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ABSTRACT

Federated learning (FL) is an emerging distributed learning framework that collab-
oratively trains a shared model without transferring the local clients’ data to a cen-
tralized server. Motivated by concerns stemming from extended communication
and potential attacks, one-shot FL limits communication to a single round while
attempting to retain performance. However, one-shot FL methods often degrade
under high statistical heterogeneity, fail to promote pipeline security, or require
an auxiliary public dataset. To address these limitations, we propose two novel
data-free one-shot FL methods: FEDCVAE-ENS and its extension FEDCVAE-
KD. Both approaches reframe the local learning task using a conditional vari-
ational autoencoder (CVAE) to address high statistical heterogeneity. Further-
more, FEDCVAE-KD leverages knowledge distillation to compress the ensemble
of client decoders into a single decoder. We propose a method that shifts the center
of the CVAE prior distribution and experimentally demonstrate that this promotes
security, and show how either method can incorporate heterogeneous local mod-
els. We confirm the efficacy of the proposed methods over baselines under high
statistical heterogeneity using multiple benchmark datasets. In particular, at the
highest levels of statistical heterogeneity, both FEDCVAE-ENS and FEDCVAE-
KD typically more than double the accuracy of the baselines.

1 INTRODUCTION

Traditional federated learning (FL) achieves privacy protection by sharing learned model parameters
with a central server, circumventing the need for a centralized dataset and thus allowing potentially
sensitive data to remain local to client devices (McMahan et al., 2017). FL has shown promise in
several practical application domains with privacy concerns, such as health care, mobile phones,
and industrial engineering (Li et al., 2020a). However, most existing FL methods depend on sub-
stantial iterative communication (Guha et al., 2019; Li et al., 2020b), introducing a vulnerability to
eavesdropping attacks, among other privacy and security concerns (Mothukuri et al., 2021).

One-shot FL has emerged to address issues associated with communication and security in standard
FL (Guha et al., 2019). One-shot FL limits communication to a single round, which is more practical
in scenarios like model markets, where models trained to convergence are sold with no possibility
for iterative communication during local client training (Li et al., 2021b). In high impact settings,
like health care, data could be highly heterogeneous and computation capabilities could be varied;
for example, health care institutions could have different prevalence rates of particular diseases or
no data on a disease and substantially different computing abilities depending on funding (Li et al.,
2020a). Furthermore, fewer communications rounds means fewer opportunities for eavesdropping
attacks. While results in one-shot FL are promising, existing methods struggle under high statistical
heterogeneity, non-independently- and identically-distributed (non-IID) data, (i.e., Zhou et al. (2020)
Zhang et al. (2021)) or do not fully consider statistical heterogeneity (i.e., Guha et al. (2019), Shin
et al. (2020), Li et al. (2021b)). Additionally, most do not consider pipeline security (i.e., Shin
et al. (2020), Li et al. (2021b), Zhang et al. (2021)). Furthermore, an auxiliary public dataset is
often required to achieve satisfactory performance in one-shot FL (i.e., Guha et al. (2019), Li et al.
(2021b)), which may be difficult to obtain in practice (Zhu et al., 2021).
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Figure 1: Motivating our proposed methods, FEDCVAE-ENS and FEDCVAE-KD, using the
MNIST dataset as an example. In cases of very high statistical heterogeneity, each client will only
observe one or two of the ten available classes, as seen on the left where the size of each dot is
proportional to the number of samples. For example, client 2 only observes 4’s and 7’s, resulting in
a client decoder that can expertly generate these digits. Note that the columns are shown in order of
conditioning class (digits 0-9). Similarly, client 4 is an expert in 3’s and 6’s. In FEDCVAE-KD, our
lightweight knowledge distillation training procedure compacts local learning into a single server
decoder, as evidenced by the high-quality samples from all available classes (digits 0-9). This server
decoder can then be used for any downstream task, e.g., classification.

To address these issues, we jointly propose FEDCVAE-ENS and FEDCVAE-KD, two novel data-
free one-shot FL models that reframe the local learning task using conditional variational autoen-
coders (CVAE). Because CVAEs can easily learn a simplified data distribution, both methods train
CVAEs locally to capture the narrow conditional data distributions that arise in the high statisti-
cal heterogeneity setting. Figure 1 shows how client decoders become experts in the few classes
that they observed. These decoders are ensembled (FEDCVAE-ENS) or compactly aggregated
(FEDCVAE-KD). More specifically, FEDCVAE-KD aggregates the models using a lightweight
knowledge distillation procedure; client decoders are teachers, and the server decoder is the student.
Figure 1 shows images generated by the server decoder.

Thorough experiments on multiple benchmark datasets (MNIST, FashionMNIST, SVHN) demon-
strate the superiority of FEDCVAE-ENS and FEDCVAE-KD over other relevant one-shot FL meth-
ods in the high statistical heterogeneity setting. In particular, FEDCVAE-ENS and FEDCVAE-KD
obtain more than 1.75× the accuracy of the best baseline method for MNIST, more than 2× the
accuracy for FashionMNIST, and more than 2.75× the accuracy for SVHN under extreme statistical
heterogeneity (i.e., clients only observe one or two classes). Furthermore, to protect the decoders
uploaded to the server, we propose a method to shift the center of the CVAE prior distribution. We
show that without knowing the center of the prior, an eavesdropping attacker cannot train a perfor-
mant classifier, thus promoting pipeline security.

In sum, our contributions are two one-shot FL methods targeted to the high statistical heterogeneity
setting that: (1) perform substantially better than other baseline methods in this setting, (2) demon-
strate invariance to the number of clients, (3) are data-free and can be applied to any downstream task
requiring a labeled dataset, (4) allow for heterogeneous local model architectures, and (5) extend to
promote pipeline security. To the best of our knowledge, we are the first to thoroughly address very
high statistical heterogeneity in one-shot FL.

2 PRELIMINARIES

Conditional Variational Autoencoders. A variational autoencoder (VAE) is a probabilistic gen-
erative model that attempts to learn the distribution of data samples (Kingma & Welling, 2014).
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A VAE is a latent variable method that models the joint distribution pθ(x, z) of a data sample
x ∈ X ⊆ RD and latent variable z ∈ Z ⊆ Rd, where usually d << D. This joint can be factorized
as pθ(x, z) = pθ(x|z)p(z), where the prior p(z) is usually chosen to be a multivariate standard
normal distribution, i.e., p(z) = N (0, I). The posterior pθ(z|x) is approximated via an inference
model qϕ(z|x) called the encoder and the model for the conditional likelihood pθ(x|z) is called the
decoder. In our case, both the encoder and decoder are deep neural networks parameterized by ϕ
and θ, respectively. Conditional VAEs (CVAEs) extend the basic VAE by conditioning the encoder
and decoder on the one-hot encoding of the class label y ∈ Y = {1, 2, ...,K} corresponding to data
sample x, resulting in the conditional encoder qϕ(z|x,y) and conditional decoder pθ(x|z,y). A
CVAE is trained by maximizing the variational lower bound:

L(ϕ,θ;x,y) = −DKL(qϕ(z|x,y) || p(z)) + Eqϕ(z|x,y)[log pθ(x|z,y)], (1)

which bounds the conditional marginal likelihood of the data log p(x|y). Here, DKL(·) represents
KL-divergence.

Knowledge Distillation. Knowledge distillation (KD) aims to extract information from a trained
teacher model to train a separate lightweight student model (Buciluǎ et al., 2006; Hinton et al.,
2015). Typically, the student model is trained by minimizing the discrepancy between student and
teacher logits generated using a suitable auxiliary dataset (Hinton et al., 2015); KL-divergence is
often chosen as the measure of discrepancy. Some works ensemble teacher models, using the average
of teacher logits in an attempt to compact ensemble knowledge into a single student model (Anil
et al., 2018; Dvornik et al., 2019; Furlanello et al., 2018). Several works have integrated KD into
FL to mitigate privacy risks, reduce upload costs, or regularize local learning using an ensemble-of-
teachers approach (Lin et al., 2020; Zhu et al., 2021; Guha et al., 2019). However, KD approaches
in FL usually require an auxiliary public dataset with similar properties as the distributed dataset,
which may be difficult to obtain in practice (Zhu et al., 2021).

One-shot Federated Learning. In the federated setting, we have a set of clients C, with m = |C|
clients in total. Each client k has a local private dataset Dk = {(xi,yi)}nk

i=1, with nk = |Dk| repre-
senting the number of data samples belonging to user k. Traditional FL methods assume each client
has a local differentiable model fwk(·), usually a deep neural network parameterized by wk. It is
typically assumed that the server and clients can communicate over multiple rounds. However, in
the one-shot FL setting communication is restricted to a single round, which severely limits com-
munication costs but also increases the difficulty of the distributed learning task (Guha et al., 2019).
Notably, existing one-shot FL methods either ignore the issue of statistical heterogeneity (i.e., Guha
et al. (2019)), fail to comprehensively explore the effect of statistical heterogeneity on performance
(i.e., Shin et al. (2020) and Li et al. (2021b)), or degrade substantially at even moderate levels of
statistical heterogeneity (i.e., Zhou et al. (2020) and Zhang et al. (2021)).

3 TACKLING VERY HIGH STATISTICAL HETEROGENEITY IN ONE-SHOT FL

We jointly propose FEDCVAE-ENS and FEDCVAE-KD, one-shot FL methods that do not require
an auxiliary public dataset for server-side training (they are data-free). They address issues caused
by high statistical heterogeneity by reframing the learning task using CVAEs and account for model
heterogeneity by allowing different CVAE architectures across clients. FEDCVAE-ENS is described
in Algorithm 2 (Appendix A) and visualized in Figure 6 (Appendix A), with FEDCVAE-KD de-
scribed in Algorithm 1 and visualized in Figure 2. We discuss privacy- and security-promoting
extensions in Appendix B and Section 3.3, respectively.

3.1 OVERVIEW

Figure 2 illustrates the overall framework of the proposed one-shot method FEDCVAE-KD and
Figure 6 (Appendix A) shows FEDCVAE-ENS. Specifically, clients first train CVAEs locally on
their private data. Next, each client’s trained decoder parameters and local label distributions are
uploaded to the server once; this is the only communication round. Then, the server generates sam-
ples from the client decoders according to the client’s local label distribution. Generating samples
based on a client’s label distribution ensures that each client presents samples from the classes that
they know best. In FEDCVAE-ENS, these generated samples are directly used to perform a down-
stream task, e.g., train a classifier. In FEDCVAE-KD, these samples are used to train a single server
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Figure 2: The full pipeline for one of our proposed methods, FEDCVAE-KD. Here, E, D, and C
represent “encoder,” “decoder,” and “classifier” models, respectively. First, clients train CVAEs on
their private local datasets. Then, the server uses uploaded client decoder parameters and local label
distributions to train a server decoder using knowledge distillation (KD). Finally, synthetic labeled
samples from the server decoder are used to train a classifier.

decoder via KD. Thus, the single conditional decoder can be used as a compact labeled dataset to
perform a task like training a classifier, as depicted in Figure 2. Because FEDCVAE-KD extends
FEDCVAE-ENS, we leave the description of FEDCVAE-ENS to Appendix A.

3.2 FEDCVAE-KD: DECODER AGGREGATION USING KNOWLEDGE DISTILLATION

FEDCVAE-KD trains a CVAE fwk(·) for every client k ∈ C to convergence on their private local
dataset by solving Equation 1; this CVAE is parameterized by wk = [ϕk,θk], with encoder Eϕk(·)
and decoder Dθk(·). Then, clients communicate their decoder weights θk and label distributions
p̂k(y) to the server; in practice, this simply requires upload of client label counts as in Zhu et al.
(2021). This completes the single communication round.

Now we move to the server. Intuitively, if a CVAE observes samples primarily from only a few
of the K total classes (as is likely when data is highly heterogeneous), the CVAE will become an
“expert” in the simplified data distribution over those few classes. To ensure each client only presents
its highest-quality samples, we generate conditioning classes y by sampling from the client’s local
label distribution, i.e., y ∼ p̂k(y). Then, to sample from client decoders, we sample a latent vector
from the prior (i.e., z ∼ N (0, I))1 and obtain synthetic data sample i from client k using x̂k

i =
Dθk(zki ;y

k
i ).

The trained client decoders act as the teacher models, conveying their aggregate knowledge of how
to map from latent space to data space to a single student server decoder, parameterized by θS .
To achieve this, we generate nD total KD training samples, with DEns defined as the combination
of client subsets Dk

Ens = {(x̂k
i ,y

k
i , z

k
i )}

⌊nD/m⌋
i=1 . Then, we train the server to match the teacher’s

mapping of (zki ,y
k
i ) to x̂k

i by minimizing a reconstruction loss:

ℓKD(θ
S ; zk,yk, x̂k) = g(DθS (zk;yk), x̂k), (2)

which penalizes the dissimilarity g(·) in data space between the synthetic data sample generated by
the server decoder DθS (zk;yk) and the client decoder sample x̂k. To facilitate comparison with
existing works in one-shot FL, we use the trained server decoder to generate an IID labeled dataset
DC of nC samples to train the server classifier fwS

C
(·), parameterized by wS

C .2

1In practice, we find it useful to focus on the highest density region of the prior and instead sample from a
truncated standard normal distribution with tight symmetric bounds.

2If classification is the downstream task, we note that rather than train an auxiliary classifier in the server,
the server decoder’s conditional likelihood model p(x|z,y) could be used directly in the generative classifier
p(y|x) =

∫
p(x|y,z)p(z)dz·p(y)

p(x)
. We leave further exploration of this modeling direction to future work.
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Algorithm 1 - FEDCVAE-KD in the one-shot FL setting. TL represents the number of local
training epochs. The server decoder parameters are θS , with KD training epochs TKD, number of
KD training samples nD, KD loss ℓKD(·), and KD learning rate ηKD. The server classifier parameters
are wS

C , with training epochs TC , number of training samples nC , classification loss ℓC(·), and
learning rate ηC . C is the set of clients.

1: procedure SERVER
2: for each client k ∈ C in parallel do
3: θk, p̂k(y)← ClientLocalUpdate(k, TL) ▷ See Algorithm 3 in Appendix A
4: Generate samples from client Dk

Ens := {(x̂k
i ,y

k
i , z

k
i )}

⌊nD/m⌋
i=1 using client decoder Dθk(·)

and label distribution p̂k(y)
5: Combine client subsets into a KD dataset DEns := D1

Ens ∪ D2
Ens ∪ ... ∪ Dm

Ens
6: for server decoder epoch i = 1 to TKD do
7: for mini-batch b ⊂ DEns do
8: θS ← θS − ηKD · ∇θS ℓKD(θ

S ; b)

9: Generate an IID labeled dataset DC := {(x̂S
i ,y

S
i )}

nC
i=1, by sampling from trained server

decoder DθS (·)
10: for classifier epoch i = 1 to TC do
11: for mini-batch b ⊂ DC do
12: wS

C ← wS
C − ηC · ∇wS

C
ℓC(w

S
C ; b)

Because FEDCVAE-KD ensembles client decoders to create a labeled dataset DEns to train the
server decoder, each client can have a unique CVAE model architecture, accommodating each
client’s computational limitations. Furthermore, the decision of the classifier architecture can be
deferred until after FL is finished and will not affect the learning procedure. FEDCVAE-KD can be
applied to any task that requires a labeled dataset, which is more general than classification; there
is no commitment to a particular terminal task before learning occurs. While we do not explore
the extended communication setting, we note that FEDCVAE-KD extends naturally by communi-
cating the server decoder parameters obtained through KD to all clients and repeating the outlined
procedure for non-terminal communication rounds.

3.3 SECURITY-PROMOTING EXTENSION

We define a secure pipeline as one where an outside attacker who obtains transferred data cannot
train a performant classifier (Zhou et al., 2020). In the case of FEDCVAE-ENS and FEDCVAE-
KD, an attacker who intercepts all client decoders and local label distributions should not be able to
generate the high quality samples necessary to train a high quality classifier.

CVAEs use a prior distribution over latent space to train the encoder and decoder models. While a
multivariate standard normal distribution is typically used for convenience, any normal distribution
is acceptable. To promote security, we propose to shift the center of the prior distribution µ to a
random position in real space (i.e., µ ∈ Rd), which can be communicated offline or via encryp-
tion methods between server and clients (Zhou et al., 2020). As shown in Figure 7 (Appendix B),
sampling latent vectors too far from the center of the normal prior produces qualitatively poor data
samples, deterring eavesdropping attackers who have no knowledge of µ. We conduct experiments
to verify the effectiveness of this extension.

4 EXPERIMENTAL EVALUATION

4.1 SETUP

Benchmark Datasets. To validate FEDCVAE-ENS and FEDCVAE-KD, we conduct experiments
on three image datasets that are standard in the FL literature: MNIST (Lecun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), and SVHN (Netzer et al., 2011).3 Datasets are described in Appendix

3The code used to implement our proposed methods and carry out all experiments is included in the follow-
ing public repository: https://github.com/ceh-2000/fed_cvae.
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Figure 3: Example distributions of class labels for MNIST with m = 10 clients over multiple levels
of statistical heterogeneity α. The size of each dot is proportional to the number of samples.

C. To simulate statistical heterogeneity, we use the Dirichlet distribution to generate disjoint non-
IID client training datasets as in Hsu et al. (2019) and Lin et al. (2020). Specifically, we sample
pk ∼ Dir(α) and allocate a pk

i proportion of class i to client k. The parameter α controls the
level of non-IID-ness, with a lower α inducing more skewed label distributions across clients. To
illustrate the effect of α on dataset partitions across clients, we visualize the distribution of labels
across m = 10 clients for α = {0.001, 0.01, 0.05} in Figure 3.

Baseline Methods. We compare the performance of FEDCVAE-ENS and FEDCVAE-KD in the
one-shot data-free FL setting against two existing methods: FEDAVG (McMahan et al., 2017) and
a method proposed in Guha et al. (2019), which we call FEDONESHOT. FEDONESHOT ensembles
the predictions of select uploaded client classifiers using a sampling procedure; because we consider
substantially less clients than Guha et al. (2019), we disregard sampling and use all clients in the
ensemble. There are recent FL methods that are not appropriate in our proposed setting. The one-
shot methods proposed in Li et al. (2021b) and Shin et al. (2020) are not applicable because of their
reliance on public auxiliary data for server-side training or fine-tuning. Similarly, many standard FL
methods are not appropriate because they depend on an auxiliary dataset (i.e., FEDDF (Lin et al.,
2020)) or focus on regularization (i.e., FEDGEN (Zhu et al., 2021), FEDPROX (Li et al., 2020c),
SCAFFOLD (Karimireddy et al., 2020), FEDNOVA (Wang et al., 2020)), which is incompatible with
the one-shot setting.

Configurations. Unless otherwise stated, we use m = 10 clients, α = 0.01 (very heterogeneous),
and report average test accuracy across 5 seeded parameter intializations ± one standard deviation.
The data partition is fixed unless otherwise stated. Following Zhu et al. (2021), we distribute 50%
of the available training data to clients for MNIST and FashionMNIST, and 100% for SVHN. All
available test data is used to evaluate the final server classifier (or ensemble for FEDONESHOT). We
adopt the same convolutional classifier architecture as McMahan et al. (2017) for all methods. We
base our CVAE architecture on Higgins et al. (2017). The server decoder for FEDCVAE-KD has
the same architecture as the client CVAEs by default, although this is not strictly necessary because
FEDCVAE-KD supports heterogeneous CVAE architectures.

For each method, hyperparameters were obtained through tuning, with the bounds of the search grid
extended until the best-performing value appeared in the middle of the grid. Full hyperparameter
settings can be found in Table 3 and Table 4 (Appendix C). All classifiers use a cross-entropy objec-
tive. CVAE training uses binary cross entropy and mean squared error for the reconstruction term of
the objective for grayscale and RGB images, respectively; we use the same reconstruction objective
for the KD loss (g(·) in Equation 2).

4.2 GENERAL RESULTS

Statistical Heterogeneity. To demonstrate the efficacy of FEDCVAE-ENS and FEDCVAE-KD
in the difficult setting of high statistical heterogeneity, we test on varying levels of α, from high
(α = 0.05), to very high (α = 0.01), to extreme (α = 0.001) statistical heterogeneity. FEDCVAE-
ENS consistently outperforms all other methods, and FEDCVAE-KD outperforms the baselines in
nearly all datasets and levels of α (the only exception is MNIST at the lowest level of statistical
heterogeneity) as shown in Table 1. At α = 0.001, FEDCVAE-KD obtains more than 1.75× the
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Table 1: Performance of four data-free one-shot FL methods over three datasets and across three
levels of statistical heterogeneity (lower α is more heterogeneous). Best results for each dataset and
each level of α are in purple , with second best results in yellow .

Heterogeneity FEDAVG FEDONESHOT FEDCVAE-KD (ours) FEDCVAE-ENS (ours)

α = 0.001 45.12± 5.87 11.90± 0.40 82.24± 1.09 95.37± 0.52
α = 0.01 58.29± 2.83 41.15± 0.70 82.01± 1.61 93.83± 1.53MNIST
α = 0.05 80.10± 2.35 82.95± 0.49 79.57± 1.17 91.86± 0.75

α = 0.001 32.77± 4.52 10.00± 0.00 69.53± 1.70 76.04± 0.93
α = 0.01 45.85± 2.95 37.63± 0.53 69.97± 1.63 76.62± 1.61FashionMNIST
α = 0.05 46.86± 2.37 64.53± 1.73 67.24± 1.96 71.95± 2.17

α = 0.001 20.31± 4.36 15.94± 0.00 55.48± 2.12 65.52± 0.66
α = 0.01 25.12± 2.07 31.91± 1.26 55.97± 0.38 65.50± 2.28SVHN
α = 0.05 33.66± 4.12 49.60± 1.59 54.24± 2.08 66.61± 2.09

Table 2: Performance of four one-shot FL methods over three datasets and across four numbers of
clients m. Best results for each dataset and each level of m are in purple , with second best results

in yellow .

# of Clients FEDAVG FEDONESHOT FEDCVAE-KD (ours) FEDCVAE-ENS (ours)

m = 5 42.34± 1.75 42.97± 1.54 80.19± 1.76 92.81± 2.16
m = 10 58.29± 2.83 41.15± 0.70 82.01± 1.61 93.83± 1.53
m = 20 37.14± 3.87 32.22± 0.71 81.93± 1.75 93.52± 0.86

MNIST

m = 50 28.26± 7.98 35.62± 0.66 77.68± 1.39 87.56± 1.44

m = 5 38.51± 2.40 32.23± 1.68 68.01± 1.56 73.70± 1.93
m = 10 45.85± 2.95 37.63± 0.53 69.97± 1.63 76.62± 1.61
m = 20 27.49± 4.77 24.72± 1.20 71.28± 1.17 76.51± 1.38

FashionMNIST

m = 50 31.91± 2.20 41.01± 2.49 69.25± 1.13 76.13± 2.00

m = 5 40.61± 0.64 42.05± 1.31 57.17± 2.56 65.72± 2.17
m = 10 25.12± 2.07 31.91± 1.26 55.97± 0.38 65.50± 2.28
m = 20 26.99± 3.15 10.68± 0.70 51.80± 2.75 65.54± 1.89

SVHN

m = 50 19.59± 0.00 30.20± 0.64 40.03± 2.62 64.81± 2.44

accuracy of the best baseline method for MNIST, more than 2× the accuracy for FashionMNIST, and
nearly 2.75× the accuracy for SVHN (Table 1). While the baselines FEDAVG and FEDONESHOT
are very sensitive to the level of statistical heterogeneity, both FEDCVAE-ENS and FEDCVAE-KD
demonstrate consistent performance across levels of α (Table 1).

Number of Clients. Because FL applications often include many participating clients (Li et al.,
2020a), we evaluate several values for number of clients (m = {5, 10, 20, 50}). While both FEDAVG
and FEDONESHOT struggle when many clients are present, Table 2 shows that FEDCVAE-ENS and
FEDCVAE-KD perform consistently across the number of clients, with the only exception being
FEDCVAE-KD for SVHN. Even though it is typical to observe FL methods’ accuracy degrade with
increasing numbers of clients (Zhang et al., 2021), FEDAVG and FEDONESHOT are unstable with
no clear decrease in accuracy, which we ascribe to the highly variable partitions generated at high
levels of statistical heterogeneity. Experiments varying the dataset partitions reveal high variation
in accuracy for FEDAVG and FEDONESHOT, whereas both FEDCVAE-ENS and FEDCVAE-KD
exhibit consistent accuracy (Table 5 in Appendix C).

Decoder Aggregation. The proposed KD aggregation method used in FEDCVAE-KD substantially
improves on aggregation via parameter averaging, generating qualitatively more realistic samples
(Figure 8 in Appendix C) and achieving higher server classifier accuracy (Table 6 in Appendix C).
As expected, FEDCVAE-ENS bounds the performance of FEDCVAE-KD, but KD-based aggrega-
tion still preserves client ensemble performance well across levels of α for all datasets (Table 1).
The upper bound accuracy established by FEDCVAE-ENS is promising, but successful decoder ag-
gregation may require a stronger KD procedure (e.g., feature-based KD as described in Gou et al.
(2021)).
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Figure 4: Results with heterogeneous local models. “Homogeneous” uses the same CVAE architec-
ture for all clients, whereas “heterogeneous” uses two architectures with similar generative capabil-
ities.
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Figure 5: Results for our proposed security-promoting extension at high heterogeneity (α = 0.05).
We show the accuracy for a classifier trained on samples from the intercepted client decoders and
using client label distributions when the center of the normal prior is unknown. The sampling
bounds represent the parameters of the uniform distribution used for latent vector sampling, i.e.,
±100 represents the distribution U(−100, 100). The prior is a multivariate standard normalN (0, I).

4.3 EXTENSIONS

Heterogeneous Local Models. To simulate clients with diverse computational resources, we train
both FEDCVAE-ENS and FEDCVAE-KD using two local CVAE architectures: the first as de-
scribed in Section 4.1 and the second with one convolutional/deconvolutional block removed for the
encoder/decoder, respectively. The server decoder matches that which is described in Section 4.1 but
can be chosen arbitrarily. Because the two architectures demonstrate similar generative capabilities,
final server classifier accuracy is very similar when comparing homogeneous against heterogeneous
local architectures (Figure 4).4 Notably, our KD procedure for FEDCVAE-KD still performs well
using heterogeneous models, indicating diverse architectures can organize latent space similarly
enough to successfully translate this knowledge to a single decoder.

Promoting Security. We verify the effectiveness of our proposed distribution shift extension for
securing the uploaded information. Suppose an eavesdropping attacker is able to intercept the label
distributions, decoder weights, and decoder architectures from all clients during upload. Without
knowledge of the shared center of the multivariate normal prior µ, we show that training a per-
formant classifier is infeasible because it is difficult to extract high-quality samples from the client
decoders. In particular, even when the attacker samples latent vectors z from a broad region which
overlaps with the high-density region of the prior (i.e., a uniform distribution centered on µ), the
accuracy of the classifier trained on the resulting samples degrades sharply as the sampling region

4We choose not to baseline against FEDONESHOT, which supports heterogeneous local models, because
our notion of “heterogeneous model” is different; FEDONESHOT supports heterogeneous local classifiers while
our two methods defer the choice of classifier to after FL is complete and instead support heterogeneous local
CVAEs.
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grows (Figure 5). Even a good guess of U(−10, 10) for a normal prior ofN (0, I) results in a 3−30%
point decrease in accuracy depending on the dataset. A more realistic guess of U(−1000, 1000) re-
sults in a 33 − 67% point decrease. Therefore, this simple FEDCVAE-ENS and FEDCVAE-KD
extension reduces eavesdropping attackers’ capacity to extract high-quality samples from uploaded
decoders or train a performant downstream model, reducing communication risks.

5 RELATED WORK

FL Under High Statistical Heterogeneity. FL was originally proposed by McMahan et al. (2017)
as a paradigm for decentralized distributed learning. Statistical heterogeneity quickly emerged as
a core issue within FL, with many studies focusing on maintaining high performance under very
non-IID data. Many approaches have experimented with augmenting FEDAVG by adding proximal
terms to the local objective as an attempt to restrain local updates (Li et al., 2020c; Karimireddy et al.,
2020; Wang et al., 2020; Acar et al., 2021; Li et al., 2021a). Other works have used KD to circumvent
issues associated with parameter averaging under non-IID data, focusing on leveraging auxiliary
data (Lin et al., 2020; Sattler et al., 2021) or a generative model (Zhu et al., 2021; Zhang et al.,
2022) to compactly capture client ensemble learning. Recent approaches focus on improving client
selection strategy (Tang et al., 2022), reducing catastrophic forgetting to balance global knowledge
against local learning (Huang et al., 2022), or improving the generality of client models (Mendieta
et al., 2022). However, all of these methods are designed for standard FL and rely heavily on local
regularization through substantial iterative communication, which is not feasible in the one-shot FL
setting where communication is limited to a single round.

One-Shot FL. Methods in one-shot FL have demonstrated strong performance under substantial
communication constraint. Guha et al. (2019) originally proposed one-shot FL and introduced two
methods, one based on heuristic selection methods for client inclusion in the final ensemble and
another that used KD with an auxiliary dataset for ensemble aggregation. Li et al. (2021b) extended
the use of KD with a hierarchical KD procedure with wide applicability to a variety of local model
types. Although these methods obtain high accuracy, they rely on an auxiliary public dataset to
support KD, which is inapplicable in data-free FL. Secure dataset transfer has been applied in sev-
eral studies: Zhou et al. (2020) achieved this through dataset distillation, which requires a shared
model architecture, and Shin et al. (2020) provided limited experiments using XOR-based data aug-
mentation techniques. Zhang et al. (2021) proposed a data-free KD procedure based on a generator
network trained using the ensemble of client classifiers, showing promising performance even under
heterogeneous local models. However, existing approaches in one-shot FL either do not experiment
with high statistical heterogeneity or degrade even under moderate levels of heterogeneity, unlike
our proposed methods.

VAEs in FL. A few studies have experimented with using VAEs in FL. Kasturi et al. (2022) proposed
a distributed learning framework based on VAEs, but required an auxiliary pre-trained classifier to
generate sample labels and did not specify how to obtain this classifier. Wen et al. (2020) and Gu &
Yang (2021) used CVAEs to protect against malicious clients, but only included limited experimental
results with respect to statistical heterogeneity, relied on multiple communication rounds, and, in
the case of Wen et al. (2020), did not use KD for server-side aggregation. We are the first to apply
CVAEs to one-shot FL with a focus on high statistical heterogeneity.

6 CONCLUSION

In this paper, we proposed FEDCVAE-ENS and FEDCVAE-KD, data-free one-shot FL methods
that reframe the local learning task using CVAEs. Both methods performed well given high statis-
tical heterogeneity, demonstrated consistent performance with increasing numbers of clients, allow
for model heterogeneity across clients, and can be extended to promote security. Extensive exper-
imental results showed that FEDCVAE-ENS and FEDCVAE-KD substantially extended the state-
of-the-art in one-shot FL under very high statistical heterogeneity, making way for more nuanced
development in this difficult environment for distributed learning.
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A ADDITIONAL DESCRIPTION OF METHODS

FEDCVAE-ENS Description. FEDCVAE-ENS follows the same procedure as FEDCVAE-KD,
but alternatively defines DEns as the combination of client subsets Dk

Ens := {(x̂k
i ,y

k
i )}

⌊nC/m⌋
i=1 and

uses DEns to directly train the server classifier. Figure 6 visualizes the full pipeline for FEDCVAE-
ENS and Algorithm 2 details the full procedure. Algorithm 3 shows the local client training pro-
cedure, which is the same for FEDCVAE-ENS and FEDCVAE-KD. Note that while we represent
parameter optimization as using stochastic gradient descent in all algorithms, any optimizer can be
used; for our experiments, we uniformly use Adam (Kingma & Ba, 2014).

Figure 6: The full pipeline for one of our proposed methods, FEDCVAE-ENS. Here, E, D, and
C represent “encoder,” “decoder,” and “classifier” models, respectively. First, clients train CVAEs
on their private local datasets. Then, the server uses the ensemble of uploaded client decoders and
corresponding local label distributions to generate a labeled dataset of synthetic samples to train a
classifier.

Algorithm 2 - FEDCVAE-ENS in the one-shot FL setting. TL represents the number of local
training epochs. The server classifier parameters are wS

C , with training epochs TC , number of train-
ing samples nC , classification loss ℓC(·), and learning rate ηC . C is the set of clients.

1: procedure SERVER
2: for each client k ∈ C in parallel do
3: θk, p̂k(y)← ClientLocalUpdate(k, TL)
4: Generate samples from each client Dk

Ens := {(x̂k
i ,y

k
i )}

⌊nC/m⌋
i=1 using client decoder Dθk(·)

and label distribution p̂k(y)
5: Combine client subsets into an IID labeled dataset DEns := D1

Ens ∪ D2
Ens ∪ ... ∪ Dm

Ens
6: for classifier epoch i = 1 to TC do
7: for mini-batch b ⊂ DEns do
8: wS

C ← wS
C − ηC · ∇wS

C
ℓC(w

S
C ; b)

B DETAILS ON THE PRIVACY- AND SECURITY-PROMOTING EXTENSIONS

Privacy. A private pipeline is one that does not leak private client data to other participating clients
or the server. van den Burg & Williams (2021) define a probabilistic generative model’s propen-
sity to reproduce samples observed in the training data as memorization, and prove that ensuring
a particular level of differential privacy (DP) can bound memorization in probabilistic generative
models (including CVAEs). Thus, beyond the normal privacy guarantees attributable to DP, employ-
ing FL DP-estimation techniques (i.e., Geyer et al. (2017)) also ensures low memorization across
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Algorithm 3 - Local training procedure. Dk represents the client’s local dataset. The local learn-
ing rate is η and the local loss function is ℓ(·)

1: procedure CLIENTLOCALUPDATE(k, TL)
2: Initialize local CVAE parameters wk := [ϕk,θk]
3: for local epoch in i = 1 to TL do
4: for mini-batch b ⊂ Dk do
5: wk ← wk − η · ∇wkℓ(wk; b) ▷ Optimize based on Equation 1

return Decoder parameters θk and local label distribution p̂k(y) to the server

the FEDCVAE-ENS and FEDCVAE-KD pipelines, further enhancing the privacy of our proposed
methods. We leave further exploration of privacy-preserving extensions to future work.

Quality of Trained Decoder Samples. To generate high-quality samples from a trained CVAE, it
is typical to sample latent vectors zi either directly from the prior (usually a multivariate standard
normal, i.e., zi ∼ N (0, I)) or from some other distribution with tight bounds around the prior
distribution’s mean (e.g., a truncated standard normal or a uniform distribution). During training,
the CVAE will largely observe latent vectors in the highest density region of the prior distribution; for
a standard normal distribution, this is near the center µ = 0. Latent vectors distant from the center
will not generate high-quality samples when used with the trained decoder. As a demonstration, we
train a centralized CVAE and sample both close to the center of the prior (i.e., zi ∼ U(−1, 1)) and
distant from the center of the prior (i.e., zi ∼ U(5, 20)). The resulting image samples are shown in
Figure 7.

Figure 7: CVAE samples generated using latent vectors distant from the center of the multivariate
normal prior (top row) and close to the center (bottom row).

C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

Benchmark Datasets. MNIST and FashionMNIST contain 28×28 grayscale images of handwritten
digits and clothing/accessories, respectively, with 60, 000 train samples and 10, 000 test samples.
SVHN contains 32×32 RGB image crops of street-view house numbers, with 73, 257 train samples
and 26, 032 test samples.

Hyperparameter Settings. Tables 3 and 4 contain fixed and variable hyperparameters, respectively.
While the number of local epochs (TL) may seem low for FEDAVG, we observed substantially
reduced accuracy at higher numbers of local epochs, which is consistent with Lin et al. (2020) and
references therein.

Stability With Respect to Dataset Partition. To complement the results in Table 2, we test the
stability of each model across varying dataset partitions, controlled by a random seed (Table 5).
When α is very low, as in our study, the dataset client splits generated by sampling from the Dirichlet
distribution are diverse. This is exacerbated when more clients are used (higher m), potentially
explaining some of the unstable results in Table 2. While FEDAVG and FEDONESHOT are very
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Table 3: The default hyperparameter settings, which are used in experiments unless otherwise men-
tioned. These values are held consistent across datasets.

Hyperparameter Value

Shared Local learning rate (η) 0.001
Classifier optimizer Adam
Batch size (all) 32

FEDCVAE-ENS & Server decoder optimizer Adam
FEDCVAE-KD CVAE optimizer Adam

Server classifier train samples (nC) 5000
Server decoder train samples (nD) 5000
Server classifier learning rate (ηC) 0.001
Server decoder learning rate (ηD) 0.01

Table 4: Dataset-specific hyperparameter settings, where applicable. “Truncated normal width”
denotes the truncation bounds for the truncated standard normal distribution used for sampling from
client decoders. The truncated normal width values are in terms of number of standard deviations.

Hyperparameter MNIST FashionMNIST SVHN

FEDAVG Local epochs (TL) 10 10 5

FEDONESHOT Local epochs (TL) 15 15 10

FEDCVAE-ENS Local epochs (TL) 15 25 50
CVAE latent dimension (d) 10 10 10
Server classifier epochs (TC) 10 5 5
Truncated normal width ±3 ±3 ±3

FEDCVAE-KD Local epochs (TL) 15 25 50
CVAE latent dimension (d) 10 100 10
Server classifier epochs (TC) 10 5 5
Server decoder epochs (TD) 7 10 80
Truncated normal width ±1 ±2 ±3

sensitive to dataset split (high standard deviation), the results in Table 5 for both FEDCVAE-ENS
and FEDCVAE-KD are not only consistent with Table 2, but also exhibit reasonable stability (low
standard deviation).

Table 5: Performance of four one-shot FL methods over three datasets and across four numbers of
clients m. Results show the average test accuracy across 5 random dataset partitions± one standard
deviation. Parameter initialization remains constant. Best results for each dataset and each level of
m are in purple , with second best results in yellow .

# of Clients FEDAVG FEDONESHOT FEDCVAE-KD (ours) FEDCVAE-ENS (ours)

m = 5 50.58± 8.12 38.81± 6.49 80.84± 1.03 93.97± 1.11
m = 10 52.67± 12.67 34.90± 10.79 82.67± 0.85 94.01± 1.54
m = 20 38.29± 4.71 38.85± 9.04 82.08± 0.89 93.29± 2.16

MNIST

m = 50 30.24± 7.24 45.65± 14.79 79.49± 1.60 89.68± 2.21

m = 5 44.87± 7.02 36.28± 8.04 65.60± 3.06 71.80± 3.59
m = 10 37.54± 13.00 34.26± 6.00 69.43± 2.26 75.42± 2.47
m = 20 34.34± 12.70 33.57± 8.59 69.55± 1.47 76.66± 1.79

FashionMNIST

m = 50 28.89± 8.43 36.49± 7.65 68.91± 0.30 74.70± 2.09

m = 5 30.27± 7.88 35.01± 6.02 57.43± 2.20 66.01± 1.30
m = 10 28.92± 10.46 33.80± 3.81 55.29± 3.45 65.34± 1.32
m = 20 20.63± 2.16 29.92± 12.12 49.18± 2.84 65.82± 1.16

SVHN

m = 50 19.59± 0.01 30.22± 2.83 38.83± 2.97 64.91± 1.85
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Comparing KD With Parameter Averaging. FEDAVG (McMahan et al., 2017) introduced the no-
tion of parameter averaging to FL. While parameter averaging may seem like a reasonable approach
for client decoder aggregation in FEDCVAE-KD, it generates qualitatively poor samples (Figure 8)
and fails to train a high-accuracy classifier (Table 6). The KD approach we propose to aggregate
client decoders generates substantially better samples (Figure 8) while also obtaining more than
2× classifier accuracy on MNIST, more than 3.25× accuracy on FashionMNIST, and nearly 5×
accuracy for SVHN at α = 0.001 (Table 6).

Figure 8: Samples from the aggregated server decoder obtained through parameter averaging (top
row) versus knowledge distillation (bottom row) at high statistical heterogeneity (α = 0.01).

Table 6: Comparing the knowledge distillation aggregation methods of FEDCVAE-KD to simple
parameter averaging. Best results for each dataset and each level of α are in purple .

Heterogeneity Parameter Averaging Knowledge Distillation

α = 0.001 38.59± 3.29 82.24± 1.09
α = 0.01 39.50± 6.76 82.01± 1.61MNIST
α = 0.05 50.20± 4.63 79.57± 1.17

α = 0.001 20.88± 4.78 69.53± 1.70
α = 0.01 27.66± 7.08 69.97± 1.63FashionMNIST
α = 0.05 39.35± 6.27 67.24± 1.96

α = 0.001 11.26± 0.77 55.48± 2.12
α = 0.01 15.22± 4.29 55.97± 0.38SVHN
α = 0.05 10.61± 2.23 54.24± 2.08

Performance With Less Data Per Client. To gauge our proposed methods’ performance relative to
the size of each client’s local dataset, we vary the percent of the benchmark training data distributed
to clients (Table 7). While accuracy for both FEDCVAE-ENS and FEDCVAE-KD degrade with
less data per client, they both consistently perform better than FEDAVG and FEDONESHOT across
all tested percent subsets of the training data.

Adding Noise to Uploaded Label Distributions. Uploading client label distributions p̂k(y) may
generate additional privacy concerns. One potential solution is to mask the precise label counts for
each client by adding noise before upload as in Zhang et al. (2022); to achieve this, we draw noise
from a normal distribution ϵc ∼ N (0, γ ·nk) such that the “strength” (variance) of the noise applied
to class c is in proportion γ to the total number of training samples for client k. Noise is applied
to the training sample count for each class for a given client before uploading this information to
the server. We visualize the effect of noise on client label distributions for several levels of γ in
Figure 9. As γ → ∞, information from the uploaded label distribution disappears; when γ = 0,
the exact local label distributions are communicated. When adding a modest amount of noise to the
client label distributions (i.e., γ ≤ 0.1), accuracy for both FEDCVAE-ENS and FEDCVAE-KD is
barely affected compared to upload with no noise; see Table 8 for γ > 0 and refer to the α = 0.01
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Table 7: Performance of four data-free one-shot FL methods over three datasets and across multiple
percent subsets of each dataset. Best results for each dataset and percent subset are in purple , with

second best results in yellow .

% Subset FEDAVG FEDONESHOT FEDCVAE-KD (ours) FEDCVAE-ENS (ours)

5% 40.65± 2.65 34.24± 1.51 74.98± 4.82 76.47± 2.58
10% 38.55± 4.43 36.86± 1.14 81.24± 1.45 89.95± 1.27
25% 56.17± 3.82 47.50± 0.72 80.00± 1.52 92.41± 0.79

MNIST

50% 58.29± 2.83 41.15± 0.70 82.01± 1.61 93.83± 1.53

5% 14.11± 2.33 26.96± 0.74 66.75± 1.80 69.78± 1.26
10% 26.53± 6.28 27.26± 1.69 69.07± 1.53 72.10± 1.66
25% 28.29± 1.69 29.97± 2.53 71.24± 1.48 75.31± 1.42

FashionMNIST

50% 45.85± 2.95 37.63± 0.53 69.97± 1.63 76.62± 1.61

5% 17.19± 5.38 11.08± 0.38 41.74± 3.67 46.06± 1.29
10% 22.97± 4.37 16.16± 0.73 47.65± 2.88 54.36± 1.76
25% 28.40± 3.15 29.10± 0.26 52.15± 1.23 59.96± 2.68
50% 20.38± 1.03 32.39± 2.85 57.56± 1.09 64.82± 1.27

SVHN

100% 25.12± 2.07 31.91± 1.26 55.97± 0.38 65.50± 0.28

Table 8: Performance of our proposed methods with noise added to the uploaded client label distri-
butions. Results show the average test accuracy across 5 seeds for the random noise ± one standard
deviation.

Noise Proportion FEDCVAE-KD FEDCVAE-ENS

MNIST
γ = 0.01 81.10± 0.69 93.69± 0.82
γ = 0.05 80.41± 1.81 92.65± 0.77
γ = 0.1 80.56± 0.36 92.65± 1.33

FashionMNIST
γ = 0.01 69.43± 1.61 76.44± 1.11
γ = 0.05 68.57± 1.74 74.44± 2.14
γ = 0.1 69.07± 1.97 72.88± 3.03

SVHN
γ = 0.01 57.18± 2.24 64.03± 1.78
γ = 0.05 56.93± 2.43 62.68± 2.64
γ = 0.1 55.85± 2.29 61.47± 1.83

in Table 1 for γ = 0. The notion of uploading and harnessing client label distributions in FL is new
(Zhu et al., 2021; Zhang et al., 2022) and quantifying the privacy risks that label distributions might
induce is an open problem which could benefit from focused development.

0 1 2 3 4 5 6 7 8 9
Client ID

0
1
2
3
4
5
6
7
8
9

Cl
as

s l
ab

el

= 0

0 1 2 3 4 5 6 7 8 9
Client ID

0
1
2
3
4
5
6
7
8
9

Cl
as

s l
ab

el

= 0.01

0 1 2 3 4 5 6 7 8 9
Client ID

0
1
2
3
4
5
6
7
8
9

Cl
as

s l
ab

el

= 0.05

0 1 2 3 4 5 6 7 8 9
Client ID

0
1
2
3
4
5
6
7
8
9

Cl
as

s l
ab

el

= 0.1

Figure 9: The effect of the noise proportion γ on an example data partition at α = 0.01, m =
10 clients, and on MNIST. The original partition is in yellow (γ = 0). The size of each dot is
proportional to the number of samples.

17


	Introduction
	Preliminaries
	Tackling very high statistical heterogeneity in One-Shot FL
	Overview
	FedCVAE-KD: Decoder Aggregation Using Knowledge Distillation
	Security-Promoting Extension

	Experimental Evaluation
	Setup
	General results
	Extensions

	Related Work
	Conclusion
	Additional Description of Methods
	Details on the Privacy- and Security-Promoting Extensions
	Additional Experimental Details and Results

