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Abstract

A standard approach in large scale machine learn-
ing is distributed stochastic gradient training,
which requires the computation of aggregated
stochastic gradients over multiple nodes on a net-
work. Communication is a major bottleneck in
such applications, and in recent years, compressed
stochastic gradient methods such as QSGD (quan-
tized SGD) and sparse SGD have been proposed
to reduce communication. It was also shown
that error compensation can be combined with
compression to achieve better convergence in
a scheme that each node compresses its local
stochastic gradient and broadcast the result to all
other nodes over the network in a single pass.
However, such a single pass broadcast approach
is not realistic in many practical implementations.
For example, under the popular parameter-server
model for distributed learning, the worker nodes
need to send the compressed local gradients to
the parameter server, which performs the aggre-
gation. The parameter server has to compress
the aggregated stochastic gradient again before
sending it back to the worker nodes. In this work,
we provide a detailed analysis on this two-pass
communication model, with error-compensated
compression both on the worker nodes and on
the parameter server. We show that the error-
compensated stochastic gradient algorithm admits
three very nice properties: 1) it is compatible with
an arbitrary compression technique; 2) it admits
an improved convergence rate than the non error-
compensated stochastic gradient methods such
as QSGD and sparse SGD; 3) it admits linear
speedup with respect to the number of workers.
An empirical study is also conducted to validate
our theoretical results.
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1. Introduction

Large scale distributed machine learning on big data sets
are important for many modern applications (Abadi et al.,
2016a;|Seide & Agarwal,[2016), and there are many meth-
ods being studied to improve the performance of distributed
learning, such as communication efficient learning (Alis
tarh et al., |2017; |Bernstein et al.,[2018a; |Seide et al., 2014),
decentralized learning (He et al., | 2018bj; |Lian et al., 2017)),
and asynchronous learning (Agarwal & Duchil 2011} |Lian
et al.l 2015; [Recht et al., 2011). All these methods have
been proved to be quite efficient in accelerating distributed
learning under different seneario.

A widely used framework in distributed learning is data par-
allelism, where we assume that data are distributed over mul-
tiple nodes on a network, with a shared model that needs to
be jointly optimized. Mathematically, the underlying prob-
lem can be posed as the following distributed optimization
problem:

mggn f(z) = %ZECNDiF(a:;C), (D

i=1

where n is the number of workers, D; is the local data
distribution for worker ¢ (in other words, we do not assume
that all nodes can access the same data set), and F'(x; ¢) is
the local loss function of model x given data ¢ for worker i.

A standard synchronized approach for solving (T)) is parallel
SGD (stochastic gradient descent) (Bottou & Bottou} 2010),
where each worker 7 draws ¢(*) from D;, and compute the
local stochastic gradient with respect to the shared parameter
x:

g = VF(@; <),

The local gradients are sent over the network, where the
aggregated SGD is computed as:

N0
gfn;g :

and the result are sent back to each local node.

The high communication cost is a main bottleneck for large
scale distributed training. In order to alleviate this cost,
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recently it has been suggested that each worker can send
a compressed version of the local gradient (Alistarh et al.}
2018} Stich et al., 2018}, /Zhang et al.| |2017a)), with methods
such as quantization or sparsification. Specifically, let Q,,[]
be a compression operator, one will transmit

Qulg™]

to form aggregated gradienlﬂ However, it is observed that
such compression methods slow down the convergence due
to the loss of information under compression. To remedy
the problem, error compensation has been proposed (Seide
et al., [2014), and successfully used in practical applications.
The idea is to keep aggregated compression error in a vector
6@, and send Q,, [gV + 6], where we update 6() by
using the following recursion at each time step

5m:gm+5m_wam+yﬂ.

It was recently shown that such methods can be effectively
used to accelerate convergence when the compression ratio
is high.

However, previous work assume that the error compensation
is done only for each worker, g(*), but not for the aggregated
gradient g (Stich et al.| 2018)). This is impractical for real
world applications, since it can save up to 50% bandwidth.
For example, in the popular parameter server model, the
aggregation of local gradient is done at the parameter server,
and then sent back to each worker node. Although each
worker can send sparsified local stochastic gradient to the
parameter server, and thus reduce the communication cost.
However, the aggregated gradient g can become dense, and
to save the communication cost, it needs to be compressed
again before sending back to the worker nodes (Wangni
et al., [2018). In such case, it is necessary to incorporate
error compensation on the parameter server as well because
only the parameter server can keep track of the historic
compression error. In this paper, we study an error compen-
sated compression of stochastic gradient algorithm namely
DOUBLESQUEEZE under this more realistic setting.

The contribution of this paper can be summarized as follows:

o Better tolerance to compression: Our theoretical
analysis suggests that the proposed DOUBLESQUEEZE
enjoys a better tolerance than the non-error-
compensated algorithms.

e Optimal communication cost: There are only n
rounds of communication at each iteration (compared
to|Alistarh et al.| (2018); [Wu et al.| (2018) where there
are n? rounds) and we could ensure that all the infor-
mation to be sent is compressed (compared to (Stich

'Q.[-] could also include randomness.

et al., 2018)) where only half of the information send
from workers to the server is compressed).

e Prove for parallel case: To the best of our knowl-
edge, this is the first work that gives the conver-
gence rate analysis for a parallel implementation of
error-compensated SGD, and our result shows a linear
speedup corresponding to the number of workers n.
To the best of our knowledge, this is the first result
to show the speedup property for error compensated
algorithms.

e Proof of acceleration for Non-Convex case: To the
best of our knowledge, this is the first work where the
loss function in our work is only assumed to be non-
convex, which is the case for most of the real world
deep neural network, and still prove that the error-
compensated SGD admits a factor of improvement
over the non-compensated SGD. In Wu et al.|(2018)
they only consider the quadratic loss function and in
Stich et al.| (2018)) they consider a strongly-convex loss
function. |Alistarh et al.| (2018)) considers a non-convex
loss function but they did not prove an acceleration of
error-compensated SGD.

Notations and definitions Throughout this paper, we use
the following notations and definitions

e V f(z) denotes the gradient of a function f(-).
e f* denotes the optimal solution to (I).
e || - || denotes the I norm for vectors.

e || - ||2 denotes the spectral norm for matrix.
e fi(x) :=Ecup, F(x; ).

¢ < means “less than equal to up to a constant factor”.

2. Related Work
2.1. Distributed Learning

Nowadays, distributed learning has been proved to the key
strategy for accelerating the deep learning training. There
are two kinds of designs for parallelism: centralized de-
sign (Agarwal & Duchil 2011} Recht et al., 2011)), where
the network is designed to ensure that all workers can get
information from all others, and decentralized design (He
et al.| [2018a; L1 & Yan,[2017;|Lian et al., [2017; 2018} |Sh1
et al.| 2015} Tang et al.l 2018b)), where each worker is only
allowed to communicate with its neighbors.
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Centralized Parallel Training In centralized parallel
training, the network is designed to ensure that all work-
ers can get information of all others. One key primitive
in centralized training is to aggregate all local models or
gradients. This primitive is called the collective communica-
tion operator in HPC literature (Thakur et al., 2005). There
are different implementations for information aggregation
in centralized systems. For example, the parameter server
(Abadi et al.| 2016Db} [Li1 et al., 2014) and AllReduce that
averages models over a ring topology (Renggli et al., 2018}
Seide & Agarwal, 2016).

Decentralized Parallel Training In decentralized paral-
lel training, the network does not ensure that all workers
could get information of all others in a single step. They
can only communicate with their individual neighbors. De-
centralized training can be divided into fixed topology algo-
rithms and random topology algorithms. For fixed topology
algorithms, the communication network is fixed, for exam-
ple, (Jin et al.| 2016} Lian et al.l 2017} |Shen et al.l 2018}
Tang et al.,|2018bic). For the random topology decentralized
algorithms, the communication network changes over time,
for example, (Lian et al.| 2018; Nedi¢ & Olshevsky, [2015}
Nedic et al.l 2017). All of these works provide rigorous
analysis to show the convergence rate. For example, Lian
et al|(2017) proves that the decentralized SGD achieves a
comparable convergence rate to the centralized SGD algo-
rithm, but significantly reduces the communication cost and
is more suitable for training a large model.

There has been lots of works studying the implementation
of distributed learning from different angles. such as differ-
entially private distributed optimization (Jayaraman et al.,
2018; Zhang et al.,[2018)), adaptive distributed ADMM (Xu
et al.,|2017), adaptive distributed SGD (Cutkosky & Busa{
Feketel, |2018)), non-smooth distributed optimization (Sca{
man et al.| 2018)), distributed proximal primal-dual algo-
rithm (Hong et al., [2017), projection-free distributed online
learning (Zhang et al.,[2017b). Some works also investigate
methods for parallel backpropgation (Huo et al.| 2018} [Li
et al.,[2018)).

2.2. Compressed Communication Learning

In order to save the communication cost, a widely used
approach is to compress the gradients (Shen et al., |2018)).
In|Wang et al.| (2017), the communication cost is reduced
by sending a sparsified model from the parameter server to
workers. An adaptive approach for doing the compression is
proposed in|Chen| (2018)). |Alistarh et al.| (2017) gives a theo-
retical analysis for QSGD and studies the tradeoff between
local update and communication cost. Most of the previous
work used unbiased quantizing operation (Jiang & Agrawal|
2018 [Tang et al.| |2018a;Wangni et al., 2018 |Zhang et al.|
2017a)) to ensure the convergence of the algorithm. Some

extension of communication efficient distributed learning,
such as differentially private optimization (Agarwal et al.,
2018]), optimization on manifolds (Saparbayeva et al., 2018)),
compressed PCA (Garber et al.,[2017), are also studied re-
cently.

In|Seide et al.| (2014), a 1Bit-SGD was proposed to utilize
only the sign of each element in the gradient vector for
stochastic gradient descent. The convergence rate guarantee
of 1Bit-SGD is studied recently in/Bernstein et al.| (2018aib)).
In|Wen et al.| (2017), authors manipulate the 1Bit-SGD to
ensure that the compressed is an unbiased estimation of the
original gradient, and they prove that this unbiased 1Bit-
SGD could ensure the algorithm to converge to the single
minimum.

Some specific methods for implementing the compression
for other distributed systems is also studied. In|Suresh et al.
(2017), authors proposed some communication efficient
strategies distributed mean estimation. A Lazily Aggregated
Gradient (LAG) strategy is studied to reduce the communi-
cation cost for Gradient Descent based distributed learning
(Chen et al.| [2018). |Wang et al.|(2018)) proposed an atomic
sparsification strategy for gradient sparsification.

2.3. Error-Compensated SGD

In [Seide et al.| (2014), authors used an error-compensate
strategy to compensate the error for AllReduce 1Bit-SGD,
and found in experiments that the accuracy drop could be mi-
nor as long as the error is compensated. Recently, Wu et al.
(2018)) studied an Error-Compensated SGD for quadratic
optimization via adding two hyperparameters to compensate
the error, but does not successfully prove the advantage of
using error compensation theoretically. In|Stich et al.|(2018)),
authors adapted the error-compensate strategy for compress-
ing the gradient, and proved that the error-compensating
procedure could greatly reduce the influence of the quanti-
zation for non-parallel and strongly-convex loss functions.
But their theoretical results are restricted to the compressing
operators whose expectation compressing error cannot be
larger than the magnitude of the original vector, which is
not the case for some biased compressing methods, such as
SignSGD (Bernstein et al., 2018a)). |Alistarh et al.[ (2018)
studied the error-compensated SGD under a non-convex
loss function, but did not prove that the error-compensate
method could admit a factor of acceleration compared to
the non-compensate ones. All of those works did not prove
a linear speedup corresponding to the number of workers n
for a parallel learning case.

3. Parallel Error-Compensated Algorithms

In this section, we will introduce the parallel error-
compensated SGD algorithm, namely DOUBLESQUEEZE.
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Algorithm 1 DOUBLESQUEEZE
1: Input: Initialize x(, learning rate -, initial error § = 0,
and number of total iterations 7'.
2: fort=1,2,--- ,T do
3:  On worker
4: Compute the error-compensated stochastic gra-
dient vV « VF(2;¢®) + 60

5: Compress v into Q,, [v¥]

6: Update the error () « v — Q,, [v]

7: Send Q,, [v"] to the parameter server

8:  On parameter server

9: Average all gradients received from workers
v i Qu 0] 46

10: Compress v into Q,, [v]

11: Update the error 8 < v — Q,, [v]

12: Send Q,, [v] to workers

13:  On worker

14: Update the local model  + x — vQ,, [v]

15: end for

16: Output: =

We first introduce the algorithm details. Next we will
give its mathematical updating formulation from a global
view of point in order to get a better understanding of the
DOUBLESQUEEZE algorithm.

3.1. Algorithm Description

In this paper, we consider a parameter-server (PS) archi-
tecture for parallel training for simplicity — a parameter
server and n workers, but the proposed DOUBLESQUEEZE
algorithm is not limit to the parameter server architecture.
DOUBLESQUEEZE essentially applies the error-compensate
strategy on both workers and the parameter to ensure that
all information communicated is compressed.

During the tth iteration, the key updating rule for
DOUBLESQUEEZE is described below:

o (Worker: Compute) Each worker ¢ computes the
local stochastic gradient VF'(x;; t(z)), based on the

global model x; and local sample Ct(i). Here ¢ is the
index for worker 7 and ¢ is the index for iteration num-
ber.

e (Worker: Compress) Each worker i computes the
error-compensated stochastic gradient

Ugi) = VF (x4 Ct(l)) + 5t(i_)1, (2)
and update the local error of ¢th step 5t(i) according to

5" =" — Qo [v"). 3

where Q ) ['vy)] is the compressed error-compensated
t

stochastic gradient.

e (Parameter server: Compress) All workers send
me ['vy)] to the parameter server, then the param-
t

eter server average all @ o) {vgi)] s and update the

global error-compensated stochastic gradient v;, to-
gether with the global error §; according to

1 «
vy =01 + o ZQWEM [”t( )}
i=1

0y =vy — th [Ut] . €]

e (Worker: Update) The parameter server sends
Q.,, [v¢] to all workers. Then each worker updates
its local model using

xip1 = T — YQu, [V4],

where 7 is the learning rate.

It is worth noting that all information exchanged between
workers and parameter server under the DOUBLESQUEEZE
framework is compressed. As a result, the required band-
width could be extremely low (much lower than 10%). Com-
paring to some recent error compensated algorithms (Stich
et al., 2018), they only compress the gradient sent from the
worker to the PS and still send dense vector from PS to
workers, which can only save bandwidth up to 50%.

3.2. Compression options

Note that here unlike many existing work (Alistarh et al.,
2017; Jiang & Agrawal, [2018)), we do not require the com-
pression to be unbiased, which means we do not assume
E,Q.[z] = x. So the choice of compression in our frame-
work is pretty flexible. We list a few commonly options for

e Randomized Quantization: (Alistarh et al. 2017;
Zhang et al.| [2017a)) For any real number z € [a, b] (a,
b are pre-designed low-bit number), with probability
Z:Z compress p into a, and with probability =2 com-
press z into b. This compression operator is unbiased.

e 1-Bit Quantization: Compress a vector x into
lz]|sign(x), where sign(x) is a vector whose ele-
ment take the sign of the corresponding element in
x (see |Bernstein et al. (2018a)). This compression
operator is biased.

’Deterministic operator can be considered as a special case of
the randomized operator.
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e Clipping: For any real number z, directly set its lower
k bits into zero. For example, deterministically com-
press 1.23456 into 1.2 with its lower 4 bits set to zero.
This compression operator is biased.

e Top—Fk sparsification: (Stich et al., 2018) For any
vector x, compress by retaining the top k largest
elements of this vector and set the others to zero. This
compression operator is biased.

e Randomized Sparsification: (Wangni et al. [2018])
For any real number z, with probability p set z to 0
and g with probability p. This is also an unbiased
compression operator.

3.3. Mathematical form of the updating rule by
DOUBLESQUEEZE

Below we are going to prove that the updating rule of
DOUBLESQUEEZE admits the form

iy =x — YV (X)) + 7€ — 71+, (5)
where

1S 500
Q=6 — E o
t t+n h

i=1

& =23 (Vi) -V (2c)). ©

i=1
Here 5t(i) and &; are computed according to (3)) and @).

According to the algorithm description in Section we
know that the updating rule for the global model x; can be
written as

LTt41 — Ly

= - FYth

o

1 & ;
(5t—1 + % ; th(i) [vt(z)”

1 i
01+ - ; Q0 [fug q) — 6t> (from (@)

/N

Qwﬁi) [U(i)} — 701+ 70

|
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3=
INgh

N
Il
-

I

\
312
INgh

(vt(i) — 5,5“) —v0i—1 + 0 (from (3))
1

-
Il

3=

(VF@:¢?) + 8, - 6f7)
1=1
— 01+ V¢

(from 2))
7 v :
=T ; VF(z; Cy)) — Y1 4+ Y,

==V f(x:) +7v& — Y1 + Y.

4. Convergence Analysis

In this section, we are going to give the convergence rate of
DOUBLESQUEEZE, and from the theoretical result we shall
see that DOUBLESQUEEZE is quite efficient in the way that
it could reduce the side effect of the compression. For the
convenience of further discussion, we first introduce some
assumptions that are necessary for theoretical analysis.

Assumption 1. We make the following assumptions:

1. Lipschitzian gradient: f(-) is assumed to be with L-
Lipschitzian gradients, which means

IVf(x) =Vl <Lz -yl vz vy,

2. Bounded variance: The variance of the stochastic gra-
dient is bounded

VEF(@;¢) - Vf(@)|* < o®,

ECNDi V:I?, Vi.

3. Bounded magnitude of error for Q,[-]: The magni-
tude of worker’s local errors 651) (defined in (3)), and
the server’s global error &, (defined in {@)), are as-
sumed to be bounded by a constant ¢

gg, Vi, Vi,

€

E, ||6¢]] gi, Vt.

E, ] 5

Here the first and second assumptions are commonly used
for non-convex convergence analysis. The third assumption
is used to restrict the compression. It can be obtained from
the following commonly used assumptions (Stich et al.|
2018):

E|Colx] - x[|* <o?[lz]?,
IVF()]* <G, va,

a€l0,1),Va

where « is a constant specifies the compression level and is
not required to be bounded in [0, 1). Because

E||6:]]* = E||Culg — 61—1] — gt + 6—1]®, (D)

where g, := £ 3" | VF(w; &) is the sum of all stochas-
tic gradient at each iteration, then from we have

E||8:]|?
<Eo?||ge — 81|

1
<(1+ p)o?Ellga” + (1 i p) o?E||b 1 |

2
<(1+p)a’Ellge]l* + ((1+ p)o?) " Ellge—|?

1 2 ? 2
+ 1+; « EH(St,QH
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<

(u+ma%tﬁw%W+(@+;)Mwaw2

M- 104~

<> (1 +p)a?) Ellg.l® (8o =0)
s=1

GZJr‘L2 o2
P 2?2
S (Bl e+ T

Here p > 0 can be any positive constant. So ||&;]|? would
be bounded as long as o < \/%’ which is equivalent to

a € [0,1) since p can be any positive number.
Next we are ready to present the main theorem for
DOUBLESQUEEZE.

Theorem 1. Under Assumption[l] for DOUBLESQUEEZE,
we have the following convergence rate

(”—)E}Eme

L120°T
<Ef(@o) — Ef(@") + 5 — + 2L,
n

Given the generic result in Theorem [T} we obtain the conver-
gence rate for DOUBLESQUEEZE with appropriately chosen
the learning rate ~.

Corollary 2. Under Assumption[l] for DOUBLESQUEEZE,

choosing
1
Y= = PR
4L + o - + €373

we have the following convergence rate

W\N

T-1
1 ) 1
_ < . _
7 L EIVI@P S ot gyt

where we treat f(x1) — f* and L as constants.

This result suggests that

e (Comparison to SGD) DoubleSqueeze essentially ad-
mits the same convergence rate as SGD in the sense
that both of them admit the asymptotical convergence

rate O(1/V/T);

e (Linear Speedup) The asymptotical convergence rate
of DOUBLESQUEEZE is O(1/y/nT), the same conver-
gence rate as Parallel SGD. It implies that the averaged
sample complexity is O(1/(ne?)). To the best of our
knowledge, this is the first analysis to show the linear
speedup for the error compensated type of algorithms.

e (Advantage over non error-compensated SGD (Al
istarh et al., 2017; |Wangni et al., 2018)) For non

error-compensated SGD, there is no guarantee for con-
vergence in general unless the compression operator
is unbiased. Using the existing analysis for SGD’s
convergence rate

/

memeN}fT

where ¢’ is the stochastic variance, it is not hard to
obtain the following convergence rate for unbiased
compressed SGD:

(one-pass compressed SGD on workers such as QSGD
(Alistarh et al., 2017) and sparse SGD (Wangni et al.,
2018))

—_

SAT AT T

(double-pass compressed SGD on workers and the pa-
rameter server)

1= !
7 SEIV@)? S —— + —
t=0

= , 1
7 L EIVI@P S ot ot

Note that e measures the upper bound of the (stochas-
tic) compression variance. Therefore, when ¢ is domi-
nant, the convergence rate for DOUBLESQUEEZE has a
much better dependence on € in terms of iteration num-
ber T'. It means that DOUBLESQUEEZE has a much
better tolerance on the compression variance or bias.
It makes sense since DOUBLESQUEEZE does not drop
any information in stochastic gradients just delay to
update some portion in them.

5. Experiments

We validate our theory with experiments that compared
DOUBLESQUEEZE with other compression implementa-
tions. We run experiments with 1 parameter server and
8 workers, and show that, the DOUBLESQUEEZE converges
similar to SGD without compression, but runs much faster
than vanilla SGD and other compressed SGD algorithms
when bandwidth is limited.

5.1. Experiment setting

Datasets and models We evaluate DOUBLESQUEEZE by
training ResNet-18 (He et al., 2016) on CIFAR-10. The
model size is about 44MB.
Implementations and setups We evaluate five SGD im-
plementations:

1. DOUBLESQUEEZE. Both workers and the parame-
ter server compress gradients. The error caused by



DOUBLESQUEEZE

compression are saved and used to compensate new
gradients as shown in Algorithm [I} We evaluate
DOUBLESQUEEZE with two compression methods:

e [-bit compression: The gradients are quantized
into 1-bit representation (containing the sign of
each element). Accompanying the vector, a scal-
ing factor is computed as

magnitude of compensated gradient

magnitude of quantized gradient

The scaling factor is multiplied onto the quan-
tized gradient whenever the quantized gradient is
used, so that the recovered gradient has the same
magnitude of the compensated gradient.

e Top-k compression: The compensated gradients
are compressed so that only the largest k£ elements
(in the sense of absolute value) are kept, and all
other elements are set to 0.

2. QSGD (Alistarh et al.,2017). The workers quantize
the gradients into a tenary representation, where each
element is in the set {—1,0, 1}. Assuming the element
with maximum absolute value in a gradient vector is
m, for any other element e, it has a probability of
le|/|m| to be quantized to sign(e), and a probability
of 1 — |e|/|m] to be quantized to 0. A scaling factor
like the one in DOUBLESQUEEZE is computed as

magnitude of original gradient
magnitude of compressed gradient”

The parameter server aggregates the gradients and
sends the aggregated gradient back to all workers with-
out compression.

3. Vanilla SGD. This is the common centralized parallel
SGD implementation without compression, where the
parameter server aggregates all gradients and sends it
back to each worker.

4. MEM-SGD. As in DOUBLESQUEEZE, workers do
both compression and compensation. However, the
parameter server aggregates all gradients and sends
it back to all workers without compression as shown
in |Stich et al.| (2018)). For MEM-SGD, we also eval-
uate both 1-bit compression and top-k compression
methods.

5. Top-k SGD. This is vanilla SGD with top-k compres-
sion in each worker, without compensation.

For more direct comparison, no momentum and weight
decay are used in the optimization process. The learning
rate starts with 0.1 and is reduced by a factor of 10 every
160 epochs. The batch size is set to 256 on each worker.
Each worker computes gradients on a Nvidia 1080Ti.

- Vanilla SGD
- DoubleSqueeze
MEM-SGD

—— QSGD

Loss

Figure 1: Training loss w.r.t. epochs for DOUBLESQUEEZE
(1-bit compression), QSGD, Vanilla SGD, and MEM-SGD
(1-bit compression) on CIFAR-10.

100~
Y T T
> 80 -
O
© 60 —— Vanilla SGD
o 40 ¥ - DoubleSqueeze
< MEM-SGD
20 —— QSGD
OO 100 200 300
epoch
Figure 2:  Testing accuracy Ww.r.t. epochs for

DOUBLESQUEEZE (1-bit compression), QSGD, Vanilla
SGD, and MEM-SGD (1-bit compression) on CIFAR-10.

5.2. Experiment results

The empirical study is conducted on two compression ap-
proaches: 1-bit compression and top-k compression.

1-bit compression We apply the 1-bit compression to
DOUBLESQUEEZE, MEM-SGD, QSGD, and report results
for the training loss w.r.t. epochs in Figure[T] The result
shows that with 1-bit compression DOUBLESQUEEZE and
MEM-SGD converge similarly w.r.t. epochs as Vanilla SGD,
while QSGD converges much slower due to the lack of com-
pensation. For testing accuracy, we have similar results, as
shown in Figure 2}

While DOUBLESQUEEZE, MEM-SGD, and Vanilla SGD
converges similarly w.r.t. epochs, when network bandwidth
is limited, DOUBLESQUEEZE can be much faster than other
algorithms as shown in Figure 3]

Top-k compression For the top-k compression method,
we choose k = 300000, which is about 1/32 of the number
of parameters in the model. We report results for the training
loss and testing accuracy w.r.t. epochs in Figure ] and
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500 -|=— Vanilla SGD
- DoubleSqueeze

» 400 - MEM-SGD
ge]
c == QSGD
S 300 - _—
O ’/’
? 200 -
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07 T 1
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Bandwidth (1/Mb)

Figure 3: Per iteration time cost for DOUBLESQUEEZE (1-
bit compression), QSGD, MEM-SGD (1-bit compression),
and Vanilla SGD, under different network environments.
The x-axis represents the inverse of the bandwidth of the
parameter server. The y-axis is the number of seconds
needed to finish one iteration.

- Vanilla SGD
- DoubleSqueeze
MEM-SGD

= Top-k SGD

Loss

100 150 200
epoch

0 50

Figure 4: Training loss w.r.t. epochs for DOUBLESQUEEZE
(top-k compression), Top-k SGD, Vanilla SGD, and MEM-
SGD (top-k compression) on CIFAR-10. & = 300000.

Figure 3] respectively, for Vanilla SGD, DOUBLESQUEEZE,
MEM-SGD, and Top-k SGD. With the top-k compression,
all methods converge similarly w.r.t. epochs. The Top-k
SGD method converges a little bit slower.

Similar to what we observed in the 1-bit compres-
sion experiment, when network bandwidth is limited,
DOUBLESQUEEZE can be much faster than other algo-
rithms as shown in Figure [f]

6. Conclusion

In this paper, we study an error-compensated SGD algo-
rithm, namely DOUBLESQUEEZE that performs the com-
pression on both the worker’s side and the parameter server’s
side, to ensure that all information exchanged over the net-
work is compressed. As a result, this approach can sig-
nificantly save the bandwidth, unlike many existing error
compensated algorithms that can only save bandwidth up
to 50%. Theoretical convergence for DOUBLESQUEEZE

100 -
>
O
© 60- —— Vanilla SGD
g 40 —— DoubleSqueeze
< ‘ MEM-SGD
20§ —— Top-k SGD
0 1 1 1 1
0 50 100 150 200
epoch
Figure 5:  Testing accuracy w.r.t. epochs for

DOUBLESQUEEZE (top-k compression), Top-k SGD,
Vanilla SGD, and MEM-SGD (top-k compression) on
CIFAR-10. k£ = 300000.

500 -|= Vanilla SGD
- DoubleSqueeze

» 400 - MEM-SGD
-o — — -
g 300 - Top-k SGD -
v} -
3 200 - —
0 -

100 -

0 I 1 1 1
0.02 0.04 0.06 0.08 0.10

Bandwidth (1/Mb)

Figure 6: Per iteration time cost for DOUBLESQUEEZE (top-
k compression), Top-k SGD, MEM-SGD (top-k compres-
sion), and Vanilla SGD, under different network environ-
ments. The z-axis represents the inverse of the bandwidth
of the parameter server. The y-axis is the number of seconds
needed to finish one iteration.

is also provided. It implies that DOUBLESQUEEZE admits
the linear speedup corresponding to the number of workers,
and has a better tolerance to the compression bias and noise
than those non-error-compensated approaches. Empirical
study is also conducted to validate the DOUBLESQUEEZE
algorithm.
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Supplementary

A. Proof to Theorem 1]

Proof. As already proved, the updating rule of DOUBLESQUEEZE admits the formulation
iy = x — YV f(2) + 7€ — 71 + Q.
Moreover, since we have (from Assumption
E [VF (th Ef@)} =Vfi(z:),
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Introducing the auxiliary sequence {y;} defined as
Yyt =z — V1.
The updating rule of {y;} could be deducted by

Yir1 =Tyr1 — YE
=zt — YV f(x) +7E — Y1 + Y% — Y%
=x; — Y1 — YV (x) + 7€
=yr — YV f(xe) + 7€

Meanwhile, since f(x) is with L-Lipschitz gradients, then we have

EVf(ye) = V()| < LEllye — x]|* = L*Y°El|Q[* < 2L79%¢,

(®)
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and

Ef(yir1) — Ef(y:)

<E(yer1 —y1, Vf(ye)) + gEHytH — el
2
= VB (Y (@), V() + 7B {6, VI (w0) + BNV () — &l

2 2
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Summing up the inequality above from¢ =0tot =T — 1, we get
o2

Ef(yr) —Ef(yo) < — (; - ) Z E |V f(x)|? + r + 4L%%~°T,

which can be also written as

L~y202T

(3-2 ) Z BV /(@0)l? <Ef(yo) — Ef(yr) + 412
Ly%0*T
<Ef(wo) — Ef (@) + 5 — +4L%*T
n
It completes the proof.
A.1. Proof to Corollary 2]
Proof. Given the choice of v = m, we have
1
1—~L <=
=5
Also, from Theoremm we have
-1
L~y20%T
(g - ) S E|Vi @) <Ef(@o) — Ef(@) + —L— +4L%*°T,
t=0
T—1
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t=0 v "
Combing (9) and (10) together we get
T—1
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77 2 EIV @I < - + 7 812y
Replacing v = m in the equation above we get
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4(Ef(xo) —Ef(x*)) T 2, 1 Lo 8L2%e%
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Taking f(ax¢) — f* and L as constants, the inequality above gives
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which completes the proof.
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