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Abstract

It has been recently observed that neural networks, unlike kernel methods, enjoy
a reduced sample complexity when the distribution is isotropic (i.e., when the
covariance matrix is the identity). We find that this sensitivity to the data distribution
is not exclusive to neural networks, and the same phenomenon can be observed
on the class of quadratic classifiers (i.e., the sign of a quadratic polynomial) with
a nuclear-norm constraint. We demonstrate this by deriving an upper bound on
the Rademacher Complexity that depends on two key quantities: (i) the intrinsic
dimension, which is a measure of isotropy, and (ii) the largest eigenvalue of the
second moment (covariance) matrix of the distribution. Our result improves the
dependence on the dimension over the best previously known bound and precisely
quantifies the relation between the sample complexity and the level of isotropy of
the distribution.

1 Introduction

We revisit the problem of supervised classification using quadratic features of the data. We do so
to highlight the influence of properties of data distrbution on the generalization error. Most of the
existing results on this error only use a bound on the support of the distribution. By leveraging results
from matrix concentration, we show an improved bound that uses more refined properties of the data
distribution, like the second moment matrix.

The use of the second moment matrix in the error bound shows that the intrinsic dimension of the
data distribution plays an important role. This is of particular interest because it is widely believed
that real-world data distributions have nice properties that allow classifiers, namely neural networks,
to avoid the worst-case sample complexities predicted by generalization bounds Jiang* et al. (2020).

Indeed, assumptions like the manifold hypothesis, which state that the data lies on lower dimensional
embedded manifold, are often made to explain the practical success of some generative methods. A
recent paper by Pope et al. (2021) computes estimates of this true dimensionality of common machine
learning datasets and shows that they are much lower than the ambient dimension of the pixel space
[0, 1]d. It is therefore important that properties of the data distribution, going beyond simple bounds
on the support, intervene in the study of generalization.

This influence of intrinsic dimension on generalization has been recently observed in the context of
differentiating neural networks and from their kernel approximations, like the neural tangent kernel
Jacot et al. (2018) or random feature models Yehudai and Shamir (2019). In particular, Ghorbani
et al. (2020) observe that neural networks seem to require fewer samples than kernel methods to learn
when the data distribution is isotropic.

We show that a similar phenomenon occurs in the simpler setting of quadratic classifiers, which leads
to a better understanding of the causes. An improvement in sample complexity on isotropic data
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distributions can be proved when comparing nuclear-norm constrained quadratic classifiers and the
corresponding kernel method (Frobenius norm constrained classifiers).

The study of quadratic classifiers can serve as an important first step in understanding how neural
networks take advantage of the intrinsic dimension to learn with fewer samples Du and Lee (2018);
Bai and Lee (2020). The nuclear-norm constraint is a natural one to study in this context. Indeed,
when applying weight-decay (or `2-regularization) on a single-hidden layer neural network with
quadratic activations, the regularization is in effect encouraging a low nuclear norm of the coefficient
matrix of the quadratic polynomial.

A better understanding of quadratics is also a worthwhile goal in its own right: complex architectures
like those in Jayakumar et al. (2020) use quadratics as building blocks, attention layers Vaswani et al.
(2017), which have seen great success in language processing tasks, are multiplicative interactions.

For these reasons, we present theoretical and practical developments of nuclear-norm regularization
for quadratic classification. We summarize our contributions as follows

Rademacher complexity bounds. We present a new bound on the Rademacher complexity of
quadratic classifiers with a nuclear norm constraint c.f. Theorem 1. It improves upon the previously
known bound, implied by the results by Kakade et al. (2012), by up to a square-root factor of the
dimension, depending on the distribution of the data c.f. Lemma 4.

As a consequence of our bound, we draw attention to a clear difference between the complexity of
nuclear-norm constrained and Frobenius-norm constrained quadratic classifiers. When the input
data distribution is nearly-isotropic, the former enjoys a reduced dependency on the dimension. In
contrast, the complexity of Frobenius-norm constrained classifiers has the same dependency on the
dimension, independently of how isotropic the input data distribution is (Corollary 2).

This observation motivates the use of data whitening pre-processing steps, which are commonly used
in practice: such transformation might bring the second-order moment (covariance) matrix of the
distribution close to the identity matrix and thus to nearly-isotropicity.

Computable generalization bounds. The refined Rademacher complexity bound that we obtain
depends on the often unknown second-order moment of the distribution, rather than simple bounds
on the diameter of the support as in (Kakade et al., 2012). Even though useful in theory, it is
desirable in practice to obtain bounds that can be computed from a sample. We overcome this
difficulty in Theorem 3, where we provide high-probability computable generalization error bounds
for nuclear-norm constrained quadratic classifiers.

Experiments. We illustrate our theoretical results on synthetic data. We show how the isotropy
of the input distribution plays a major role in the generalization properties of quadratic classifiers.
As the dimension increases and the sample size remains proportional to it, we observe a constant
generalization gap for the nuclear-norm constrained classifier. In contrast, for SVMs, the gap grows
at a predicted

√
d rate. In the case of anisotropic distributions, we observe similar performance for

both regularization schemes.

1.1 Related work

Kakade et al. (2012) provides generalization error bounds for the more general problem of learning a
linear classifier over matrices. An upper bound for quadratic classifiers with a nuclear norm constraint
can be derived as a consequence of their results c.f. Corollary 1. To the best of our knowledge, it
is the only known bound for the hypothesis class we study, and thus the one we compare to. Our
analysis improves the dependency on the dimension. See subsection 2.1 for a technical discussion.

Because of the generality of the results in Kakade et al. (2012), it is only natural that the implied
bound in some particular case is not the tightest. We precisely give a step towards tight complexity
estimates for classification with quadratic polynomials. We look on our results as relevant, given the
simplicity and widespread use of linear learning over features.

Wimalawarne et al. (2016) study linear classifiers over higher-order tensor spaces, using constraints
on generalized notions of the nuclear norm. The problem we study is thus a particular case. General-
ization error bounds via Rademacher complexity are provided, but they apply only under a highly
restrictive assumption: the entries of the tensor are independent standard normal random variables. In
contrast we only require a boundedness condition.
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Srebro et al. (2005); Srebro and Shraibman (2005) develop the theory of nuclear-norm regularization
for matrix completion. Bounds on the Rademacher complexity of the class of matrices with bounded
nuclear-norm are obtained in Srebro (2005). However, in this setting matrices are understood as
mappings from an index pair to a value, and the generalization error measures how well the missing
entries of the target matrix can be predicted. In contrast, in our setting the matrix corresponds to the
coefficients of a quadratic polynomial, so the bounds are not comparable.

Pontil and Maurer (2013) study nuclear-norm regularization in the context of multi-task learning
(Caruana, 1997). Rademacher complexity bounds are obtained for nuclear-norm constrained multi-
task classifiers. In this setting, each row of the matrix corresponds to a linear classifier for a different
task, and each task corresponds to a different distribution over data-label pairs.

Matrices with bounded trace norm also have been studied by Amit et al. (2007) and Yu et al. (2014)
in the related multi-class classification and multi-label learning setting, respectively. Yu et al. (2014)
remark essential differences between Rademacher complexity bounds of nuclear- and Frobenius-norm
constrained linear classifiers, similar to our conclusion in Corollary 2. In all such problems, however,
the setting is not comparable to ours: the matrix acts as a linear mapping of the sample, rather than as
a quadratic. Thus, the analysis is not analogous and requires a different set of tools in our case.

The analysis in Yu et al. (2014) is closest in spirit to ours, as their bound also depends on the intrinsic
dimension of the distribution, and the largest eigenvalue of the second moment (covariance) matrix.
However, we go the extra mile and achieve bounds that can be computed from the sample at hand
(Theorem 3), as the true second moment (covariance) matrix is usually unknown.

The papers Du and Lee (2018); Bai and Lee (2020) establish a similar result as ours for a different
norm for a non-convex parametrization of quadratic polynomials. The reparametrization consits of
writing the coefficient matrix as a sum of m rank 1 matrices which facilitates analogies to neural
networks. It is straighforward to see that their studied norm ‖ · ‖2,4 is, in essence, a way of upper
bounding the nuclear-norm by using the reparametrization.

2 Rademacher complexity bounds

Notation. Throughout this section x ∈ Rd is a random variable with distribution µ, and Xn =
(x1, . . .xn) is a sample of i.i.d. random variables drawn from µ. The second moment matrix of µ is
denoted by Σ := E[xxT ]. Note that, for centered (mean zero) random variables, this notion coincides
with the covariance matrix. For a square symmetric matrix A we denote with ‖A‖F , ‖A‖2 and
‖A‖tr its Frobenius-norm, spectral-norm and nuclear-norm, respectively. The notation . stands
for less than or equal, but hides constants independent of the dimension or number of samples. The
notation x ≈ y means that there exist constants c, C > 0 such that cy ≤ x ≤ Cy.

We consider a binary classifier obtained from a homogeneous quadratic polynomial. Such a function
can be parametrized as fA(x) := xTAx, where A is a square symmetric matrix containing the
coefficients of the monomials. In order to control the complexity of a quadratic polynomial we choose
a matrix norm ‖·‖ and consider only elements in a constrained set:

Q‖·‖,λ := {fA(x) = xTAx : ‖A‖ ≤ λ}, Q‖·‖ := Q‖·‖,1 (1)

We quantify the complexity of such function classes using the classical notion of Rademacher
complexity. It is well known that high probability generalization error bounds can be obtained in
terms of this quantity (Koltchinskii and Panchenko, 2002; Bartlett and Mendelson, 2003). For this
reason, we focus only on deriving upper bounds on this complexity measure.
Definition 1 (Rademacher complexity). Let σ be uniformly distributed over the set {−1, 1}n and
let Xn = [x1, . . . ,xn] ⊆ Rd be an i.i.d. sample drawn according to µ. For a class of functions
F : Rd → R we define the empirical Rademacher complexity and the Rademacher complexity (with
respect to µ) of F , respectively, as:

R̂(F ;Xn) := Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
, Rn,µ(F) = E[R̂(F ;Xn)] (2)

Our bounds depend on the distribution through its intrinsic dimension (Tropp, 2015, Section 7),
which measures how much the probability density concentrates near low-dimensional subspaces.
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Definition 2. The intrinsic dimension of a distribution µ is the ratio 1 ≤ r(Σ) := tr(Σ)/‖Σ‖2 ≤ d.

We are now ready to state our main results about the Rademacher complexity of homogeneous
quadratic polynomials with nuclear norm constraint:

Theorem 1. Let x ∈ Rd such that ‖x‖22 . E‖x‖22 almost surely and suppose n & r(Σ) log d. It
holds that

Rn,µ(Q‖·‖tr,λ) . λ

√
r(Σ) log d

n
‖Σ‖2 (3)

Now we proceed to prove Theorem 1. First, we only focus on the class Q‖·‖ corresponding to the
unit nuclear-norm ball. This is justified by well-known technical result Lemma 1, whose proof is
included for completeness in Appendix D.

Lemma 1. Rn,µ(Q‖·‖,λ) ≤ λRn,µ(Q‖·‖).

The backbone of Theorem 1 is Lemma 3, which relates the Rademacher complexity of a class of
functions to concentration of empirical means to expectations with respect to the dual norm. It makes
use of the technical Lemma 2, whose proof is included for completeness in Appendix B.

Lemma 2. For all even n ∈ N, it holds that
∑n
k=0|2k − n|

(
n
k

)
<
√
n2n

Lemma 3. Denote by ‖·‖∗ the dual norm of ‖·‖. DefineMk := E ‖Σk − Σ‖∗ , Σk := 1
k

∑k
i=1 xix

T
i

The Rademacher complexity of the class Q‖·‖ can be upper bounded as follows:

Rn,µ(Q‖·‖) ≤
1

n2n−1

n∑
k=1

k

(
n

k

)
Mk +

‖Σ‖∗√
n

(4)

Proof. We first compute an upper bound on the empirical Rademacher complexity. The result will
follow after taking expectation of the bound over the sample Xn = [x1, . . . ,xn]. By definition of the
dual norm, using the basic algebraic identity xTAx = 〈A,xxT 〉 we have

R̂(Q‖·‖;Xn) =
1

n
Eσ sup
‖A‖≤1

〈
A,

n∑
i=1

σixix
T
i

〉
=

1

n
Eσ

∥∥∥∥∥
n∑
i=1

σixix
T
i

∥∥∥∥∥
∗

(5)

We now compute the expectation in eq. 5. There is a bijection between the possible configurations of
the Rademacher variable σ ∈ {−1, 1}n and the power set of [n], namely σ 7→ {i ∈ [n] : σi = 1}.
This allows us to write eq. 5 as:

R̂(Q‖·‖;Xn) =
1

n
Eσ

∥∥∥∥∥
n∑
i=1

σixix
T
i

∥∥∥∥∥
∗

=
1

n2n

∑
B⊆[n]

∥∥∥∥∥∑
i∈B

xix
T
i −

∑
i∈Bc

xix
T
i

∥∥∥∥∥
∗︸ ︷︷ ︸

:=DB

(6)

Let ΣB := |B|−1
∑
i∈B xix

T
i . Using the triangle inequality, we can bound DB as:

DB ≤|B|‖ΣB − Σ‖∗ + ||B| − |Bc||‖Σ‖∗ + |Bc|‖ΣBc − Σ‖∗ (7)

To obtain a bound on the Rademacher complexity, we need now sum over B ⊆ [n] the terms on the
right hand side of eq. 7, and take expectation with respect to the sample Xn. First, we will deal with
the sum of the second term in eq. 7, as it is actually a deterministic value. We can sum over B ⊆ [n]
by grouping together subsets B of the same cardinality |B| = k. We obtain:

∑
B⊆[n]

||B| − |Bc||‖Σ‖∗ =

n∑
k=0

(
n

k

)
|2k − n|‖Σ‖∗ ≤

√
n2n‖Σ‖∗ (8)

where the last inequality follows from Lemma 2.

Finally, we compute the expectation of the sum over B ⊆ [n] of the first and third term in eq. 7. After
taking the sum, both terms become equal by symmetry. It suffices to bound the sum of the first term.
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Notice that because the variables x1, . . . ,xn are i.i.d., the distribution of ΣB depends only on the
size of the set B. Using the same counting argument as in eq. 8 we arrive at:

E
∑
B⊆[n]

|B|‖ΣB − Σ‖∗ =
∑
B⊆[n]

|B|E‖ΣB − Σ‖∗

=

n∑
k=1

k

(
n

k

)
E‖Σk − Σ‖∗︸ ︷︷ ︸

=Mk

(9)

Combining the bounds in eq. 8 and eq. 9, and dividing by n2n we obtain the result.

Note that the proof of Lemma 3 follows from technical arguments but the final result is not to be
found in the literature, in this form or a similar one. In particular, it is completely unrelated to the
result by Vershynin (2011) with which it only shares the fairly trivial split of Rademacher random
variables preceding eq. 6.

Lemma 3 provides a way to derive Rademacher complexity bounds from a bound on the expected
deviations Mk defined in Lemma 3, and might be of independent interest. In the particular case
where the norm in consideration is the nuclear-norm, this lemma will be used to establish Theorem 1
as a simple application of a well-known non-asymptotic bound for the convergence of the empirical
second moment (covariance) matrix to the true second moment (covariance) matrix.

Proof of Theorem 1. Recall that the dual norm of the nuclear-norm is the spectral-norm. The value of
Mk in Lemma 3 measures the average deviation of the empirical second moment matrix Σk to the true
Σ, in spectral-norm. Our assumption that ‖x‖22 . E‖x‖22 almost surely, implies the concentration
result (Vershynin, 2018, Theorem 5.6.1), which concludes that

Mk .

(√
r(Σ) log d

k
+
r(Σ) log d

k

)
‖Σ‖2 (10)

Plug this in eq. 4, and use the bound
√
k ≤
√
n for k ≤ n to obtain the inequality

Rn,µ(Q‖·‖tr) .

(√
r(Σ) log d

n
+
r(Σ) log d

n

)
‖Σ‖2 (11)

By assumption n & r(Σ) log d, so that the first term in eq. 11 is the largest. The second term is of
smaller order and thus ends up hidden by the notation .. We conclude

Rn,µ(Q‖·‖tr) .
√
r(Σ) log d

n
‖Σ‖2 (12)

Invoking Lemma 1 we obtain the desired result.

2.1 Improvement upon previous work

We now show how our derived upper bound improves over the current best known bound by Kakade
et al. (2012). To the best of our knowledge, the Rademacher complexity of quadratic classifiers with
a nuclear-norm constraint has not been previously analyzed in a direct manner, as we do. Instead, the
only existing bound (Corollary 1) appears as a particular case of Theorem 2.

Theorem 2 (Kakade et al. (2012) page 1876). Let

G‖·‖tr,λ := {gA(X) := 〈A,X〉 : ‖A‖tr ≤ λ} (13)

be the class of nuclear-norm constrained linear functions over square d × d matrices. Let µ be a
distribution supported on X ⊆ Rd×d. It holds that:

Rn,µ(G‖·‖tr,λ) . λX∞

√
log d

n
, X∞ = sup

X∈X
‖X‖2
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Corollary 1. Let x ∈ X ⊆ Rd be a random variable with distribution µ. The Rademacher complexity
of the class in eq. 1 can be bounded as

Rn,µ(Q‖·‖tr,λ) . λx∞

√
log d

n
, x∞ := sup

x∈X
‖x‖22

Corollary 1 is a consequence of the fact that a function of the form fA(x) = xTAx can be written as
a linear classifier on matrices, gA(X) = 〈A,X〉, where X = xxT . In this case, it is easy to see that
X∞ = supx∈X ‖xxT ‖ = supx∈X ‖x‖22 =: x∞. The only difference with our bound in Theorem 1 is
that the term x∞ appears in place of

√
r(Σ)‖Σ‖2.

In order to understand the difference between the two bounds, we turn to the analysis of the quotient
between the bound in Corollary 1 and our bound Theorem 1. In Lemma 4 we show that this quotient
can differ drastically, depending on the distribution.

Remark 1. The variablesX∞ and x∞ defined respectively in Theorem 2 and Corollary 1 respectively,
correspond to the supremum of a random variable. Because the Rademacher complexity arises as an
expectation, it is clear that such quantities can be (and should be) replaced by the closely related
measure-theoretic notion of essential supremum (denoted by ess sup): the least upper bound that
holds almost surely. In this way the bounds are only tighter, and we believe this was the true intended
definition by Kakade et al. (2012). In the following we will compare our bound to this tighter, modified
bound.

Lemma 4. Let x be a random variable supported on a set X ⊆ Rd, and such that ‖x‖22 . E‖x‖22
almost surely, then: √

r(Σ) .
ess supx∈X ‖x‖22√

r(Σ)‖Σ‖2
.
√
r(Σ) (14)

Proof. By definition of essential supremum it holds that E‖x‖22 ≤ ess supx∈X ‖x‖22. Further, our
assumption clearly implies that ess supx∈X ‖x‖22 . E‖x‖22. The identity E‖x‖22 = tr(Σ) and
Definition 2 imply the result.

In summary, Lemma 4 shows that the baseline bound of Kakade et al. (2012) is larger by a square-root
factor of the intrinsic dimension of the distribution (modulo global constants), compared to our bound
in Theorem 1. Such factor ranges between 1 and the square root of the ambient dimension.

Precisely, when the intrinsic dimension of the distribution is equal to the ambient dimension, our
bound enjoys a reduced dimension complexity. This is the case, for example, for isotropic distributions
i.e., distributions such that their second moment matrix is the identity matrix. The dependency of the
Rademacher complexity on the intrinsic dimension of the distribution is not revealed by the more
general proof of Theorem 2 (Kakade et al., 2012).

Remark 2. The logarithmic term in Theorem 1 can be removed under the more restrictive dimension-
independent L-subgaussianity assumption (Mendelson and Zhivotovskiy, 2018).

3 Computable Generalization error bounds

Let y = (y1, . . . , yn) ∈ {−1, 1}n be the labels associated with the data sample, and let

L(f) := P{sign(f(x)) 6= y} (15)

L̂(f ;Xn) :=
1

n

n∑
i=1

min(1,max(0, 1− yif(xi))) (16)

be the missclassification probability and the empirical margin loss of the classifier f , respectively.
It is well-known (Mohri et al., 2018, Theorem 5.8.) that with probability at least 1 − δ, for all
f ∈ Q‖·‖tr,λ:

L(f) . L̂(f ;Xn) +Rn,µ(Q‖·‖tr,λ) +

√
log 1

δ

2n
(17)
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This bound, together with the results in section 2, allow high probability uniform bounds on the
misclassification error of a nuclear-norm constrained quadratic classifier.

However, the bound derived in this way is not actually computable: the Rademacher complexity
bound in Theorem 1 depends on the second moment matrix of the distribution, which is unknown in
practical applications. In the rest of this section we will overcome this drawback.

Rewriting our bound in eq. 3 as:

Rn,µ(Q‖·‖tr) .
√

tr Σ‖Σ‖2 log d

n
(18)

we observe that we need to estimate the trace and the largest eigenvalue of the second order moment
matrix. Our hope is that the empirical estimators, based on the empirical second moment matrix Σn,
will provide a good approximation of the true values.

We arrive at the following high probability bound on the Rademacher complexity in eq. 18, which is
readily computable from samples and a bound on the diameter of the support of the distribution:

Theorem 3. Suppose that ‖x‖22 . E‖x‖22 almost surely. This implies that ‖x‖22 ≤ B for some
B > 0. Define

K1 :=
log d

n−
√
nd(log d+ log 1

δ )
K2 :=

√
2 log 1

δ log d

2n(
√
n−

√
d(log d+ log 1

δ ))
(19)

Let δ > 0 and fA ∈ Q‖·‖tr,λ. Provided n & d(log d + log 1
δ ), with probability at least 1 − 3δ it

holds that
Rn,µ(Q‖·‖tr) .

√
K1 tr Σn‖Σn‖2 +BK2‖Σn‖2︸ ︷︷ ︸

:=M(n,d,δ)

(20)

Moreover, with probability at least 1− 4δ, uniformly for all fA ∈ Q‖·‖tr,λ it holds that

L(fA) . L̂(fA;Xn) + λM(n, d, δ) +

√
log 1

δ

2n
(21)

Proof. See Appendix C.

4 Frobenius vs Nuclear-norm constraint

Perhaps the most common way to use quadratic features is to use a support vector machine (SVM)
with the quadratic kernel K(x,y) := 〈x,y〉2. Lemma 5, which is folklore in the kernel methods
literature, precisely states that the RKHS norm constraint is equivalent to a Frobenius-norm constraint
on the matrix of coefficients A of the underlying quadratic polynomial. Its proof is included for
completeness in Appendix D.

Lemma 5. Let H be the Reproducing Kernel Hilbert Space associated to the symmetric, positive
semidefinite polynomial kernel K(x,y) = 〈x,y〉2, and denote its induced norm by ‖·‖H. Then
f ∈ H if and only if there exists a symmetric matrix A such that f(x) = xTAx and ‖f‖H = ‖A‖F .

For this reason, we now turn to compare the qualities of nuclear-norm and Frobenius-norm constrained
quadratic classifiers. As a consequence of our derived bound (eq. 3), we uncover a fundamental
difference between both regularization schemes (Corollary 2): as the dimension increases, the growth
rate of the complexity of nuclear-norm constrained quadratics strongly depends on the intrinsic
dimension of the distribution. In contrast, that of Frobenius-norm constrained quadratics is insensitive
to it.

In order to derive this rate, we need a way to argue about distributions across different dimensions
and express our generalization bounds only in terms of dimension and number of samples. To this
end, we introduce a natural boundedness assumption on the data distribution:

Assumption 1. ‖x‖22 ≈ d almost surely.
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We now argue why this is a natural scaling order for this norm: if the entries of the random
vector x are upper bounded as |xi| ≤ αmax and their average magnitude is lower bounded as
0 < αmin ≤ 1

d

∑d
i=1 |xi|. Then

αmin
√
d ≤ 1√

d
‖x‖1 ≤ ‖x‖2 ≤

√
d‖x‖∞ ≤

√
dαmax,

and hence, Assumption 1 is satisfied. If we think about distributions of pixel (natural image) data of
increasing resolution, we indeed have an upper bound on the intensity of each pixel. A lower bounded
average pixel intensity only means that images are not arbitrarily dark, which often holds in practice.
Any distribution of similar characteristics (e.g., sensor data) will probably satisfy our assumption.

We also introduce a growth condition on the intrinsic dimension, which states that r(Σ) ≈ ds for
some 0 ≤ s ≤ 1. Rather than being an assumption, this condition helps to understand how our bounds
change as the distribution falls between the two possible extremes given by the bound 1 ≤ r(Σ) ≤ d.
Traditionally, distributions that attain the lower bound (s = 0, r(Σ) = 1) or the upper bound (s = 1,
r(Σ) = d) are called anisotropic or isotropic, respectively.

Corollary 2. Let Assumption 1 hold, and suppose that r(Σ) ≈ ds for some s ∈ [0, 1] and n ≥
r(Σ) log d. Then

Rn,µ(Q‖·‖tr,λ) . λ
d1−s/2√log d√

n
(22)

Rn,µ(Q‖·‖F ,λ) ≈ λ d√
n

(23)

Proof. For the first inequality, note that ‖x‖22 ≈ d implies that tr Σ = E‖x‖22 ≈ d. Thus, tr Σ
‖Σ‖2 =

r(Σ) ≈ ds =⇒ ‖Σ‖2 ≈ d1−s Using these two identities in the inequality eq. 3 we obtain the first
result.

For the second identity, Lemma 5 implies the class of Frobenius-norm constrained quadratic functions
is equal to the ball of radius λ in the RKHS corresponding to the quadratic kernel. By Mohri et al.
(2018, Theorem 5.5)1, we have that

R̂(Q‖·‖F ,λ;Xn) ≈ λ

n

√√√√ n∑
i=1

K(xi,xi) =
λ

n

√√√√ n∑
i=1

‖xi‖42 ≈
λd√
n

(24)

where the final inequality comes from our assumption that ‖x‖22 ≈ d. Taking expectation with respect
to the sample we obtain thatRn,µ(Q‖·‖F ,λ) ≈ λ d√

n
.

Corollary 2 then states that the nuclear norm constraint adapts to the intrinsic dimension of the
distribution. In the worst case (s = 0) it grows linearly2 with dimension; In the best case (s = 1) it is
much slower, and grows as the square root of the dimension.

Note that we can bring any distribution to approximate isotropic position, given a good approximation
of Σ. Hence, it makes sense to expect performance gains if we perform such normalization procedure
before training nuclear-norm constrained quadratic classifiers. In section 5 we will put to test this
claim in synthetic datasets, to illustrate the theory.

5 Experiments

The results derived in Corollary 2 pertain to the worst case generalization gap. This worst case gap is
not guaranteed to be attained by the function found through empirical loss minimization. Therefore,
in order to better test our results, we try to find the function that attains this worst case generalization
gap.

1See remarks following the proof
2for simplicity we ignore the logarithmic factor
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The experiment we propose to illustrate the difference in intrinsic dimension sensitivity consists of
computing the quadratic function f such that E[`(f(x, y))] − 1

n

∑n
i=1 `(f(xi, yi)) is maximized.

The expectation in the term above being generally difficult to compute in closed form, we replace the
objective by an empirical estimate

1

ntest

ntest∑
k=1

`(f(xk, yk))− 1

ntrain

ntrain∑
i=1

`(f(xi, yi)).

We expect this quantity to more faithfully track the upperbounds derived in Corollary 2. Indeed, what
we evaluate here is the capacity of the class constraining f to attain a low loss on ntrain samples while
attaining a very high one on ntest samples.

To illustrate that Frobenius and nuclear norm constrained classifiers exhibit different behaviors
depending on the intrinsic dimension of the data, we compute the result of the maximization procedure
on isotropic distributions on one hand and on anisotropic on the other. We set the radius λ = 1 for
both Nuclear and Frobenius norm constrained classifiers. We then observe the evolution of these
quantities as the dimension increases.

Generating Isotropic Data To generate isotropic data satisfying our assumptions, we sample a
standard Gaussian random vector in Rd and normalize to obtain i.i.d samples xi that are uniformly
distributed on the sphere of radius

√
d.

Generating Anistropic Data To generate anisotropic data, we first generate isotropic data features
by uniformly sampling points on the sphere of radius

√
d as described previously. We then transform

the samples into more anisotropic ones by multiplying each feature vector coordinate-wise by a
vector α(s) defined as α(s)

i = Cs
1
is , i = 1, . . . , d, for s ∈ [0, 1] where Cs is chosen such that

‖α(s)‖2 =
√
d. That, way, s = 0 induces no change on the data, since α(1) = [1, 1, . . . , 1]T , and

larger s implies that the data will be more squashed along the first few coordinates, inducing smaller
intrinsic dimension. This transform does not affect the norm of the vectors since E[‖α(s) × xi‖2] =∑d
k=1(α

(s)
k )2E[[xi]

2
k] =

∑d
k=1(α

(s)
k )2 =

√
d

Generating the labels We test two approaches for generating the labels : (1) We generate a random
matrix A with i.i.d standard Gaussian coordinates and set yi = sgn(x>i Axi), (2) We set the labels
randomly with yi ∼ Bern(0.5).
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(a) Labels generated as yi = sgn(x>Ax)
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(b) Labels generated randomly

Figure 1: Maximized Train/Test loss gaps for each dimension d. The results are averaged over 5
independent runs. The error bars correspond to the standard error.

The results We observe that the maximal gaps do indeed evolve as the theory predicts. We indeed
have the nuclear norm constrained classifier on isotropic data not exhibiting the same growth as the
others, indicating that the maximal generalization gap for nuclear norm constrained classifiers is
indeed sensitive to isotropy. Additional experiments and details are provided in Appendix E.
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6 Discussion

Our result shows that given a fixed regularization parameter λ, nuclear-norm constrained classifiers
can take advantage of the properties of the data distribution to shave off a

√
d factor from the

Rademacher complexity, whereas Frobenius-norm constrained ones cannot.

We rely on two main elements to show this : Hölder’s inequality in equation (5) which introduces
the dual norms and a bound on the expected deviations Mk, which quantifies how fast the empirical
moment estimate converges to the true moment matrix. Both these elements admit extensions to
higher order tensors which corresponds to polynomials of higher degree.

The extension of Hölder’s inequality is immediate. The main difficulty of extending our result lies in
establishing the convergence rate of the deviations E[‖ 1

k

∑k
i=1 x

⊗m
i −M‖op], whereM = E[x⊗m]

is the tensor of m-th moments. For matrices, the rate is obtained through the matrix Bernstein
inequality. Therefore, an extension can be derived by using the recently proved tensor Bernstein
inequality in Luo et al. (2019) obtained by flattening the tensors and recycling the results for matrices.
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