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ABSTRACT

We consider the task of finding out-of-class samples in tabular data, where little
can be assumed on the structure of the data. In order to capture the structure of the
samples of the single training class, we learn mappings that maximize the mutual
information between each sample and the part that is masked out. The mappings
are learned by employing a contrastive loss, which considers only one sample
at a time. Once learned, we can score a test sample by measuring whether the
learned mappings lead to a small contrastive loss using the masked parts of this
sample. Our experiments show that our method leads by a sizable accuracy gap
in comparison to the literature and that the same default rule of hyperparameters
selection provides state-of-the-art results across benchmarks.

1 INTRODUCTION

In the one-class classification problem, one learns a model with the goal of identifying whether a
test sample belongs to the same distribution from which the training set is sampled (Schölkopf et al.,
1999). Methods for solving this problem, therefore, define a criterion that is satisfied for the samples
of the training set, while being less likely to hold for samples from other (unseen) distributions.

When considering perceptual data, one can rely on the structure of the input. For example, images
can be rotated, and the discrimination between the various rotations is class-dependent and, therefore,
indicative of the class (Golan & El-Yaniv, 2018). In this work, we consider tabular data, in which
there is no prior information on the structure of the data.

If one assumes that no such structure exists, i.e., that the variables are independent, then the criterion
is defined by combining the per-feature scores. This, however, is not competitive in cases in which the
features in each sample vector are not independent (Ahirwar et al., 2012). By making the assumption
that the dependency structures are class-dependent, one can construct, for example, a low-dimensional
subspace and expect out-of-distribution classes to lie outside it (Jolliffe, 1986).

In this work, we make the assumption that the way in which a subset of the variables in the feature
vector is related to the rest of the variables is class-dependent. Our method considers subsets of
consecutive variables. In this manner, for a given input sample xi ∈ Rd, we obtain a set of pairs
{(aji , b

j
i )}mj=1, where aji is a vector of k consecutive features from xi, b

j
i is the vector of all other

feature values, and m = d− k + 1. All vectors aji have the same length and vary according to the
first coordinate of xi, from which the subsets are collected.

Given a training set, we learn a neural mapping F : Rd−k → Ru for the vectors of type b and a
mapping G : Rk → Ru for vectors of type a such that the mutual information in the latent space of
dimensionality u between matching elements (aji , b

j
i ) is maximized. The same networks F,G are

learned for all samples i of the training set and for all starting indices j. The maximization of the
mutual information is done through contrastive learning (Oord et al., 2018).

At test time, the anomaly score that is being used y(x) is exactly the loss that is being minimized
during training. This puts our method on solid ground, in contrast to many other outlier detection
methods, in which networks are trained for one goal, and anomaly identification assumes that some
regularity is learned. Additionally, since the method employs a sliding window approach, it is
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straightforward to identify the specific features in the input vector that contribute to a high anomaly
score. This provides our method with a natural and direct interpretability.

Assumptions and design choices Our method is generic and assumes little on the structure of the
data. We make the following set of assumptions and associated design choices. First, we assume
that one can learn networks F,G that identify matching elements (aji , b

j
i ). Second, we assume that

when training F,G on data from a single class, the learned networks are class-specific in the sense
that the recognition rate for matching elements that belong to samples from other classes would be
considerably lower. Both of these assumptions are validated in Appendix A.

Note that the contrastive learning task that F and G are trained to solve can be easily solved with
a very short deterministic program that is class-independent, which checks the overlap between bji
and aji . However, the success of our method implies that by training our neural method, one learns
class-specific models. Furthermore, simulations on synthetic data demonstrate that learning the
class-independent solution requires a lengthy training process and does not converge to a perfect
classifier. These results, which shed light on self-supervised training, are given in Sec. 5.

Our assumptions are further validated by an extensive set of experiments, in which our method, using
a single architecture and the same rule of hyperparameters selection, obtains state-of-the-art results
in one-class classification of tabular data. The increase in accuracy compared to existing methods
is sizable and consistent across benchmarks. It is further shown that the method is insensitive to its
hyperparameters, demonstrating that the validity of the assumption is a stable phenomenon. Even
with k = 1 (masking of a single feature), the method outperforms all baselines by a gap.

Two softer assumptions are introduced by performing specific design choices (first soft assumption)
or implementing the method in a specific way (second). (i) For simplicity, F,G can learn to match aji
with bji regardless of j. In an alternative implementation, one can learn a pair of networks F j , Gj

for every j or employ positional encoding for j. Since our method is effective with a single pair of
networks, this option was not explored. (ii) The original order in which the features are given is used,
based on the intuition that in several datasets, the order is not random. Since our method, by default,
considers consecutive vector elements, nearby features are stacked together. Naturally, the strength of
this effect is dataset-dependent. We quantify it in Sec. 4, and show, by gathering statistics over a large
corpus of varied datasets, that the original order does not provide a clear advantage over a random
order of features (consecutive features after applying permutation results in random, non-overlapping,
subsets of features). This is also evident from the results presented in Appendix A.

2 RELATED WORK

The main application of one-class classification methods is anomaly detection; that is, identifying
outliers after observing a set of mostly normal (the opposite of abnormal) samples (Chandola et al.,
2009; Pang et al., 2020; Ruff et al., 2021). A straightforward way to perform this task is to model a
distribution based on the training samples and then estimate the likelihood of each test sample. For
this purpose, one can employ non-parametric methods, such as kernel density estimation (Parzen,
1962), or the very recent COPOD method (Li et al., 2020) that is based on an empirical copula
model. Parametric methods include Gaussian and Gaussian mixture models (Zong et al., 2018), as
well as adversarial learning (Schlegl et al., 2017). An alternative to density estimation approaches
relies on regularized classifiers. The classical methods were mostly kernel-based methods, in which
the role of the regularization term is to ensure that the fitted model is tight around the observed
samples (Schölkopf et al., 1999). Many of the first deep learning anomaly detection methods employed
such classical one-class methods on top of auto-encoder based representations (Hawkins et al., 2002;
Sakurada & Yairi, 2014; Xia et al., 2015; Xu et al., 2015b; Erfani et al., 2016; An & Cho, 2015). More
recent methods apply a suitable one-class loss, in order to learn a neural network-based representation
in an end-to-end manner (Ruff et al., 2018). In order to further avoid the problem of representation
collapse, the DROCC method (Goyal et al., 2020) applies virtual adversarial training (Miyato et al.,
2018) to create virtual negative samples around the training samples.

Self-supervised learning, in which an unsupervised learning problem is turned into a discriminative
learning problem, was introduced to anomaly detection by Golan & El-Yaniv (2018). Their method
predicts the image transformation that is applied to an image. Assuming that this classification
problem is class-dependent, the membership score is based on the success of the learned classifier
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on a given test image. GOAD (Bergman & Hoshen, 2020) improved this method, by learning an
embedding space, in which the classifier considers the distances to the center of the set of training
samples after applying each transformation. The method is also made suitable for tabular data, in
which case random linear projections replace the geometric transformations. Our work is based on a
different self-supervised task called masking, in which part of the data is held out and is predicted by
the rest of the data. This form of self supervision is commonly used for learning representation in
NLP (Mikolov et al., 2013) and in computer vision (Pathak et al., 2016). As far as we can ascertain,
masking was not used for one-class classification before.

The idea of contrastive learning has emerged in metric learning, where it was used to train a Siamese
network (Chopra et al., 2005). However, its main application is in unsupervised representation
learning (Hadsell et al., 2006). The learned embedding brings associated samples closer together,
while pushing away other samples. The framework of noise contrastive estimation (Gutmann &
Hyvärinen, 2010) casts this type of learning as a form of mutual information maximization. Many of
the most recent contrastive learning methods perform unsupervised learning by anchoring an image
together with its transformed version, while distancing other images (He et al., 2020; Misra & van der
Maaten, 2019; Chen et al., 2020).

Recently, the contrastive learning method of Chen et al. (Chen et al., 2020) was adapted for the
problem of one-class classification (Tack et al., 2020). The obtained score combines the norm of the
representation (Taigman et al., 2015) with the the maximal similarity to any sample of the training set
to define an anomaly score. The performance is further enhanced by contrasting two sets of image
transformations: those that maintain the same-identity property vs. those that lead to a different
training identity. Another method applies contrastive learning that is tailored to one-class learning in
order to learn an image representation, followed by a one class classifier (Sohn et al., 2021). These
image transformation-based techniques are not applicable to tabular data, since there is no group of
transformations that the content of generic vectors is invariant to.

The contemporaneous NeuTraL AD work by Qiu et al. (2021) employs per-sample contrastive loss
for identifying anomalies in tabular data, similar to our work. However, there are crucial differences:
(1) NeuTraL AD learns specific masks, while we apply the entire set of the masks specified by a
window size k. (2) The role of NeuTraL AD masks is to mask-out parts that are irrelevant for specific
classes. In our case, we perform a two sided matching that identifies the masked part form the original.
(3) NeuTraL AD learns a single feature extractor (“encoder”) for both the original and transformed
data. In our case, the two sides of the contrastive loss are of very different dimensions (d− k and k)
and we employ two different encoders. Furthermore, we explore in our ablation (and theoretically
motivate) the importance of using encoders that are of different architectures. (4) Their method is
built such that there is diversity between the different views and similarity between each view and the
original. This requires the views to be spread, in the latent space, around the original sample. In our
case, the constraints are such that the crop matches the complement elements of the vector more than
all other crops. There is no requirement that the other crops are dissimilar between themselves.

3 METHOD

We are given a training set of n in-class samples S = {xi}, each a vector of d dimensions. Our goal
is to design a score y : Rd → R that maps samples from the sample domain to a low value if they are
sampled from the underlying distribution from which S is sampled and to a high one otherwise.

The method has two hyperparameters that specify dimensions: k < d determines the size of the
subset of features we consider, and u determines their embedding size. A third hyperparameter τ is
the temperature constant of the loss.

The method first constructs a set of m = d + 1 − k pairs Φ(xi) = {(aji , b
j
i )} from each training

sample xi. Each pair in this set is obtained by extracting k consecutive variables from xi. Let aji ,
1 ≤ j ≤ m be the vector [xji , x

j+1
i , . . . , xj+k−1

i ], where superscripts denote elements of the vector
xi. We define bji = [x1i , x

2
i , . . . , x

j−1
i , xj+k

i , . . . , xdi ] to be the vector of the other d− k elements in
xi. The method then learns two mappings F,G that maximize the mutual information between F (bji )

and G(aji ), where (aji , b
j
i ) ∈ Φ(xi), i = 1 . . . n. The same mappings are learned for all samples and

regardless of the index j ∈ [1,m].
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Figure 1: The underlying learning problem.
Given a sample vector xi, we consider the sub-
vector a3i and its complementary b3i . The net-
works are trained to produce similar embeddings
for this pair of vectors, while distancing the em-
bedding of aj

′

i for j′ 6= 3 from that of b3i .
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Figure 2: A Dolan-More profile for ODDSs F1
scores. The x-axis is a varying threshold (θ). The
plot considers the performance of each method in
comparison to the best performing method. The
y-axis is, for a given method, the ratio of datasets
in which the obtained score is above θ times the
maximal score over all methods. Experiments
with missing baselines were omitted for fairness.

The mutual information is maximized through the use of the noise contrastive estimation frame-
work (Oord et al., 2018), see Fig. 1 for an illustration of the contrastive relations in our setting.
In this framework, there is a query q, a positive sample v+, and negative ones v−, all vectors in
Ru. Contrastive learning maximizes the similarity of the query with the positive sample, while
minimizing it with the negative samples. In our case, the vectors are given, for some i, j, j′ 6= j as:
q = F (bji ),v

+ = G(aji ),v
− = G(aj

′

i ).

Almost all current contrastive learning methods employ normalization of the vectors q and v+,v−

such that their unit norm is 1. In our method, this normalization is performed after a first normalization
step that is applied at each vector dimension in Ru separately, by considering all of the sub-vectors of
the input vector xi. The motivation for the first normalization step is that scale, by itself, can lead to
the identification of a certain feature. This scaling of the features is often class-independent, since it
frequently depends more on the nature of the feature than on the class, while the classification task is
required to be class-dependent.

The normalized network FN considers the u × m matrix B = [F (b1i ), F (b2i ), . . . , F (bmi )] and
normalizes each of its rows to have an L2 norm of 1 to obtain a matrix BN . We define the normalized
network FN such that FN (bji ) is the j−th column BN , further normalized to an L2-norm of one.
Although we omit it from the operand list, FN (bji ) depends not only on bji but on all b-type vectors
in Φ(xi) through normalization. Similarly, GN (aji ) is defined by the matrix AN , which is a double-
normalized version of the matrix that contains vectors of the form G(aji ), where j varies by column.

The contrastive loss ` is defined as an m-way classification problem, in which the cross-entropy loss
for a given temperature τ is used. The logit used is the pseudo-probability for the positive sample v+

being selected over m− 1 negatives given the query q (Wu et al., 2018; He et al., 2020). Note that
the normalized versions of these vectors are being used.

`(F,G,Φ(xi), j) = − ln
exp(FN (bji ) ·GN (aji )/τ)∑m

j′=1 exp(FN (bji ) ·GN (aj
′

i )/τ)
. (1)

Once the networks F andG are trained with the contrastive loss, we define the one-class classification
score as y(x) =

∑
j `(F,G,Φ(x), j) , where Φ(x) is constructed for sample x similarly to the

construction of Φ(xi) for training sample xi.

TRAINING, PARAMETERS, AND ARCHITECTURE

During training, the method directly minimizes the anomaly score of the training set S, given by
L =

∑
x∈S y(x). Training employs the Adam optimizer (Kingma & Ba, 2014) with a learning rate
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of 10−3 . It stops when the loss is smaller than 10−3 for datasets with d < 40. For larger input
dimensions, this criterion would lead to long training sessions, and we use 10−2 instead.

We fix τ = 0.01 and u = 200. The value of u, which is often much larger than k, provides
enough capacity throughout all experiments, without the need to tune it for each problem. We
set k proportionally to the input dimension d. For d smaller than 40, we set k = 2, for d in the
range [40, 160] we employ k = 10, and for d > 160, k takes the value d − 150. However, as our
experiments in Sec. 4 show, the method is not very sensitive to the value of k.

We found that we can make use of the fact that the features are unordered and simply combine
multiple scores, each obtained on a different permutation of the features. In our experiments (Sec. 4),
repeating this way is only very seldom detrimental to accuracy, and it improves performance for
small d and very small n. On the other hand, it does add to the overall runtime.

In order to make use of this bagging effect, when needed, we set the number of repeats to be
r = 1+b100(log(n)+d)−1c. For each repeat after the first, we randomly permute the set of features.
The score that the method returns is the mean of the scores obtained from each such repeat.

F and G are two fully connected networks with LeakyRELU activations (Xu et al., 2015a) using a
slope coefficient of 0.2 in all layers, except for the first layer of F , which has a tanh activation. The
reason is that we wish to distance the embedding of the a-part of x and its b part, making a simple
matching between the parts, which overlap for bji and aj

′

i when j′ 6= j, more challenging. See Sec. 5
for a detailed discussion. F has two hidden layers, with u and 2u hidden units, each followed by
Batch Normalization (Ioffe & Szegedy, 2015). G is similar, only that due to the smaller input sizes,
the hidden layers have u/4 and u/2 units and Batch Normalization is applied only after the first layer.

4 EXPERIMENTS

Datasets Based on the terminology of the field of anomaly detection, we use the term “normal” to
describe the class observed during training, and abnormal to describe samples from the other class or
classes. The experiments were conducted on two groups of datasets: (i) a collection of four datasets
commonly used for reporting anomaly detection for tabular data, (ii) a much more comprehensive
set of tabular datasets for benchmarking outlier detection. The first set of datasets contains two
small-scale medical datasets (Arrhythmia and Thyroid), as well as two cyber-intrusion detection
datasets (KDD and KDDRev) which are considerably larger. Following Zong et al. (2018) and others,
the categorical attributes are presented to the network as one-hot vectors. The second set employs
the “Multi-dimensional point datasets” from the Outlier Detection DataSets (ODDS)1. It contains 31
datasets, including two of the four datasets above. The datasets Heart and Yeast were omitted, as it is
not clear from the description which class is the normal one. See App. B the dimensionality data.

Evaluation protocol and scores Following Zong et al. (2018); Bergman & Hoshen (2020), the
training set contains a random subset of 50% of the normal data. The test set contains the rest of
the normal data, as well as all the anomalies. In the first set of experiments, the mean and standard
deviation (SD) of the F1 score are reported. For the experiments we run, this is computed over 500
random splits for the smaller datasets (Arrhythmia and Thyroid) and 10 splits for the larger ones
(KDD and KDD-Rev). For the baseline methods, the sample size varies and in some cases the results
reported in the literature are given without SD. Following the existing protocol, the decision threshold
for scoring the methods is chosen such that the number of test samples above this threshold (i.e.,
classified as anomalies) is the number of anomalies in the test set. For the second set of experiments,
in which all runs were made by us, we report (sometimes in the appendix), in addition to F1, the AUC.
Since the AUC varies less dramatically than F1 scores, it is more suitable for comparison across
datasets. It also has the advantage of not requiring setting a threshold.

Baseline methods For the first set of experiments, a comprehensive set of literature baselines is
presented. One-Class SVM (OC-SVM) (Schölkopf et al., 1999)) and DAGMM Zong et al. (2018)
results are reported as computed by Zong et al. (2018). GOAD (Bergman & Hoshen, 2020), Local
Outlier Factor (LOF) (Breunig et al., 2000), and an ensemble method (FB-AE) that employs autoen-
coders as the base classifier, feature bagging as the source of randomization, and reconstruction error
as the anomaly score, are reported by Bergman & Hoshen (2020). A recent baseline, DROCC Goyal

1http://odds.cs.stonybrook.edu/, accessed January 2021
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Table 1: Mean F1 (percents) and standard deviation over multiple resampling on the four datasets
commonly used in the literature. 1DROCC is reported based on our runs due to protocol discrepancies
in the published code; some experiments are missing due to limitations of the published code.

Arrhythmia Thyroid KDD KDDRev

Method F1 Score SD F1 Score SD F1 Score SD F1 Score SD

OC-SVM (Schölkopf et al., 1999) 45.8 38.9 79.5 83.2
LOF (Breunig et al., 2000) 50.0 0.0 52.7 0.0 83.8 5.2 81.6 3.6
DAGMM (Zong et al., 2018) 49.8 47.8 93.7 93.8
FB-AE (Chen et al., 2017) 51.5 1.6 75.0 0.8 92.7 0.3 95.9 0.4
DROCC (Goyal et al., 2020)1 38.8 6.2 72.7 3.1 N/A N/A N/A N/A
GOAD (Bergman & Hoshen, 2020) 52.0 2.3 74.5 1.1 98.4 0.2 98.9 0.3
COPOD (Li et al., 2020) 58.2 1.4 30.8 0.5 44.5 0.1 30.9 0.4
Ours 61.8 1.8 76.8 1.2 99.4 0.1 99.2 0.3

et al. (2020), is rerun by us based on their code, since the published results sampled the test set using
a different protocol2. Finally, we include the COPOD baseline (Li et al., 2020), based on our runs, as
a modern non-deep-learning method..

For the second set of experiments, we focus on the most recent deep methods: GOAD and DROCC.
Since GOAD uses three different architectures in their code, we report results for all three. The
first architecture is the one used by Bergman & Hoshen (2020) for the small datasets, the second
is used for KDD, and the third is the one used for KDDrev. Similarly, DROCC (Goyal et al.,
2020) employs three architectures in their code: one for Thyroid, one for Arrhythmia, and one
of Abalone, and we run all three. Our method employs the same architecture in all experiments,
except that k is adjusted according to d, see Sec. 3. As non-deep baselines, we run multiple methods
including classical methods and modern ones: IForest (Liu et al., 2008), k-nearest neighbours (KNN),
PIDForest (Gopalan et al., 2019), RRCF (Guha et al., 2016), and COPOD (Li et al., 2020). All of
these are based on our own runs, using the PyOD anomaly detection python package Zhao et al.
(2019) for KNN and IForest, RRCF python package and the official code published by the authors of
PIDForest in Github. The defualt parameters were used, except for the suprisignly strong baseline of
KNN, for which we report results for the best parameters found on the test set, see Appendix C.

Results The results for the first set of experiments are reported in Tab. 1. Our method outperforms
the literature baselines by a significant margin on Arrhythmia and Thyroid, where the baselines obtain
a moderate F1 score. On the larger datasets - KDD and KDDRev, where the performance of GOAD
is very high - we outperform it, obtaining a near-perfect score. On all datasets, the pvalue of the
Wilcoxon test between our method and the best competing method is lower than 0.001. From the
baseline methods, the feature bagging auto encoder (FB-AE) and GOAD seem to be the strongest,
while DROCC, with the correct protocol, is not as competitive. COPOD, despite being shown to be
successful on many other benchmarks, does not perform particularly well on this first set.

The results for the second set of experiments are obtained by our runs and compared with both deep
and classical methods (we separate these into two tables due to layout considerations). The deep
baselines, GOAD and DROCC, are run each with three different architectures. The mean and SD for
the F1 score across 20 runs are reported in Tab. 2, see Appendix C for the AUC results.

A similar experiment is conducted in comparison to classical methods: IForest (Liu et al., 2008),
KNN, PIDForest (Gopalan et al., 2019), RRCF (Guha et al., 2016), and COPOD (Li et al., 2020).
The latter has been shown to be highly effective on the ODDS collection, when tested with a random
60%/40% train/test split protocol (Li et al., 2020).

As can be seen, in Tab. 2,3, our method obtains the highest mean performance. The mean rank
reported in the tables considers the results of both tables together, and our mean rank is considerably
higher than all classical and deep baselines. KNN, perhaps the simplest method, obtains the second

2In their implementation, (1) the number of normals in the test set equals the number of anomalies in the data,
and the rest are used for training and (2) the threshold in test time to determine F1 is constant across datasets at
20% of the test set.
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Table 2: F1 for the ODDS benchmarks for deep models. To avoid selecting the architecture for
the baseline methods, we report all versions. Missing experiments are due to the limitations of the
published code.

Method DROCC DROCC DROCC GOAD GOAD GOAD Ours
(Thyroid) (Arrhythmia) (Abalone) (Thyroid) (kddrev) (kdd)

Wine 20.0±19.0 32.0±35.4 63.0±20.0 67.0±9.4 76.0±10.8 42.2±26.9 90.0±6.3
Lympho 0.0±0.0 38.3±23.6 65.0±5.0 68.3±13.0 67.7±7.8 46.0±21.5 86.7±6.0
Glass 22.2±17.2 13.3±12.0 14.5±11.1 12.7±3.9 25.7±12.0 24.0±15.1 27.2±10.6
Vertebral 25.7±5.4 27.0±15.9 9.3±6.1 16.3±9.6 26.9±5.2 25.5±4.7 26.0±7.7
Wbc 0.0±0.0 18.6±16.0 9.0±6.2 66.2±2.9 16.8±16.1 57.2±6.9 67.6±3.6
Ecoli N/A N/A N/A 61.4±31.7 69.3±23.7 66.1±27.8 70.0±7.8
Ionosphere 29.9±6.8 76.3±6.4 76.9±2.8 83.4±2.6 88.1±2.3 88.7±2.7 93.2±1.3
Arrhythmia 38.8±6.2 37.9±8.0 37.1±6.8 52.0±2.3 51.6±4.0 45.2±7.6 61.8±1.8
Breastw 15.3±7.7 63.8±29.3 93.0±3.7 96.0±0.6 73.5±9.4 94.8±1.0 96.1±0.7
Pima 40.6±3.3 55.2±8.0 66.0±4.1 66.0±3.1 57.3±1.9 60.2±2.0 59.1±2.2
Vowels 33.0±16.4 20.4±15.0 66.2±8.8 31.1±4.2 78.6±2.9 72.6±4.5 90.8±1.6
Letter 39.0±4.8 31.3±6.5 55.6±3.6 20.7±1.7 53.8±2.2 48.6±3.0 62.8±2.4
Cardio 62.6±6.1 53.3±12.9 49.8±3.2 78.6±2.5 48.9±5.8 58.4±4.8 71.0±2.4
Seismic 17.7±2.5 17.9±2.7 19.1±0.9 24.1±1.0 18.6±1.9 19.4±2.6 20.7±1.9
Musk 1.3±3.3 99.7±0.9 99.4±1.5 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Speech 3.4±2.4 2.1±1.9 4.3±2.0 4.8±2.3 8.9±2.9 4.4±2.4 5.2±1.2
Thyroid 68.4±3.2 69.7±5.7 72.7±3.1 72.5±2.8 17.2±9.4 32.9±9.9 76.8±1.2
Abalone 44.3±17.6 11.6±10.5 17.9±1.3 57.6±2.2 6.2±1.4 6.6±1.0 68.7±2.3
Optidigits 18.4±5.4 26.5±12.6 30.5±5.2 0.3±0.3 45.8±2.6 36.5±9.9 66.3±10.1
Satimage-2 10.2±2.5 33.7±19.6 4.8±1.6 90.7±0.7 20.4±10.5 21.7±2.2 92.4±0.7
Satellite 61.3±6.3 68.1±0.7 52.2±1.5 64.2±0.4 67.9±2.0 70.1±0.8 73.2±1.6
Pendigits 7.9±2.9 10.6±7.9 11.0±2.6 40.1±5.0 25.1±3.6 19.4±4.5 82.3±4.5
Annthyroid 63.8±4.7 55.6±5.2 64.2±3.3 50.3±6.3 61.4±7.8 68.0±3.7 45.4±1.8
Mnist N/A N/A N/A 66.9±1.3 67.5±1.2 66.2±1.5 85.9±0.0
Mammo. 34.1±2.2 31.5±6.2 32.6±2.1 33.7±6.1 16.5±1.3 16.0±1.5 29.4±1.4
Shuttle N/A N/A N/A 73.5±5.1 N/A 98.4±0.2 98.4±0.1
Mullcross N/A N/A N/A 99.7±0.8 N/A 36.4±17.0 100.0±0.0
Forest N/A N/A N/A 0.1±0.2 N/A 15.0±4.3 44.0±4.1
Kdd N/A N/A N/A 79.6±3.9 N/A 98.4±0.2 99.4±0.1
Kdd-rev N/A N/A N/A 98.0±0.1 98.9±0.3 98.8±0.1 99.2±0.3

mean 21.7±4.6 29.6±8.5 33.6±3.3 55.9±4.2 42.8±4.8 51.3±6.3 69.7±2.9
mean rank (out of 12) 9.1 8.8 8.0 5.3 6.5 5.7 2.6

best performance. While we list the KNN results for K = 5, which is the best test-set parameter
found, KNN outperforms the other baselines for other values of K as well, see Appendix C.

For all cases in which our method achieves the highest score (not including the ties at 100%), the
pvalue of the Wilcoxon test is below 0.0001 when compared to the next best method.

To further visualize these multiple-benchmark results, we employ a Dolan-More profile. In such
profiles, there is a single plot per method, based on the statistics of the performance it obtains
compared to the best method for each benchmark. Specifically, the ratio of benchmarks for which the
method obtains up to a fraction θ of the maximal score obtained by all methods. This is plotted for
0 ≤ θ ≤ 1. A leading method is expected to obtain a ratio of 1.0 closer to θ = 1, which means that it
obtains, on all datasets, performance that is within a relatively narrow multiplicative margin of the
best method. A dominating method would present a graph with higher values along the y-axis for
all θ values, which means that for every margin, it has more datasets in which it is within margin of
the best results than any other method. Fig. 2 presents our results for the F1 score, showing that our
method leads by a significant margin over the 11 other alternatives.

Interpretability Since we apply a sliding window approach and obtain the anomaly score by simple
integration, we can point back to specific features in the input vector that are overrepresented in
factors that indicate the anomaly. This provides a natural explainability capability, which, as far as we
can ascertain, was not shown for the deep-learning based anomaly detection methods (interpretability
can be provided for such methods indirectly, e.g., by tracking network activations (Bach et al., 2015)
or linear approximations (Ribeiro et al., 2016)).
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Table 3: F1 results traditional models. The results are reported to value of K that was found to
provide the highest mean F1 score.

Method COPOD IForest KNN PIDForest RRCF Ours

Wine 60.0±4.5 64.0±12.8 94.0±4.9 50.0±6.4 69.0±11.4 90.0±6.3
Lympho 85.0±5.0 71.7±7.6 80.0±11.7 70.0±0.0 36.7±18.0 86.7±6.0
Glass 11.1±0.0 11.1±0.0 11.1±9.7 8.9±6.0 15.6±13.3 27.2±10.6
Vertebral 1.7±1.7 13.0±3.8 10.0±4.5 12.0±5.2 8.0±4.8 26.0±7.7
Wbc 71.4±0.0 70.0±3.7 63.8±2.3 65.7±3.7 54.8±6.1 67.6±3.6
Ecoli 25.6±11.2 58.9±22.2 77.8±3.3 25.6±11.2 28.9±11.3 70.0±7.8
Ionosphere 70.8±1.8 80.8±2.1 88.6±1.6 67.1±3.9 72.0±1.8 93.2±1.3
Arrhythmia 58.2±1.4 60.9±3.3 61.8±2.2 22.7±2.5 50.6±3.3 61.8±1.8
Breastw 96.4±0.6 97.2±0.5 96.0±0.7 70.6±7.6 63.0±1.8 96.1±0.7
Pima 62.3±1.1 69.6±1.2 65.3±1.0 65.9±2.9 55.4±1.7 59.1±2.2
Vowels 4.8±1.0 25.8±4.7 64.4±3.7 23.2±3.2 18.0±4.6 90.8±1.6
Letter 12.9±0.7 15.6±3.3 45.0±2.6 14.2±2.3 17.4±2.2 62.8±2.4
Cardio 65.0±1.4 73.5±4.1 67.6±0.9 43.0±2.5 43.9±2.7 71.0±2.4
Seismic 29.2±1.3 73.9±1.5 30.6±1.4 29.2±1.6 24.1±3.2 20.7±1.9
Musk 49.6±1.2 52.0±15.3 100.0±0.0 35.4±0.0 38.4±6.5 100.0±0.0
Speech 3.3±0.0 4.9±1.9 5.1±1.0 2.0±1.9 3.9±2.8 5.2±1.2
Thyroid 30.8±0.5 78.9±2.7 57.3±1.3 72.0±3.2 31.9±4.7 76.8±1.2
Abalone 50.3±6.4 53.4±1.7 43.4±4.8 58.6±1.6 36.9±6.4 68.7±2.3
Optidigits 3.0±0.3 15.8±4.3 90.0±1.2 22.5±16.8 1.3±0.7 66.3±10.1
Satimage-2 77.9±0.9 86.5±1.7 93.8±1.2 35.5±0.4 47.9±3.4 92.4±0.7
Satellite 56.7±0.2 69.6±0.5 76.3±0.4 46.9±3.7 55.4±1.3 73.2±1.6
Pendigits 34.9±0.6 52.1±6.4 91.0±1.4 44.6±5.3 16.3±2.6 82.3±4.5
Annthyroid 31.5±0.5 57.3±1.3 37.8±0.6 65.4±2.7 32.1±0.8 45.4±1.8
Mnist 38.5±0.4 51.2±2.5 69.4±0.9 32.6±5.7 33.5±1.7 85.9±0.0
Mammo. 53.4±0.9 39.0±3.3 38.8±1.5 28.1±4.3 27.1±1.9 29.4±1.4
Shuttle 96.0±0.0 96.4±0.8 97.3±0.2 70.7±1.0 32.0±2.2 98.4±0.1
Mullcross 66.0±0.1 99.1±0.5 100.0±0.0 67.4±2.1 100.0±0.0 100.0±0.0
Forest 18.2±0.2 11.1±1.6 92.1±0.3 8.1±2.8 9.9±1.5 44.0±4.1
Kdd 44.5±0.1 95.6±2.2 98.9±0.4 92.1±2.2 74.7±0.9 99.4±0.1
Kdd-rev 30.9±0.4 96.4±2.4 85.2±0.3 50.9±4.1 9.8±1.2 99.2±0.3

mean 44.7±1.5 58.2±4.0 67.7±2.2 43.4±3.9 37.0±4.2 69.7±2.9
mean rank (out of 12) 7.1 4.7 3.8 7.7 8.4 2.6

As an example, consider the “Thyroid” dataset. In the ODDS repository, the normal class contains
samples labeled “normal” or “sub-normal functioning” and the anomalies are from the class “hyper-
functioning”. Examining the loss score per each sliding window (and not just the mean over all
of them) reveals that in 83% of the anomalies detected the feature with the highest loss value
(implying the lowest correlation with the rest of the vector compared with the training set) was “T3
concentration”, in 12% it was “TSH levels” and the rest were “T4U concentration”. This makes
medical sense since hyperthyroidism is characterized by high T3 and T4U levels, and low TSH.

To examine the ability of the model to identify dependencies, we conducted a random data experiment
as follows: we generated random data for vectors over R4 by sampling from a Gaussian distribution
with means [1, 2, 3, 4] and a covariance matrix that implies a high covariance of 0.85 between the
features of indices 2,3, zero covariance elsewhere, and unit variance for all of the features. We also
sampled random data that was identical in all parameters except for having no correlation between
any of the features. The model (k = 2, r = 1) was trained on half the data with correlation between
features and tested on the other half with the addition of all non-correlated data. The mean AUC over
10 runs was 88%, which is considerably higher than the baselines, see Appendix C (Tab. 10). More
interestingly, features 2,3 were highlighted by the model as those with the highest anomaly score.
This was inferred by simply aggregating the losses of the sliding windows each feature is included in,
per sample. In 89% of the samples detected as anomalies, either the second or third features were
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ranked highest (with almost equal frequency). This is reassuring, since the only difference between
the two sampling procedures was in the dependencies between the features.

5 DISCUSSION

The self-supervised task we seek to solve through the learning of the mappings F and G is relatively
simple and can be solved without learning in O(dm), since it amounts to identifying whether bji and
aj

′

i overlap, in which case j′ 6= j, or not, which implies that j′ = j. Since this decision process is not
class-specific, should we be surprised that the learned representations seem to be highly distinctive
of class membership? Consider by way of analogy the self-supervised learning of natural images
by employing a constrastive loss between an anchor image, its transformation, and another image,
e.g., (Chen et al., 2020). Identifying the transformation between two images, which is no more
difficult than finding out whether they are related by a transformation, is done reliably with neural
networks using point matching (Sarlin et al., 2020), or using “direct methods” (DeTone et al., 2016).
These methods are not class-specific. However, the representations learned by applying geometric
transformations are extremely distinctive of the class.

To study this further with a random data experiment, in which the vectors x are composed of d
independent variables sampled uniformly in [−1, 1], we learn networks F and G and observe the
success in identifying index j, vs. the other indices. The results for d = 6, 15, 30 are reported
in Fig. 6. As can be seen (our method, all experiments), the loss is being reduced while training.
However, the network is not able to immediately obtain perfect performance, especially for larger d.
As mentioned in Sec. 3, the architectures of F and G are slightly different, based on the motivation
that this would make the class-independent solution less accessible during training. As shown in
Fig. 6, when replacing the architecture ofG to be identical to that of F , the class-independent learning
has a lower error on most epochs. Lastly, for data where the features are different from one another
the problem becomes less challenging. A second random data experiment sets the mean value of
each variable uniformly in [0,1] and the data is i.i.d Gaussian with a unit variance. In this case, the
network reaches the same loss in one-tenth of the number of epochs, see Appendix C (Fig. 9).

Tabular data tends to have considerably higher structural variance between datasets than perceptual
data. The type of features (continuous or categorical), the number of features, and dependencies
between features vary greatly from one dataset to the next. This variance makes the development of a
generic anomaly detection method challenging, and we find a significant difference in performance
across methods. We note, however, that our method is more stable than recent ones, and handles
multiple datasets using the same architecture, except for minimal tuning directly related to the
dimensionality of the data. For example, on the four datasets commonly used in the literature, the
method is applied exactly the same, except for Thyroid, where due to the low input dimensionality
(d = 6), the value of k = 2 was used. In contrast, GOAD, for example, has dataset-dependent
stopping criteria (early stopping or 25 epochs) and employs three architectures on these four datasets.

6 CONCLUSIONS

We present a generic one-class classification method for tabular data. The method assumes that it is
possible to identify missing features based on the rest and employs a contrastive loss for learning
without any other auxiliary loss. In an extensive set of experiments, the method presents a significant
advantage over existing anomaly detection methods. The method requires no tuning between different
datasets and is stable with respect to its hyperparameters.

Reproducibility Statement The full implementation of our method and scripts for reproducing
the experiments are attached as a supplementary zip file. This archive includes a README file
and a list of requirements that support seamless reproducibility. The runtime statistics are reported
in Appendix G. We note that our method requires modest computational resources, such as those
available for free on Google Colab, further supporting widespread reproducibility. A detailed
depiction of the (few) hyperparameters used is given in Sec. 3. A sensitivity analysis presented in
Sec. 4 demonstrates that the method is insensitive to specific parameter values.
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Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg Langs.
Unsupervised anomaly detection with generative adversarial networks to guide marker discovery.
In International conference on information processing in medical imaging, pp. 146–157. Springer,
2017.

Bernhard Schölkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt. Support
vector method for novelty detection. Advances in neural information processing systems, 12:
582–588, 1999.

Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, and Tomas Pfister. Learning and evaluat-
ing representations for deep one-class classification. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=HCSgyPUfeDj.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
learning on distributionally shifted instances. In 34th Conference on Neural Information Processing
Systems (NeurIPS) 2020. Neural Information Processing Systems, 2020.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Web-scale training for face
identification. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2746–2754, 2015.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via
non-parametric instance discrimination. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Y. Xia, X. Cao, F. Wen, G. Hua, and J. Sun. Learning discriminative reconstructions for unsupervised
outlier removal. In 2015 IEEE International Conference on Computer Vision (ICCV), 2015.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015a.

Dan Xu, Elisa Ricci, Yan Yan, Jingkuan Song, and Nicu Sebe. Learning deep representations of
appearance and motion for anomalous event detection. arXiv preprint arXiv:1510.01553, 2015b.

Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier detection.
Journal of Machine Learning Research, 20(96):1–7, 2019. URL http://jmlr.org/papers/
v20/19-011.html.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In
International Conference on Learning Representations, 2018.

A VALIDATING THE BASIC ASSUMPTIONS

We validate the ability to learn to match between (aji , b
j
i ) against options of the form (aj

′

i , b
j
i ) for j′

by training networks F,G and measuring the log-likelihood of the correct answer (Eq. 1) for samples
from the normal class. We then repeat this for out-of-class samples to validate that the learned
networks are class dependent.
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As can be seen in Fig. 3 and 4, for the vast majority of ‘Multi-dimensional point datasets” from
the Outlier Detection DataSets (ODDS, http://odds.cs.stonybrook.edu/, accessed May
2021), for the normal class the log likelihood is much higher than chance (assumption 1). It is also
clear that it is almost always much higher than that of the out-of-class samples (assumption 2), even
though the log likelihood for the out-of-class samples is sometimes higher than chance.

We note that where these assumptions do not hold, e.g., for Pima and Vertebral datasets, where the
second assumption does not hold, the success rate of our method is relatively low (Tab. 2).

The correlation between the success in detecting anomalies and the classification score is presented in
Fig. 5. Presented are both the classification log likelihood (assumption 1) as well as the difference in
log likelihood between in-class and out-of-class samples. Evidently, the negative log-likelihood score
of assumption 1 is low in almost all cases, but is not highly correlated with the F1 score (r = −0.1608,
p = 0.3959). The difference in classification success that is associated with assumption 2 is, however,
highly correlated with the identification performance (r = −0.7568, p = 1.3× 10−6).

We use the same experiments to also check the soft assumption that the original order may be, in
some cases, preferable to a random permutation of the features. As can be seen, there is no clear
advantage to the original order of the features. In the Mulcross dataset, for example, the permuted
variation leads to a stronger distinction between the normal and the anomalous class. The lack of a
clear advantage for the original order is further supported by the experimental results in Sec. 4, which
show that in 50% of the datasets the original order is preferable and in the rest the permuted order is.

Finally, we explore the counterexample presented in the limitations part of Sec. 5, using the specific
parameters for which the normal and the out-of-class samples cannot be distinguished. As can be
seen in Fig. 4 (bottom right), in this case the first assumption holds, but the second one does not. This
leads to an inability to identify abnormal samples.

B ODDS DATASET STATISTICS

Tab. 5 presents the number of samples, the dimensionality, and the number of samples not from the
main class for the various datasets that belong to the collection “Multi-dimensional point datasets”
from the Outlier Detection DataSets (ODDS, http://odds.cs.stonybrook.edu/, accessed
May 2021).

C ADDITIONAL RESULTS

In Tab. 6 we present results for the second set of experiments, this time reporting AUC (the manuscript
reported the F1 scores in Tab. 2.).

In Fig. 7, we present the results of a parameter sensitivity study performed on four datasets. The
results indicate that the method is largely insensitive to the parameters: the sliding window size
k, the dimensionality of the latent space u, the softmax temperature τ , and the number of random
permutations r. In each experiment, the tested parameter was varied, while all other values were
default.

In Fig. 8 we show the results for varying k in the range [1...150] for the Arrhythmia dataset. For each
k value, the reported results are averages over 10 runs. The best F1 score was obtained at 63 (the k
value selected at our default settings for this dataset is 124), but all values were relatively similar and
between 58.59% and 67.2% (the AUC values were in the range 80.7%–84.3%). For all k, the F1 and
AUC are better than all baselines.

In Tab. 7 we show the results for a sensitivity test, in which we set the hyperparameter k as 1 for all
datasets, compared to the original results reported in the paper. In 30% of the experiments, this leads
to better performance than the k used according to the default setting. The mean F1 is lower by 2.6%
(AUC lower by 1.7%), still outperforming all baselines.

Fig. 9 shows the results for the random data experiment, where features are sampled independently
from a Gaussian distribution with a different mean per feature, sampled from U[0,1]. These runs are
compared to results where the features are sampled from U[-1,1] i.i.d. Also, for each distribution we
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Figure 3: The negative log likelihood (Eq. 1) for matching between the sub-vectors (aji , b
j
i ) with

networks F,G for multiple ODDS datasets. The results are shown in each plot, from left to right,
for in-class samples using the original order of vector elements, out-of-class samples using the same
order, in-class samples with a fixed-permutation order of features, out-of-class samples with this
permuted order. The samples in the box plots were collected across all test samples xi and segment
indices j, without summing over j. The horizontal line indicates the negative log likelihood of a
random guess. (Part 1/2, continued on the next page)
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Figure 4: (Part 2/2; see Fig. 3 for details). Bottom right: results on a synthetic dataset that was created
to demonstrate a case, for specific k, r, in which learning is possible but not in a class dependent
manner.

15



Published as a conference paper at ICLR 2022

Figure 5: The anomaly detection performance (F1 score, x-axis) vs. the classification performance on
the normal class(log likelihood, assumption 1) and the difference in performance between the normal
and the anomaly class (assumption 2).
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show the results for two variations of our network - one with the default architecture, and one where
we change the F network so it is similar to G (i.e. without TanH activation).

As can be seen, for data sampled from Gaussian distribution the network converges considerably
faster, which suggests that solving the class-independent task is easier when the features have
distinctive differences. Also, in both variations of the data distribution, the TanH architecture variant
requires more epochs to converge to similar values, supporting our hypothesis that the design of our
architecture makes it harder for the network to learn the class-independent solution.

In Tab. 8 we report the results for running different variations of our architectures: a variant with a
single hidden layer for both F and G, one with an extra layer for both, and the default architecture.

In Tab. 9 we report results for a test designed for studying whether the order of the features effects
the results of the model. To this end,we measured the performance after employing a single fixed
permutation on the datasets, compared to not employing any permutation at all (the original order
as provided by the dataset). Permuting the features had a minor effect, and across the collection of
datasets, there is no clear advantage to the original order.

Tab. 10 reports the results of the experiment in which both the normal and the out-of-class distributions
are sampled from 4D Gaussians with a mean vector of [1, 2, 3, 4]> and a per-variable variance of one.
The in-class samples where sampled from a convariance matrix with a correlation of 0.85 between
variables two and three, but uncorrelated otherwise. For the out-of-class samples, the covariance
matrix was diagonal. This is a challenging problem, since variables two and three can appear to be
similar even for an out-of-class sample. As can be seen, our method greatly outperforms the baseline
methods.

The KNN baseline, while being the simplest baseline, was shown to be the strongest one. In the
experiments of the paper we report results for the highest performing parameter, which is K = 5
neighbours. The mean F1 score for various values of K tested are: 67.1, 66.3, 67.7, 66.8, 66.4 for K
of 1,2,5,10,20, respectively.

D ABLATIONS AND PARAMETER SENSITIVITY

We selected four representative datasets (’Wine’, ’Glass’, ’Thyroid, ’Letter’), which vary in the
number of dimensions, the number of samples, and the performance level, and ran an ablation
analysis on them. The variants we compare include: (i) a variant of our method, in which the tanh
activation of the first layer of F is replaced by a LeakyRELU, (ii) a variant in which only the first
of the two normalizations of the query and vectors that F and G output takes place (iii) a variant
in which only the second normalization takes place, i.e, normalization occurs in the conventional
way, (iv) a variant in which the order of the two normalizations is reversed, and (v) a variant with no
normalization, i.e., F,G are trained and used instead of FN and GN .

The results are reported in Tab. 4. As can be seen, the tanh activation in F improves results, to
a varying degree, on the four datasets. Normalization tends to help across datasets. However, on
Thyroid, applying no normalization at all provides better results. Omitting only the 2nd normalization,
which is often used in contrastive learning, is detrimental in all cases. Omitting the 1st normalization,
while keeping the 2nd, also hurts performance. Reversing the order of the two normalizations, which
changes the scales of the features before this scale is normalized for, is detrimental.

On the same four datasets we also evaluate the sensitivity of the method to its hyperparameters: k, u,
τ , and r. In each experiment, we fix three parameters and vary the fourth. The results, provided in the
supplementary Fig. 7 of appendix C, indicate that the method is largely insensitive to its parameters.
This robustness is further supported by using the same hyperparameters on a large number of datasets.

To further verify that the method works for any k, we tested for Arrhythmia, which has a dimen-
sionality of 274, values of k between 1 and 150. The best F1 score was obtained at 63 (in the
experiments it is 124), but all values were relatively similar and between 58.59% and 67.2% (the
AUC values were in the range 80.7%–84.3%). For all k, the F1 and AUC are better than all baselines,
see Appendix C for the full results. Further evidence of the robustness of the k parameter, which is
the main hyperparameter, since we fix u = 200 and τ = 0.01, is provided by simply using k = 1
across all ODDS datasets. In 30% of the experiments, this leads to better performance than the k
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Table 4: Ablation results (F1 in percents and standard deviation over multiple resampling).

Wine Glass Thyroid Letter

Variant F1 Score SD F1 Score SD F1 Score SD F1 Score SD

Ours 90.0 6.3 28.9 10.6 76.8 1.2 62.8 2.4
(i) No tanh 70.0 7.7 15.6 5.4 76.1 3.8 54.4 3.0
(ii) Only 1st norm 85.0 9.2 21.1 0.07 68.7 0.02 52.2 4.7
(iii) Only 2nd norm 87.0 7.8 25.6 10.0 76.5 1.8 57.2 6.6
(iv) 2nd norm then 1st 84.0 4.8 22.2 11.0 68.4 2.2 57.1 3.0
(v) No normalization 87.0 6.4 21.1 10.5 78.1 1.8 51.0 7.2

(a) (b) (c)
Figure 6: Convergence of the loss on completely random data, in order to evaluate the ability to
perform class-independent learning. (a) d = 6. (b) d = 15. (c) d = 30.

used according to Sec. 3. The mean F1 is lower by 2.6% (AUC lower by 1.7%), still outperforming
all baselines, see Appendix C for the full results. Note that in this case k << u.

We further investigate the sensitivity of our method to the network architecture. When changing both
F and G, a variant with only one hidden layer obtained, on average on ODDS, an F1 score that is
lower by 2.8% (AUC by 1%; still much better than all baselines in both scores), and a variant with an
extra hidden layer in both had a mean F1 that is lower by 10.2% (AUC difference of 4%) than the
default architecture. See Appendix C for the full tables and Appendix H for a discussion.

As described in Sec. 3, the score is computed multiple times after permuting the features, and the
number of repeats (r) depends on the dimensionality d and number of samples n. In Fig. 7(d), we
present the effect of the number of repeats on performance for multiple relatively small datasets, at
different performance levels. Shown are the mean F1 over 10 runs and also, as error bars, the SD.
We observe that adding repeats typically helps, albeit modestly. It also tends to reduce the variance
between runs. A drop in performance between the first and the second repeats may indicate that the
order of features is informative. However, this does not happen often.

To study the potential benefit that our method obtains from the particular order of the features in
which the data is given, we have compared our results (with no permutations) to those obtained when
employing a single, fixed permutation. The average F1 score our method obtains across the entire
ODDS collection is 64.1%, and after permutation 64.4% (mean over all datasets, with 10 repeats).
This trend, however, is dominated by a few datasets, and in AUC terms, the results are 87.2% vs.
87.1%, where the original order leads. In both AUC and F1 the original order leads in the same 50%
of the datasets. The lack of a clear advantage for the original order is also apparent in the auxiliary
results of Appendix A.

The same experiment also verifies that our improved performance does not arise solely from the
bagging effect of having r > 1. Comparing the case of r = 1 to the baselines reveals that our average
F1 score of 64.1% (AUC 87.2%) is higher by a sizable margin then all of GOAD’s architectures,
which have a mean F1 of 51.3–55.9% (depending on the architecture; AUC of 79.6–81.0%) and
COPOD’s 44.7% mean F1 score (AUC 79.1%).
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E LIMITATIONS

In some symmetric cases, for specific parameters and with no permutation, our method would fail in
the task of anomaly detection. Specifically, any scenario in which for both normal and anomalous
data the pairs constructed from each instance {(aji , b

j
i )}mj=1 are identical would be impossible for the

network to differentiate between. For example normal data of the form (0,1,0,0,0) and anomalous data
(0,0,0,1,0) with k = 2 and r = 1 violates the second assumption listed in Sec. 1. See Appendix A for
simulations of this example.

F AN ALTERNATIVE METHOD (REPORTING A NEGATIVE RESULT)

We briefly summarize an alternative method that was tried, which failed to produce the results we
hoped for. Earlier in the development process, we had an intuition that making a comparison with
external samples might be beneficial for our model, and we experimented with drawing the negative
samples from other instances, i.e. instead of using:

q = F (bji ),v
+ = G(aji ),v

− = G(aj
′

i ) (2)

for some i, j, j′ 6= j, we used:

q = F (bji ),v
+ = G(aji ),v

− = G(aji′) (3)

for i, i′ 6= i, j. The results obtained by employing this method on the ODDS repository were
significantly lower in terms of F1 and AUC performance on almost all datasets, and were not
competitive with the baseline methods.

G RUNTIME

In Tab. 11 we show the average runtime in seconds for each of the datasets. We include two versions:
one with the default amount of repeats rdefault = 1 + b100(log(n) + d)−1c and another one with
rfaster = min(2, rdefault).

We observe that the difference in performance between the two versions is typically minor, and the
faster method might be preferred if runtime is a top priority. The code includes an option for running
the model in the faster mode.

The google colab infrastructure was used to run the experiments. GPU: Tesla K80, 12GB GDDR5
VRAM; CPU: Single core Xeon Processors @2.3Ghz; RAM: 24 GB. For the GOAD baseline that
required larger memory, we used a 32GB GPU and 512GB RAM.

H DISCUSSION OF ALTERNATIVE ARCHITECTURES

The architecture we employ for F and G is a straightforward fully connected architecture with two
hidden layers. One can hypothesize that with less capacity, the network may not be able to learn the
required mappings as effectively, making it incapable of utilizing the first assumption. However, with
added capacity, the network may shift from the class specific solution to a generic solution, validating
our 2nd assumption. See Galanti et al. (2018) for a remotely related phenomenon in the completely
different unsupervised learning task of mapping between two visual domains: with too few layers the
mapping fails to produce samples in the target domain, for too many layers, the mappings are not
specific to the input image.

The hypothesis is partly validated empirically in the results reported in Appendix. C Tab. 8. A variant
with only one hidden layer obtained only 1% less mean AUC (still better by a gap than all baselines)
on the ODDS benchmark than our original results, and a variant with an extra hidden layer had an
AUC 4% lower.

In order to study whether this drop in performance is due to assumption 2, we examine the average log
likelihood. The mean loss for the “normals” category is 0.016 and 0.014 for the original architechture
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and one extra layer respectively, and the mean anomaly class losses are 1.54 and 0.96. We, therefore,
observe that the ability to solve the problem (assumption 1) is almost the same and slightly improves
with the added capacity. However, the gap between the normal class and the outlier samples has
shrunk dramatically with the extra layer.

Table 5: The number of samples, the dimensionality, and the number of samples not from the main
class for the datasets used in the second set of experiments.

Dataset n d Outliers

Wine 129 13 10 (7.7%)
Lympho 148 18 6 (4.1%)
Glass 214 9 9 (4.2%)
Vertebral 240 6 30 (12.5%)
WBC 278 30 21 (5.6%)
Ecoli 336 7 9 (2.6%)
Ionosphere 351 33 126 (36%)
Arrhythmia 452 274 66 (15%)
BreastW 683 9 239 (35%)
Pima 768 8 268 (35%)
Vowels 1456 12 50 (3.4%)
Letter Recognition 1600 32 100 (6.25%)
Cardio 1831 21 176 (9.6%)
Seismic 2584 11 170 (6.5%)
Musk 3062 166 97 (3.2%)
Speech 3686 400 61 (1.65%)
Thyroid 3772 6 93 (2.5%)
Abalone 4177 9 29 (0.69%)
Optdigits 5216 64 150 (3%)
Satimage-2 5803 36 71 (1.2%)
Satellite 6435 36 2036 (32%)
Pendigits 6870 16 156 (2.27%)
Annthyroid 7200 6 534 (7.42%)
Mnist 7603 100 700 (9.2%)
Mammography 11183 6 260 (2.32%)
Shuttle 49097 9 3511 (7%)
KDDCUP99-Rev 121597 120 24319 (20%)
Mulcross 262144 4 26214 (10%)
ForestCover 286048 10 2747 (0.9%)
KDDCUP99 494021 120 97277 (19.6%)
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Table 6: AUC results for the ODDS benchmarks. In order to avoid selecting the architecture for the
baseline methods, we used all available versions of these methods. The missing DROCC experiments
are due to the limitations of the published code.

Method DROCC DROCC DROCC GOAD GOAD GOAD COPOD Ours
(Thyroid) (Arrhythmia) (Abalone) (Thyroid) (kddrev) (kdd)

Wine 53.5±22.3 60.1±32.3 90.9±8.2 95.2±1.9 97.3±1.7 86.3±9.5 87.5±1.7 99.5±0.6
Lympho 6.4±5.2 58.6±30.4 83.7±12.4 94.8±5.6 79.7±11.1 59.9±14.9 99.4±0.4 99.5±0.3
Glass 63.5±9.1 55.5±21.8 75.4±8.9 62.2±14.0 85.5±7.0 82.1±6.3 63.7±3.3 88.1±5.0
Vertebral 55.0±5.1 58.0±15.4 41.2±10.1 47.0±12.8 52.2±3.9 49.4±4.2 32.6±1.2 51.1±3.2
WBC 6.8±1.8 41.3±25.0 35.4±13.1 95.4±0.7 66.1±11.5 86.6±2.9 96.3±0.5 95.4±1.1
Ecoli N/A N/A N/A 82.7±8.4 87.2±3.3 84.7±6.8 81.0±1.2 86.5±1.2
Ionosphere 19.6±5.8 83.5±5.6 80.0±2.8 92.4±1.3 96.3±1.1 96.5±1.1 80.3±2.1 98.1±0.4
Arrhythmia 53.2±7.0 52.7±8.6 51.2±8.1 80.0±1.9 73.3±5.1 64.3±8.8 80.5±1.3 81.7±0.6
Breastw 7.7±8.6 64.4±33.0 96.6±3.3 98.7±0.8 80.8±9.5 97.7±0.8 99.4±0.2 99.1±0.3
Pima 36.2±4.6 54.9±11.0 69.1±4.9 68.7±3.9 59.3±2.2 63.2±2.3 65.2±0.7 59.4±2.8
Vowels 79.4±9.5 72.0±11.9 95.3±2.1 81.0±2.4 98.5±0.3 97.6±0.5 49.6±1.0 99.7±0.1
Letter 77.6±3.3 73.3±5.4 90.0±1.2 60.9±0.7 89.9±0.5 87.6±0.9 50.1±0.8 92.8±0.9
Cardio 84.3±4.0 73.8±11.8 73.5±3.2 94.8±1.7 81.3±4.5 84.6±3.0 92.2±0.3 92.7±0.8
Seismic 58.2±2.8 60.3±4.5 56.7±1.3 69.5±1.5 67.2±1.2 67.9±1.2 70.8±0.4 62.9±1.0
Musk 2.3±5.1 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 94.5±0.2 100.0±0.0
Speech 51.2±5.6 50.5±4.0 52.6±3.4 47.1±1.3 65.3±3.2 54.1±4.4 49.1±0.5 58.9±2.7
Thyroid 95.6±0.9 96.1±2.5 98.1±0.3 94.5±1.5 77.1±8.8 89.2±3.0 94.1±0.2 98.5±0.1
Abalone 82.4±13.8 52.9±25.8 70.6±9.7 89.2±0.9 46.0±3.7 54.3±7.8 86.3±0.3 94.3±0.6
Optidigits 84.2±4.6 89.0±4.6 89.5±2.1 66.9±3.3 95.7±0.5 93.1±1.9 68.0±0.4 97.5±1.5
Satimage 19.1±1.4 87.5±8.8 11.5±1.2 99.1±0.1 86.5±7.1 93.2±1.7 97.4±0.1 99.8±0.1
Satellite 64.6±8.9 73.1±1.3 50.2±2.2 69.1±0.8 76.3±1.0 78.2±0.9 63.5±0.2 80.6±1.7
Pendigits 58.9±7.6 50.8±15.4 76.6±5.4 87.5±3.9 89.2±2.9 85.1±3.4 90.4±0.2 99.5±0.1
Annthyroid 92.9±2.3 86.5±3.6 93.4±1.3 76.1±6.5 89.6±4.9 93.2±0.9 77.4±0.4 80.5±1.3
MNIST N/A N/A N/A 90.9±0.4 89.4±0.7 87.7±1.0 77.2±0.2 98.2±0.0
Mammography 81.0±1.3 85.0±2.1 82.0±1.5 66.3±6.4 57.2±1.9 54.5±2.3 90.5±0.1 81.1±2.0
Mulcross N/A N/A N/A 100.0±0.0 N/A 51.3±15.8 93.2±0.0 100.0±0.0
Shuttle N/A N/A N/A 88.4±5.5 N/A 99.9±0.0 99.4±0.0 100.0±0.0
Forest N/A N/A N/A 15.9±6.6 N/A 76.0±5.3 88.4±0.0 96.2±0.6
KDD N/A N/A N/A 92.8±1.0 N/A 99.8±0.0 78.6±0.1 99.9±0.0
KDD-Rev N/A N/A N/A N/A N/A 99.7±0.2 75.1±0.2 99.8±0.1
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Table 7: F1 and AUC results for k = 1 and the default settings of k mentioned in the paper

F1 AUC

Method k = 1 k = default k = 1 k = default

Wine 88.0 90.0 99.3 99.5
Lympho 86.7 86.7 99.5 99.5
Glass 22.2 27.2 87.3 88.1
Vertebral 28.0 26.0 52.4 51.1
WBC 71.4 67.6 95.6 95.4
Ecoli 62.2 70.0 86.0 86.5
Ionosphere 93.2 93.2 97.8 98.1
Arrhythmia 59.7 61.8 81.0 81.7
Breastw 94.8 96.1 98.4 99.1
Pima 60.0 59.1 60.5 59.4
Vowels 86.4 90.8 99.5 99.7
Letter 56.8 62.8 89.5 92.8
Cardio 72.0 71.0 92.1 92.7
Seismic 23.4 20.7 64.9 62.9
Musk 100.0 100.0 100.0 100.0
Speech 3.6 5.2 54.2 58.9
Thyroid 78.1 76.8 98.1 98.5
Abalone 69.7 68.7 93.1 94.3
Optidigits 37.9 66.3 92.3 97.5
Satimage 91.8 92.4 99.7 99.8
Satellite 72.6 73.2 81.1 80.6
Pendigits 71.0 82.3 98.7 99.5
Annthyroid 45.5 45.4 79.6 80.5
MNIST 82.0 85.9 96.4 98.2
Mammography 28.9 29.4 81.5 81.1
Shuttle 98.3 98.4 100.0 100.0
KDD-Rev 99.0 99.2 99.8 99.8
Mulcross 100.0 100.0 100.0 100.0
Forest 28.3 44.0 86.6 96.2
KDD 98.6 99.4 99.9 99.9
mean 67.0 69.6 88.8 89.7
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Table 8: F1 and AUC results for variations of the architecture: Using only one hidden layer, adding
an extra hidden layer and the default architecture

F1 AUC

Method Single- Extra- Default Single- Extra- Default
layer layer layer layer

Wine 74.0 88.0 90.0 96.8 98.3 99.5
Lympho 86.7 76.7 86.7 99.5 98.6 99.5
Glass 17.8 13.3 27.2 84.2 82.0 88.1
Vertebral 16.7 30.0 26.0 48.3 59.1 51.1
WBC 69.5 67.6 67.6 94.8 94.4 95.4
Ecoli 57.8 62.2 70.0 86.6 87.4 86.5
Ionosphere 94.4 91.6 93.2 98.3 97.3 98.1
Arrhythmia 62.1 62.7 61.8 80.9 81.5 81.7
Breastw 95.4 95.6 96.1 98.6 98.6 99.1
Pima 59.5 57.1 59.1 60.1 57.2 59.4
Vowels 90.0 73.6 90.8 99.6 97.8 99.7
Letter 51.2 28.2 62.8 87.0 70.1 92.8
Cardio 66.6 78.4 71.0 90.3 96.5 92.7
Seismic 23.2 19.8 20.7 61.0 63.3 62.9
Musk 100.0 67.0 100.0 100.0 96.8 100.0
Speech 4.9 2.3 5.2 53.3 45.2 58.9
Thyroid 73.3 58.1 76.8 97.5 96.8 98.5
Abalone 68.3 56.6 68.7 94.2 92.6 94.3
Optidigits 47.1 2.7 66.3 94.0 72.0 97.5
Satimage 91.0 91.0 92.4 99.7 99.7 99.8
Satellite 73.3 69.2 73.2 79.5 75.8 80.6
Pendigits 85.1 54.6 82.3 99.6 94.2 99.5
Annthyroid 43.7 43.6 45.4 79.7 78.0 80.5
MNIST 82.3 52.4 85.9 96.7 86.1 98.2
Mammography 31.7 27.7 29.4 81.1 68.4 81.1
Shuttle 98.0 98.1 98.4 99.9 100.0 100.0
KDD-Rev 95.0 96.5 99.2 98.4 98.9 99.8
Mulcross 100.0 94.1 100.0 100.0 99.3 100.0
Forest 49.2 13.6 44.0 97.0 83.5 96.2
KDD 97.4 99.1 99.4 99.8 100.0 99.9
mean 66.8 59.0 69.6 88.6 85.6 89.7
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Table 9: F1 and AUC results for: no permutations at all (r = 0) and for one fixed permutation (r = 1)

F1 AUC

Method r = 0 r = 1 r = 0 r = 1

Wine 74.0 73.2 95.1 94.7
Lympho 85.0 82.8 99.4 99.1
Glass 12.2 22.9 74.5 81.5
Vertebral 14.3 14.2 52.6 42.3
WBC 63.3 65.3 94.1 93.5
Ecoli 66.7 57.8 87.6 86.4
Ionosphere 90.6 92.8 96.5 97.8
Arrhythmia 62.4 61.3 80.4 81.0
Breastw 95.1 94.5 98.5 98.1
Pima 59.3 58.5 59.2 58.8
Vowels 80.4 79.9 98.4 98.4
Letter 49.6 55.3 88.7 89.2
Cardio 66.8 67.0 89.7 89.8
Seismic 20.8 19.8 62.6 60.1
Musk 100.0 100.0 100.0 100.0
Speech 3.6 2.0 52.3 55.5
Thyroid 75.5 69.8 98.3 96.4
Abalone 61.4 64.1 88.5 92.2
Optidigits 68.5 55.8 97.6 95.9
Satimage 90.6 91.7 99.7 99.8
Satellite 73.8 73.3 83.3 80.6
Pendigits 69.8 69.8 97.6 97.7
Annthyroid 41.9 44.6 72.9 79.8
MNIST 83.7 84.8 97.3 97.9
Mammography 21.9 24.8 75.9 73.7
Shuttle 97.7 98.0 99.9 99.9
KDD-Rev 99.2 99.2 99.9 99.8
Mulcross 73.5 75.8 90.5 86.7
Forest 23.5 35.1 86.2 89.5
KDD 98.9 98.3 99.9 99.9
mean 64.1 64.4 87.2 87.2

Table 10: AUC results for a synthetic data experiment with 4D data that has the same class mean for
both classes, only that in the normal class variables two and three are correlated. Shown are mean
results and Standard Deviations over 10 repeats.

Method AUC (percent; Mean ± SD)

COPOD (Li et al., 2020) 52.2 ± 3.2
Isolation Forest (Liu et al., 2008) 62.3 ± 4.6
OC-SVM (Schölkopf et al., 1999) 66.8 ± 1.1
GOAD KDD architecture (Bergman & Hoshen, 2020) 74.0 ± 3.2
GOAD Thyroid architecture (Bergman & Hoshen, 2020) 73.7 ± 1.3
Ours 88.1 ± 1.5
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(a) (b)

(c) (d)

Figure 7: Sensitivity with respect to (a) k, (b) u, (c) τ , and (d) the number of random permutations r.
All other values are taken at the default value.

(a) (b)

Figure 8: Varying k in the Arrhythmia dataset. (a) F1 results (b) AUC results.
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(a) (b) (c)

Figure 9: Convergence of the loss on random data, sampled from uniform and Gaussian distributions.
(a) d = 6. (b) d = 15. (c) d = 30.

Table 11: Runtime in seconds and F1-Score for rdefault = 1 + b100(log(n) + d)−1c and rfaster =
min(2, rdefault).

Dataset rdefault runtime rfaster runtime rdefault F1 rfaster F1

wine 21.1 8.0 90.0% 73.0%
lympho 35.5 15.0 86.7% 83.3%
glass 24.9 5.2 27.2% 25.6%
vertebral 30.3 5.8 26.0% 17.0%
wbc 33.2 22.7 67.6% 66.7%
ecoli 35.5 8.4 70.0% 66.7%
ionosphere 28.0 18.8 93.2% 92.5%
arrhythmia 33.5 same 61.8% same
breastw 38.9 12.2 96.1% 94.6%
pima 27.1 9.8 59.1% 58.2%
vowels 83.7 28.0 90.8% 86.6%
abalone 44.4 8.4 68.7% 66.2%
letter 107.6 72.5 62.8% 59.5%
cardio 105.9 52.8 71.0% 67.8%
seismic 159.9 79.2 20.7% 21.0%
musk 381.3 same 100.0% same
speech 662.4 same 5.2% same
thyroid 76.7 17.1 76.8% 73.1%
optdigits 332.5 same 66.3% same
satimage 430.4 286.8 92.4% 92.1%
satellite 336.7 222.3 73.2% 74.7%
pendigits 224.1 89.9 82.3% 76.3%
annthyroid 80.2 21.7 45.4% 43.5%
mnist 223.1 same 85.9% same
mammography 150.8 42.5 29.4% 24.2%
shuttle 212.4 89.1 98.4% same
forest cover 240.3 107.9 44.0% 37.5%
mullcross 279.5 43.6 100.0% 99.0%
kdd 1674.1 same 99.4% same
kddrev 1771.3 same 99.2% same
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