The 410

reported results are in the same format as on the 411

GLUE leaderboard. For MNLI, we report the re- 412

sults on MNLI-m and MNLI-mm, respectively. For 413

MRPC and QQP, we report both F1 and accuracy. 414

For STS-B, we report Pearson and Spearman cor- 415

relation. The metric for CoLA is Matthew’s corre- 416

lation. The other tasks use accuracy as the metric. 417

Following previous works (Sun et al., 2019; Turc 418

et al., 2019; Xu et al., 2020), we evaluate MetaDis- 419

til in a task-specific setting where the teacher model 420

is fine-tuned on a downstream task and the stu- 421

dent model is trained on the task with the KD loss. 422

We do not choose the pretraining distillation set- 423

ting since it requires significant computational re- 424

sources. We implement MetaDistil based on Hug- 425

ging Face Transformers (Wolf et al., 2020). 426

Baselines For comparison, we report the results 427

of vanilla KD and patient knowledge distilla- 428

tion (Sun et al., 2019). We also include the re- 429

sults of progressive module replacing (Xu et al., 430

2020), a state-of-the-art task-specific compression 431

method for BERT which also uses a larger teacher 432

model to improve smaller ones like knowledge 433

distillation. In addition, according to Turc et al. 434

(2019), the reported performance of current task- 435

specific BERT compression methods is underesti- 436

mated because the student model is not appropri- 437

ately initialized. To ensure fair comparison, we 438

re-run task-specific baselines with student models 439

initialized by a pretrained 6-layer BERT model 440

and report our results in addition to the official 441

numbers in the original papers. We also com- 442

2https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs
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Algorithm 1 Knowledge Distillation with Meta Learning (MetaDistil)
Require: student θS , teacher θT , train set D, quiz setQ
Require: λ, µ: learning rate for the student and the teacher
1: while not done do
2: Sample batch of training data x ∼ D
3: Copy student parameter θS to student θ′S
4: Update θ′S with x and θT : θ′S ← θ′S − λ∇θ′SLS(x; θS ; θT )
5: Sample a batch of quiz data q ∼ Q
6: Update θT with q and θ′S : θT ← θT − µ∇θTLT (q, θ′S(θT ))
7: Update original θS with x and the updated θT : θS ← θS − λ∇θSLS(x; θS ; θT )
8: end while

pare against deep mutual learning (DML) (Zhang443

et al., 2018), teacher assistant knowledge distilla-444

tion (TAKD) (Mirzadeh et al., 2020), route con-445

straint optimization (RCO) (Jin et al., 2019), and446

proximal knowledge teaching (ProKT) (Shi et al.,447

2021), where the teacher network is not fixed. For448

reference, we also present results of pretraining449

distilled models including DistilBERT (Sanh et al.,450

2019), TinyBERT (Jiao et al., 2019), MiniLM v1451

and v2 (Wang et al., 2020b,a). Note that among452

these baselines, PKD (Sun et al., 2019) and The-453

seus (Xu et al., 2020) exploit intermediate features454

while TinyBERT and the MiniLM family use both455

intermediate and Transformer-specific features. In456

contrast, MetaDistil uses none of these but the457

vanilla KD loss (Equation 1).458

Training Details For training hyperparameters,459

we fix the maximum sequence length to 128 and the460

temperature to 2 for all tasks. For our method and461

all baselines (except those with officially reported462

numbers), we perform grid search over the sets of463

the student learning rate λ from {1e-5, 2e-5, 3e-5},464

the teacher learning rate µ from {2e-6, 5e-6, 1e-5},465

the batch size from {32, 64}, the weight of KD loss466

from {0.4, 0.5, 0.6}. We randomly split the original467

training set to a new training set and the quiz set468

by 9 : 1. For RCO, we select four unconverged469

teacher checkpoints as the intermediate training470

targets. For TAKD, we use KD to train a teacher471

assistant model with 10 Transformer layers.472

4.2 Experimental Results473

We report the experimental results on both the474

development set and test set of the eight GLUE475

tasks (Wang et al., 2019) in Table 1. MetaDis-476

til achieves state-of-the-art performance under the477

task-specific setting and outperforms all KD base-478

lines. Notably, without using any intermediate479

or model-specific features in the loss function,480

MetaDistil outperforms methods with carefully de-481

signed features, e.g., PKD and TinyBERT (without482
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Figure 2: Learning dynamics of the student and teacher
in MetaDistil on the development set of MNLI.

data augmentation). Compared with other meth- 483

ods with a trainable teacher (Zhang et al., 2018; 484

Mirzadeh et al., 2020; Jin et al., 2019; Shi et al., 485

2021), our method still demonstrates superior per- 486

formance. As we analyze, with the help of meta 487

learning, MetaDistil is able to directly optimize the 488

teacher’s teaching ability thus yielding a further 489

improvement in terms of student accuracy. Also, 490

we observe a performance drop by replacing pilot 491

update with a normal update. This ablation study 492

verifies the effectiveness of our proposed pilot up- 493

date mechanism. Moreover, MetaDistil achieves 494

very competitive results on image classification as 495

well, as described in Section A.2. 496

5 Analysis 497

5.1 Why Does MetaDistil Work? 498

We investigate why MetaDistil works on the devel- 499

opment sets of MNLI, SST, and MRPC, which are 500

important tasks in GLUE that have a large, medium, 501

and small training set, respectively. 502

We illustrate the validation accuracy curves of 503

the meta teacher and student models with training 504

steps in Figure 2, and compare them to the student 505

performance in conventional KD. We see the meta 506

teacher maintains high accuracy in the first 5,000 507

steps and then begins to slowly degrade. Starting 508
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Method #Param. Speed-up CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K)

Dev Set

BERT-Base (teacher) (Devlin et al., 2019) 110M 1.00× 58.9 84.6/84.9 91.6/87.6 91.2 88.5/91.4 71.4 93.0 90.2/89.8
BERT-6L (student) (Turc et al., 2019) 66M 1.94× 53.5 81.1/81.7 89.2/84.4 88.6 86.9/90.4 67.9 91.1 88.1/87.9

Pretraining Distillation

TinyBERT‡ (Jiao et al., 2019) 66M 1.94× 54.0 84.5/84.5 90.6/86.3 91.1 88.0/91.1 73.4 93.0 90.1/89.6
MiniLM (Wang et al., 2020b) 66M 1.94× 49.2 84.0/ - 88.4/ - 91.0 - /91.0 71.5 92.0 -
MiniLM v2 (Wang et al., 2020a) 66M 1.94× 52.5 84.2/ - 88.9/ - 90.8 - /91.1 72.1 92.4 -

Task-specific Distillation

KD† (Hinton et al., 2015) 66M 1.94× 54.1 82.6/83.2 89.6/85.2 89.2 87.3/90.9 67.7 91.2 88.6/88.2
PKD† (Sun et al., 2019) 66M 1.94× 54.5 82.7/83.3 89.4/84.7 89.5 87.8/90.9 67.6 91.3 88.6/88.1
TinyBERT w/o DA† 66M 1.94× 52.4 83.6/83.8 90.5/86.5 89.8 87.6/90.6 67.7 91.9 89.2/88.7
RCO† (Jin et al., 2019) 66M 1.94× 53.6 82.4/82.9 89.5/85.1 89.7 87.4/90.6 67.6 91.4 88.7/88.3
TAKD† (Mirzadeh et al., 2020) 66M 1.94× 53.8 82.5/83.0 89.6/85.0 89.6 87.5/90.7 68.5 91.4 88.2/88.0
DML† (Zhang et al., 2018) 66M 1.94× 53.7 82.4/82.9 89.6/85.1 89.6 87.4/90.3 68.4 91.5 88.4/88.1
ProKT† (Shi et al., 2021) 66M 1.94× 54.3 82.8/83.2 90.7/86.3 89.7 87.9/90.9 68.4 91.3 88.9/88.6
MetaDistil (ours) 66M 1.94× 58.6 83.5/83.8 91.1/86.8 90.4 88.1/91.0 69.4 92.3 89.4/89.1

w/o pilot update 66M 1.94× 56.3 83.0/83.4 90.6/86.6 89.9 88.0/88.5 67.7 92.0 89.2/89.0

Test Set

BERT-Base (teacher) (Devlin et al., 2019) 110M 1.00× 52.1 84.6/83.4 88.9/84.8 90.5 71.2/89.2 66.4 93.5 87.1/85.8

Pretraining Distillation

DistilBERT (Sanh et al., 2019) 66M 1.94× 45.8 81.6/81.3 87.6/83.1 88.8 69.6/88.2 54.1 92.3 71.0/71.0
TinyBERT‡ (Jiao et al., 2019) 66M 1.94× 51.1 84.3/83.4 88.8/84.5 91.6 70.5/88.3 70.4 92.6 86.2/84.8

Task-specific Distillation

KD (Turc et al., 2019) 66M 1.94× - 82.8/82.2 86.8/81.7 88.9 70.4/88.9 65.3 91.8 -
PKD (Sun et al., 2019) 66M 1.94× 43.5 81.5/81.0 85.0/79.9 89.0 70.7/88.9 65.5 92.0 83.4/81.6
BERT-of-Theseus (Xu et al., 2020) 66M 1.94× 47.8 82.4/82.1 87.6/83.2 89.6 71.6/89.3 66.2 92.2 85.6/84.1
ProKT (Shi et al., 2021) 66M 1.94× - 82.9/82.2 87.0/82.3 89.7 70.9/88.9 - 93.3 -
DML† (Zhang et al., 2018) 66M 1.94× 48.5 82.6/81.6 86.5/81.2 89.5 70.7/88.7 66.3 92.7 85.5/84.0
RCO† (Jin et al., 2019) 66M 1.94× 48.2 82.3/81.2 86.8/81.4 89.3 70.4/88.7 66.5 92.6 85.3/84.1
TAKD† (Mirzadeh et al., 2020) 66M 1.94× 48.4 82.4/81.7 86.5/81.3 89.4 70.6/88.8 66.8 92.9 85.4/84.1
MetaDistil (ours) 66M 1.94× 50.7 83.8/83.2 88.7/84.7 90.2 71.1/88.9 67.2 93.5 86.1/85.0

w/o pilot update 66M 1.94× 49.1 83.3/82.8 88.2/84.1 89.9 71.0/88.7 66.6 93.5 85.9/84.6

Table 1: Experimental results on the development set and the test set of GLUE. Numbers under each dataset
indicate the number of training samples. All student models listed below have the same architecture of 66M
parameters, 6 Transformer layers and 1.94× speed-up. The test results are from the official test server of GLUE.
The best results for the task-specific setting are marked with boldface. †Results reported by us. The student
is initialized with a 6-layer pretrained BERT (Turc et al., 2019) thus has a better performance than the original
implementation. ‡TinyBERT has data augmentation. We re-run TinyBERT without data augmentation and denote
it as TinyBERT w/o DA. All results reported by us are average performance of 3 runs with different random seeds.

from step 8,000, the teacher model underperforms509

the student while the student’s accuracy keeps in-510

creasing. This verifies our assumption that a model511

with the best accuracy is not necessarily the optimal512

teacher. Also, MetaDistil is not naively optimizing513

the teacher’s accuracy but its “teaching skills.” This514

phenomenon suggests that beyond high accuracy,515

there could be more important properties of a good516

teacher that warrant further investigation.517

In addition, we investigate the effect of meta-518

update for each iteration. We inspect (1) the val-519

idation loss of S′ after the teaching experiment520

and that of S after the real distillation update, and521

(2) the KD loss, which describes the discrepancy522

between student and teacher, before and after the523

teacher update. We find that for 87% of updates,524

the student model’s validation loss after real update 525

(Line 7 in Algorithm 1) is smaller than that after the 526

teaching experiment (Line 4 in Algorithm 1), which 527

would be the update to the student S in the variant 528

without pilot update. This confirms the effective- 529

ness of the pilot update mechanism on better match- 530

ing the student and teacher model. Moreover, we 531

find that in 91% of the first half of the updates, the 532

teacher becomes more similar to the student after 533

the meta-update, which indicates that the teacher 534

is learning to adapt to a low-performance student 535

(like an elementary school teacher). However, in 536

the second half of MetaDistil, this percentage drops 537

to 63%. We suspect this is because in the later train- 538

ing stages, the teacher needs to actively evolve it- 539

self beyond the student to guide the student towards 540
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student architectures.
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further improvement (like a university professor).541

Finally, we try to apply a meta-learned teacher to a542

conventional static distillation and also to an unfa-543

miliar student. We describe the results in details in544

Section A.3.545

5.2 Can the Meta Teacher Always Learn to546

Teach?547

A motivation of MetaDistil is to enable the teacher548

to dynamically adjust its knowledge transfer in an549

optimal way. Similar to Adam (Kingma & Ba,550

2015) vs. SGD (Sinha & Griscik, 1971; Kiefer551

et al., 1952) for optimization, with the ability of552

dynamic adjusting, it is natural to expect MetaDistil553

to be more insensitive and robust to changes of the554

settings. Here, we evaluate the performance of555

MetaDistil with students of various capability, and556

a wide variety of hyperparameters, including loss557

weight and temperature.558

Student Capability To investigate the perfor-559

mance of MetaDistil under different student ca-560

pacity, we experiment to distill BERT-Base into561

BERT-6L, Medium, Small, Mini and Tiny (Turc562

et al., 2019) with conventional KD and MetaDistil.563

We plot the performance with the student’s param-564

eter number in Figure 3. We can see MetaDistil565

outperforms conventional KD on every student and566

has a more gradual performance curve.567

Loss Weight In KD, tuning the loss weight568

is non-trivial and often requires hyperparameter569

search. To test the robustness of MetaDistil under 570

different loss weights, we run experiments with 571

different α (Equation 1). As shown in Figure 4, 572

MetaDistil consistently outperforms conventional 573

KD and is less sensitive to different α. 574

Temperature Temperature is a re-scaling trick 575

introduced in Hinton et al. (2015). We try different 576

temperatures and illustrate the performance of KD 577

and MetaDistil in Figure 5. MetaDistil shows better 578

performance and robustness compared to KD. 579

6 Discussion 580

In this paper, we present MetaDistil, a knowledge 581

distillation algorithm powered by meta learning 582

that explicitly optimizes the teacher network to bet- 583

ter transfer its knowledge to the student network. 584

The extensive experiments verify the effectiveness 585

and robustness of MetaDistil. One limitation is 586

the training of MetaDistil is slower than conven- 587

tional KD since it calculates second derivatives 588

and makes additional teacher updates. However, 589

since the goal is to produce an efficient student 590

model for production, the computational cost for 591

the distillation process is not a major concern. For 592

future work, we would like to further investigate 593

the teaching skills learned by the meta teacher from 594

a theoretical perspective and use the insights to im- 595

prove conventional knowledge distillation. 596

8
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A MetaDistil for Image Classification790

In addition to BERT compression, we also provide791

results on image classification. Also, we conduct792

experiments of static teaching and cross teaching,793

to further verify the effectiveness of MetaDistil of794

adapting to different students.795

A.1 Experimental Settings796

For CV, following the settings in Tian et al. (2020),797

we experiment with the image classification task on798

CIFAR-100 (Krizhevsky et al., 2009) with student-799

teacher combinations of different capacity and ar-800

chitectures, including ResNet (He et al., 2016) and801

VGG (Simonyan & Zisserman, 2015). Addition-802

ally, we run a distillation experiment between dif-803

ferent architectures (a ResNet teacher to a VGG804

student). We report the top-1 test accuracy of the805

compressed student networks. We inherit all hy-806

perparameters from Tian et al. (2020) except for807

the teacher learning rate, which is grid searched808

from {1e-4, 2e-4, 3e-4}. We randomly split the809

original training set to a new training set and the810

quiz set by 9 : 1. We compare our results with811

a state-of-the-art distillation method, CRD (Tian812

et al., 2020) and other commonly used knowledge813

distillation methods (Hinton et al., 2015; Romero814

et al., 2015; Zagoruyko & Komodakis, 2017; Tung815

& Mori, 2019; Peng et al., 2019; Ahn et al., 2019;816

Park et al., 2019; Passalis & Tefas, 2018; Heo et al.,817

2019; Kim et al., 2018) including ProKT (Shi et al.,818

2021) which has a trainable teacher.819

A.2 Experimental Results820

We show the experimental results of MetaDistil821

distilling ResNet (He et al., 2016) and VGG (Si-822

monyan & Zisserman, 2015) with five different823

teacher-student pairs. MetaDistil achieves com-824

parable performance to CRD (Tian et al., 2020),825

the current state-of-the-art distillation method on826

image classification while outperforming all other827

baselines with complex features and loss functions.828

Notably, CRD introduces additional negative sam-829

pling and contrastive training while our method830

achieves comparable performance without using831

these tricks. Additionally, we observe a substan-832

tial performance drop without pilot update, again833

verifying the importance of this mechanism.834

A.3 Static Teaching and Cross Teaching835

In MetaDistil, the student is trained in a dynamic836

manner. To investigate the effect of such a dynamic837

Teacher ResNet-56 ResNet-110 ResNet-110 VGG-13 ResNet-50∗

Student ResNet-20 ResNet-20 ResNet-32 VGG-8 VGG-8

Teacher 72.34 74.31 74.31 74.64 79.34
Student 69.06 69.06 71.14 70.36 70.36

KD (2015) 70.66 70.67 73.08 72.98 73.81
FitNet (2015) 69.21 68.99 71.06 71.02 70.69
AT (2017) 70.55 70.22 72.31 71.43 71.84
SP (2019) 69.67 70.04 72.69 72.68 73.34
CC (2019) 69.63 69.48 71.48 70.71 70.25
VID (2019) 70.38 70.16 72.61 71.23 70.30
RKD (2019) 69.61 69.25 71.82 71.48 71.50
PKT (2018) 70.34 70.25 72.61 72.88 73.01
AB (2019) 69.47 69.53 70.98 70.94 70.65
FT (2018) 69.84 70.22 72.37 70.58 70.29
ProKT (2021) 70.98 70.74 72.95 73.03 73.90
CRD (2020) 71.16 71.46 73.48 73.94 74.30
MetaDistil 71.25 71.40 73.35 73.65 74.42
w/o pilot update 71.02 70.96 73.31 73.48 74.05

Table 2: Experimental results on the test set of CIFAR-
100. The best and second best results are marked with
boldface and underline, respectively. All baseline re-
sults except ProKT are reported in Tian et al. (2020).
∗ResNet for ImageNet. Other ResNets are ResNet for
CIFAR (He et al., 2016).

Teacher Student Acc@1

KD (ResNet-110)
ResNet-32 (static) 73.08
ResNet-20 (static) 70.67

MetaDistil
ResNet-32 (dynamic) 73.35

(ResNet-110→ResNet-32)
ResNet-32 (static) 73.16
ResNet-20 (static, cross) 70.82

MetaDistil
ResNet-20 (dynamic) 71.40

(ResNet-110→ResNet-20)
ResNet-20 (static) 70.94
ResNet-32 (static, cross) 72.89

Table 3: Experimental results of static teaching and
cross teaching.

distillation process, we attempt to use the teacher 838

at the end of MetaDistil training to perform a static 839

conventional KD, to verify the effectiveness of our 840

dynamic distillation strategy. As shown in Table 3, 841

on both experiments, dynamic MetaDistil outper- 842

forms conventional KD and static distillation with 843

the teacher at the end of MetaDistil training. 844

As mentioned in Section 3.2, a meta teacher is 845

optimized to transfer its knowledge to a specific 846

student network. To justify this motivation, we 847

conduct experiments using a teacher optimized for 848

the ResNet-32 student to statically distill to the 849

ResNet-20 student, and also in reverse. As shown 850

in Table 3, the cross-taught students underperform 851

the static students taught by their own teachers 852

by 0.27 and 0.12 for ResNet-32 and ResNet-20, 853

respectively. This confirms our motivation that 854

the meta teacher in MetaDistil can adjust itself 855

according to its student. 856
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