
Published as a conference paper at ICLR 2021

ONLINE ADVERSARIAL PURIFICATION BASED ON
SELF-SUPERVISED LEARNING

Changhao Shi1, Chester Holtz2 & Gal Mishne1,2,3

1Department of Electrical and Computer Engineering,
2Department of Computer Science and Engineering,
3The Halıcıoğlu Data Science Institute
University of California, San Diego
{cshi,chholtz,gmishne}@ucsd.edu

ABSTRACT

Deep neural networks are known to be vulnerable to adversarial examples, where
a perturbation in the input space leads to an amplified shift in the latent network
representation. In this paper, we combine canonical supervised learning with self-
supervised representation learning, and present Self-supervised Online Adversar-
ial Purification (SOAP), a novel defense strategy that uses a self-supervised loss
to purify adversarial examples at test-time. Our approach leverages the label-
independent nature of self-supervised signals, and counters the adversarial per-
turbation with respect to the self-supervised tasks. SOAP yields competitive ro-
bust accuracy against state-of-the-art adversarial training and purification meth-
ods, with considerably less training complexity. In addition, our approach is robust
even when adversaries are given knowledge of the purification defense strategy.
To the best of our knowledge, our paper is the first that generalizes the idea of
using self-supervised signals to perform online test-time purification.

1 INTRODUCTION

Deep neural networks have achieved remarkable results in many machine learning applications.
However, these networks are known to be vulnerable to adversarial attacks, i.e. strategies which aim
to find adversarial examples that are close or even perceptually indistinguishable from their natural
counterparts but easily mis-classified by the networks. This vulnerability raises theory-wise issues
about the interpretability of deep learning as well as application-wise issues when deploying neural
networks in security-sensitive applications.

Many strategies have been proposed to empower neural networks to defend against these adversaries.
The current most widely used genre of defense strategies is adversarial training. Adversarial training
is an on-the-fly data augmentation method that improves robustness by training the network not
only with clean examples but adversarial ones as well. For example, Madry et al. (2017) propose
projected gradient descent as a universal first-order attack and strengthen the network by presenting
it with such adversarial examples during training (e.g., adversarial training). However, this method
is computationally expensive as finding these adversarial examples involves sample-wise gradient
computation at every epoch.

Self-supervised representation learning aims to learn meaningful representations of unlabeled data
where the supervision comes from the data itself. While this seems orthogonal to the study of
adversarial vulnerability, recent works use representation learning as a lens to understand as well as
improve adversarial robustness (Hendrycks et al., 2019; Mao et al., 2019; Chen et al., 2020a; Naseer
et al., 2020). This recent line of research suggests that self-supervised learning, which often leads to
a more informative and meaningful data representation, can benefit the robustness of deep networks.

In this paper, we study how self-supervised representation learning can improve adversarial robust-
ness. We present Self-supervised Online Adversarial Purification (SOAP), a novel defense strategy
that uses an auxiliary self-supervised loss to purify adversarial examples at test-time, as illustrated
in Figure 1. During training, beside the classification task, we jointly train the network on a care-
fully selected self-supervised task. The multi-task learning improves the robustness of the network

1



Published as a conference paper at ICLR 2021

(a) Joint training of classification and auxiliary. (b) Test-time online purification

Figure 1: An illustration of self-supervised online adversarial purification (SOAP). Left: joint train-
ing of the classification and the auxiliary task; Right: input adversarial example is purified iteratively
to counter the representational shift, then classified. Note that the encoder is shared by both classi-
fication and purification.

and more importantly, enables us to counter the adversarial perturbation at test-time by leveraging
the label-independent nature of self-supervised signals. Experiments demonstrate that SOAP per-
forms competitively on various architectures across different datasets with only a small computation
overhead compared with vanilla training. Furthermore, we design a new attack strategy that targets
both the classification and the auxiliary tasks, and show that our method is robust to this adaptive
adversary as well. Code is available at https://github.com/Mishne-Lab/SOAP.

2 RELATED WORK

Adversarial training Adversarial training aims to improve robustness through data augmenta-
tion, where the network is trained on adversarially perturbed examples instead of the clean original
training samples (Goodfellow et al., 2014; Kurakin et al., 2016; Tramèr et al., 2017; Madry et al.,
2017; Kannan et al., 2018; Zhang et al., 2019). By solving a min-max problem, the network learns
a smoother data manifold and decision boundary which improve robustness. However, the compu-
tational cost of adversarial training is high because strong adversarial examples are typically found
in an iterative manner with heavy gradient calculation. Compared with adversarial training, our
method avoids solving the complex inner-max problem and thus is significantly more efficient in
training. Our method does increase test-time computation but it is practically negligible per sample.

Adversarial purification Another genre of robust learning focuses on shifting the adversarial
examples back to the clean data representation , namely purification. Gu & Rigazio (2014) exploited
using a general DAE (Vincent et al., 2008) to remove adversarial noises; Meng & Chen (2017) train
a reformer network, which is a collection of autoencoders, to move adversarial examples towards
clean manifold; Liao et al. (2018) train a UNet that can denoise adversarial examples to their clean
counterparts; Samangouei et al. (2018) train a GAN on clean examples and project the adversarial
examples to the manifold of the generator; Song et al. (2018) assume adversarial examples have
lower probability and learn the image distribution with a PixelCNN so that they can maximize
the probability of a given test example; Naseer et al. (2020) train a conditional GAN by letting
it play a min-max game with a critic network in order to differentiate between clean and adversarial
examples. In contrast to above approaches, SOAP achieves better robust accuracy and does not
require a GAN which is hard and inefficient to train. More importantly, our approach exploits a
wider range of self-supervised signals for purification and conceptually can be applied to any format
of data and not just images, given an appropriate self-supervised task.

Self-supervised learning Self-supervised learning aims to learn intermediate representations of
unlabeled data that are useful for unknown downstream tasks. This is done by solving a self-
supervised task, or pretext task, where the supervision of the task comes from the data itself. Re-
cently, a variety of self-supervised tasks have been proposed on images, including data reconstruc-
tion (Vincent et al., 2008; Rifai et al., 2011), relative positioning of patches (Doersch et al., 2015;
Noroozi & Favaro, 2016), colorization (Zhang et al., 2016), transformation prediction (Dosovitskiy
et al., 2014; Gidaris et al., 2018) or a combination of tasks (Doersch & Zisserman, 2017).

More recently, studies have shown how self-supervised learning can improve adversarial robustness.
Mao et al. (2019) find that adversarial attacks fool the networks by shifting latent representation to
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a false class. Hendrycks et al. (2019) observe that PGD adversarial training along with an auxiliary
rotation prediction task improves robustness, while Naseer et al. (2020) use feature distortion as a
self-supervised signal to find transferable attacks that generalize across different architectures and
tasks. Chen et al. (2020a) combine adversarial training and self-supervised pre-training to boost
fine-tuned robustness. These methods typically combine self-supervised learning with adversarial
training, thus the computational cost is still high. In contrast, our approach achieves robust accuracy
by test-time purification which uses a variety of self-supervised signals as auxiliary objectives.

3 SELF-SUPERVISED PURIFICATION

3.1 PROBLEM FORMULATION

As aforementioned, Mao et al. (2019) observe that adversaries shift clean representations towards
false classes to diminish robust accuracy. The small error in input space, carefully chosen by ad-
versaries, gets amplified through the network, and finally leads to wrong classification. A natural
way to solve this is to perturb adversarial examples so as to shift their representation back to the
true classes, i.e. purification. In this paper we only consider classification as our main task, but our
approach should be easily generalized to other tasks as well.

Consider an encoder z = f(x; θenc), a classifier g(z; θcls) on top of the representation z, and the
network g ◦f a composition of the encoder and the classifier. We formulate the purification problem
as follows: for an adversarial example (xadv, y) and its clean counterpart (x, y) (unknown to the
network), a purification strategy π aims to find xpfy = π(xadv) that is as close to the clean example
x as possible: xpfy → x. However, this problem is underdetermined as different clean examples
can share the same adversarial counterpart, i.e. there might be multiple or even infinite solutions for
xpfy. Thus, we consider the relaxation

min
π
Lcls ((g ◦ f)(xpfy), y) s.t. ||xpfy − xadv|| ≤ εadv, xpfy = π(xadv), (1)

i.e. we accept xpfy as long as Lcls is sufficiently small and the perturbation is bounded. Here Lcls is
the cross entropy loss for classification and εadv is the budget of adversarial perturbation. However,
this problem is still unsolvable since neither the true label y nor the budget εadv is available at test-
time. We need an alternative approach that can lead to a similar optimum.

3.2 SELF-SUPERVISED ONLINE PURIFICATION

Let h(z; θaux) be an auxiliary device that shares the same representation z with g(z; θcls), and Laux be
the auxiliary self-supervised objective. The intuition behind SOAP is that the shift in representation
z that hinders classification will hinder the auxiliary self-supervised task as well. In other words,
large Laux often implies large Lcls. Therefore, we propose to use Laux as an alternative to Lcls in
Eq. (1). Then we can purify the adversarial examples using the auxiliary self-supervised signals,
since the purified examples which perform better on the auxiliary task (small Laux) should perform
better on classification as well (small Lcls).

During training, we jointly minimize the classification loss and self-supervised auxiliary loss

min
θ
{Lcls ((g ◦ f)(x; θenc, θcls), y) + αLaux ((h ◦ f)(x; θenc, θaux))}, (2)

where α is a trade-off parameter between the two tasks. At test-time, given fixed network parameters
θ, we use the label-independent auxiliary objective to perform gradient descent in the input space.
The purification objective is

min
π
Laux((h ◦ f)(xpfy)) s.t. ||xpfy − xadv|| ≤ εpfy, xpfy = π(xadv), (3)

where εpfy is the budget of purification. This is legitimate at test-time because unlike Eq. (1), the
supervision or the purification signal comes from data itself. Also, compared with vanilla training
the only training increment of SOAP is an additional self-supervised regularization term. Thus, the
computational complexity is largely reduced compared with adversarial training methods. In Sec. 4,
we will show that adversarial examples do perform worse on auxiliary tasks and the gradient of the
auxiliary loss provides useful information on improving robustness. Note that εadv is replaced with
εpfy in Eq. (3), and we will discuss how to find appropriate εpfy in the next section.
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Algorithm 1 PGD attack

Input: x: a test example;
T : the number of attack steps

Output: xadv: the adversarial example
1: δ ← 0
2: for t = 1, 2, . . . , T do
3: `← Lcls((g ◦ f)(x+ δ; θenc, θcls), y)
4: δ ← δ + γ sign(∇x`)
5: δ ← min(max(δ,−εadv), εadv)
6: δ ← min(max(x+ δ, 0), 1)− x
7: end for
8: xadv ← x+ δ

Algorithm 2 Multi-step purification

Input: x: a test example;
T : the number of purification steps

Output: xpfy: the purified example
1: δ ← 0
2: for t = 1, 2, . . . , T do
3: `← Laux((h ◦ f)(x+ δ; θenc, θaux))
4: δ ← δ − γ sign(∇x`)
5: δ ← min(max(δ,−εpfy), εpfy)
6: δ ← min(max(x+ δ, 0), 1)− x
7: end for
8: xpfy ← x+ δ

3.3 ONLINE PURIFICATION

Inspired by the PGD (Madry et al., 2017) attack (see Alg. 1), we propose a multi-step purifier (see
Alg. 2) which can be seen as its inverse. In contrast to a PGD attack, which performs projected
gradient ascent on the input in order to maximize the cross entropy loss Lcls, the purifier performs
projected gradient descent on the input in order to minimize the auxiliary loss Laux. The purifier
achieves this goal by perturbing the adversarial examples, i.e. π(xadv) = xadv + δ, while keeping
the perturbation under a budget, i.e. ||δ||∞ ≤ εpfy. Note that it is also plausible to use optimization-
based algorithms in analogue to some `2 adversaries such as CW (Carlini & Wagner, 2017), however
this would require more steps of gradient descent at test-time.

Taking the bound into account, the final objective of the purifier is to minimize the following

min
δ
Laux((h ◦ f)(xadv + δ)) s.t. ||δ|| ≤ εpfy, xadv + δ ∈ [0, 1]. (4)

For a multi-step purifier with step size γ, at each step we calculate

δt = δt−1 + γ sign(∇xLaux((h ◦ f)(xadv + δt−1))). (5)

For step size γ = εpfy and number of steps T = 1, the multi-step purifier becomes a single-step
purifier. This is analogous to PGD degrading to FGSM (Goodfellow et al., 2014) when the step size
of the adversary γ = εadv and the number of projected gradient ascent steps T = 1 in Alg. 1.

A remaining question is how to set εpfy when εadv is unknown. If εpfy is too small compared to
the attack, it will not be sufficient to neutralize the adversarial perturbations. In the absence of
knowledge of the attack εadv, we can use the auxiliary loss as a proxy to set the appropriate εpfy. In
Figure 3 we plot the average auxiliary loss (green plot) of the purified examples for a range of εpfy
values. The “elbows” of the auxiliary loss curves almost identify the unknown εadv in every case with
slight over-estimation. This suggests that the value for which the auxiliary loss approximately stops
decreasing is a good estimate of εadv. Empirically, we find that using a slightly over-estimated εpfy
benefits the accuracy after purification, similar to the claim by Song et al. (2018). This is because our
network is trained with noisy examples and thus can handle the new noise introduced by purification.
At test-time, we use the auxiliary loss to set εpfy in an online manner, by trying a range of values for
εpfy and selecting the smallest one which minimizes the auxiliary loss for each individual example.
In the experiment section we refer to the output of this selection procedure as εmin-aux. We also
empirically find for each sample the εpfy that results in the best adversarial accuracy, denoted εoracle
in the experiment section. This is an upper-bound on the performance SOAP can achieve.

3.4 SELF-SUPERVISED SIGNALS

Theoretically, any existing self-supervised objective can be used for purification. However, due
to the nature of purification and also for the sake of efficiency, not every self-supervised task is
suitable. A suitable auxiliary task should be sensitive to the representation shift caused by adversarial
perturbation, differentiable with respect to the entire input, e.g. every pixel for an image, and also
efficient in both train and test-time. In addition, note that certain tasks are naturally incompatible
with certain datasets. For example, a rotation-based self-supervised task cannot work on a rotation-
invariant dataset. In this paper, we exploit three types of self-supervised signals: data reconstruction,
rotation prediction and label consistency.
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Figure 2: Input digits of the encoder (left) and output digits of the decoder (right). From top to
bottom are the clean digits, adversarially perturbed digits and purified digits, respectively. Red
rectangles: the adversary fools the model to incorrectly classify the perturbed digit 8 as a 3 and the
purification corrects the perception back to an 8.

Data reconstruction Data reconstruction (DR), including both deterministic data compression
and probabilistic generative modeling, is probably one of the most natural forms of self-supervision.
The latent representation, usually lying on a much lower dimensional space than the input space, is
required to be comprehensive enough for the decoder to reconstruct the input data.

To perform data reconstruction, we use a decoder network as the auxiliary device h and require it
to reconstruct the input from the latent representation z. In order to better learn the underlying data
manifold, as well as to increase robustness, the input is corrupted with additive Gaussian noise η
(and clipped) before fed into the encoder f . The auxiliary loss is the `2 distance between examples
and their noisy reconstruction via the autoencoder h ◦ f :

Laux = ||x− (h ◦ f)(x+ η)||22. (6)
In Figure 2, we present the outputs of an autoencoder trained using Eq. (4), for clean, adversarial and
purified inputs. The purification shifts the representation of the adversarial examples closer to their
original class (for example, 2 4, 8 and 9). Note that SOAP does not use the output of the autoencoder
as a defense, but rather uses the autoencoder loss to purify the input. We plot the autoencdoer output
here as we consider it as providing insight to how the trained model ‘sees’ these samples.

Rotation prediction Rotation prediction (RP), as an image self-supervised task, was proposed by
Gidaris et al. (2018). The authors rotate the original images in a dataset by a certain degree, then use
a simple classifier to predict the degree of rotation using high-level representation by a convolutional
neural network. The rationale is that the learned representation has to be semantically meaningful
for the classifier to predict the rotation successfully.

Following Gidaris et al. (2018), we make four copies of the image and rotate each of them by one
of four degrees: Ω = {0◦, 90◦, 180◦, 270◦}. The auxiliary task is a 4-way classification using
representation z = f(x), for which we use a simple linear classifier as the auxiliary device h. The
auxiliary loss is the summation of 4-way classification cross entropy of each rotated copy

Laux = −
∑
ω∈Ω

log(h(f(xω))ω) (7)

where xω is a rotated input, and h(·)ω is the predictive probability of it being rotated by ω. While
the standard rotation prediction task works well for training, we found that it tends to under-estimate
εpfy at test-time. Therefore, for purification we replace the cross entropy classification loss by the
mean square error between predictive distributions and one-hot targets. This increases the difficulty
of the rotation prediction task and leads to better robust accuracy.

Label consistency The rationale of label consistency (LC) is that different data augmentations of
the same sample should get consistent prediction from the network. This exact or similar concept
is widely used in semi-supervised learning (Sajjadi et al., 2016; Laine & Aila, 2016), and also
successfully applied in self-supervised contrastive learning (He et al., 2020; Chen et al., 2020b).

We adopt label consistency to perform purification. The auxiliary task here is to minimize the `2
distance between two augmentations a1(x) and a2(x) of a given image x, in the logit space given
by g(·). The auxiliary device of LC is the exact classifier, i.e. h = g, and the auxiliary loss

Laux = ||(g ◦ f)(a1(x))− (g ◦ f)(a2(x))||22. (8)

4 EXPERIMENTS

We evaluate SOAP on the MNIST, CIFAR10 and CIFAR100 datasets following Madry et al. (2017).
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(a) SOAP-DR (b) SOAP-RP (c) SOAP-LC

Figure 3: Auxiliary loss vs. εpfy. SOAP (green plot) reduces the high adversarial auxiliary loss
(orange plot) to the low clean level (blue plot). The vertical dashed line is the value of εadv. The
trained models are FCN and ResNet-18 for MNIST and CIFAR10, respectively, with a PGD attack.

MNIST (LeCun et al., 1998) For MNIST, we evaluate our method on a fully-connected network
(FCN) and a convolutional neural network (CNN). For the auxiliary task, we evaluate the efficacy
of data reconstruction. For the FCN g(·) is a linear classifier and h(·) is a fully-connected decoder;
for the CNN g(·) is a 2-layer MLP and h(·) is a convolutional decoder. The output of the decoder
is squashed into the range of [0, 1] by a sigmoid function. During training, the input digits are
corrupted by an additive Gaussian noise (µ = 0, σ = 0.5). At test-time, Laux of the reconstruction
is computed without input corruption. SOAP runs T = 5 iterations with step size γ = 0.1.

CIFAR10 & CIFAR100 (Krizhevsky & Hinton, 2009) For CIFAR10 and CIFAR100, we eval-
uate our method on a ResNet-18 (He et al., 2016) and a 10-widen Wide-ResNet-28 (Zagoruyko
& Komodakis, 2016). For the auxiliary task, we evaluate rotation prediction and label consis-
tency. To train on rotation prediction, each rotated copy is corrupted by an additive Gaussian noise
(µ = 0, σ = 0.1), encoded by f(·), and classified by a linear classifier g(·) for object recognition
and by an auxiliary linear classifier h(·) for degree prediction. This results in a batch size 4 times
larger than the original. At test-time, similar to DA, we compute Laux on clean input images.

To train on label consistency, we augment the input images twice using a composition of random
flipping, random cropping and additive Gaussian corruption (µ = 0, σ = 0.1). Both of these two
augmentations are used to train the classifier, therefore the batch size is twice as large as the original.
At test-time, we use the input image as one copy and flip-crop the image to get another copy. Using
the input image ensures that every pixel in the image is purified, and using definite flipping and
cropping ensures there is enough difference between the input image and its augmentation. For both
rotation prediction and label consistency, SOAP runs T = 5 iterations with step size γ = 4/255.

Note that we did not apply all auxiliary tasks on all datasets due to the compatibility issue mentioned
in Sec. 3.4. DR is not suitable for CIFAR as reconstruction via an autoencdoer is typically challeng-
ing on more realistic image datasets. RP is naturally incompatible with MNIST because the digits 0,
1, and 8 are self-symmetric; and digits 6 and 9 are interchangeable with 180 degree rotation. Sim-
ilarly, LC is also not appropriate for MNIST because common data augmentations such as flipping
and cropping are less meaningful on digits.

4.1 WHITE-BOX ATTACKS

In Tables 1- 3 we compare SOAP against widely-used adversarial training (Goodfellow et al., 2014;
Madry et al., 2017) and purification methods (Samangouei et al., 2018; Song et al., 2018) on a variety
of `2 and `∞ bounded attacks: FGSM, PGD, CW, and DeepFool (Moosavi-Dezfooli et al., 2016).
For MNIST, both FGSM and PGD are `∞ bounded with εadv = 0.3, and the PGD runs 40 iterations
with a step size of 0.01; CW and DeepFool are `2 bounded with εadv = 4. For CIFAR10, FGSM and
PGD are `∞ bounded with εadv = 8/255, and PGD runs 20 iterations with a step size of 2/255; CW
and DeepFool are `2 bounded with εadv = 2. For CW and DeepFool which are optimization-based,
resulted attacks that exceed the bound are projected to the ε-ball. We mark the best performance for
each attack by an underlined and bold value and the second best by bold value. We do not mark out
the oracle accuracy but it does serves as an empirical upper bound of purification.

For MNIST, SOAP-DR has great advantages over FGSM and PGD adversarial training on all attacks
when the model has small capacity (FCN). This is because adversarial training typically requires a
large parameter set to learn a complex decision boundary while our method does not have this
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constraint. When using a larger CNN, SOAP outperforms FGSM adversarial training and comes
close to Defense-GAN and PGD adversarial training on `∞ attacks. SOAP also achieves better
clean accuracy compared with all other methods.

Note that FGSM AT achieves better accuracy under FGSM attacks than when there is no attack for
the large capacity networks. This is due to the label leaking effect (Kurakin et al., 2016): the model
learns to classify examples from their perturbations rather than the examples themselves.

Table 1: MNIST Results

Method FCN CNN

No Atk FGSM PGD CW DF No Atk FGSM PGD CW DF
No Def 98.10 16.87 0.49 0.01 1.40 99.15 1.49 0.00 0.00 0.69
FGSM AT 79.76 80.57 2.95 6.22 17.24 98.78 99.50 33.70 0.02 6.16
PGD AT 76.82 60.70 57.07 31.68 13.82 98.97 96.38 93.22 90.31 75.55
Defense-GAN 95.84 79.30 84.10 95.07 95.29 95.92 90.30 91.93 95.82 95.68
SOAP-DR
εpfy = 0 97.57 29.15 0.58 0.25 2.32 99.04 65.35 27.54 0.35 0.69
εpfy = εmin-aux 97.56 66.85 61.88 86.81 87.02 98.94 87.78 84.92 74.61 81.27
εpfy = εoracle∗ 98.93 69.21 64.76 97.88 97.97 99.42 89.40 86.62 98.44 98.47

Table 2: CIFAR-10 results

Method ResNet-18 Wide-ResNet-28

No Atk FGSM PGD CW DF No Atk FGSM PGD CW DF
No Def 90.54 15.42 0.00 0.00 6.26 95.13 14.82 0.00 0.00 3.28
FGSM AT 72.73 44.16 37.40 2.69 24.58 72.20 91.63 0.01 0.00 14.41
PGD AT 74.23 47.43 42.11 3.14 25.84 85.92 51.58 41.50 2.06 24.08
Pixel-Defend 79.00 39.85 29.89 76.47 76.89 83.68 41.37 39.00 79.30 79.61
SOAP-RP
εpfy = 0 73.64 5.77 0.47 0.00 13.65 88.68 30.21 8.52 0.08 10.67
εpfy = εmin-aux 71.97 35.80 38.53 68.22 68.44 90.94 51.11 51.90 83.03 82.50
εpfy = εoracle∗ 87.57 37.60 39.40 79.80 84.34 95.55 52.69 52.61 86.99 90.49

SOAP-LC
εpfy = 0 86.36 22.81 0.15 0.00 8.52 93.40 59.23 3.55 0.01 46.98
εpfy = εmin-aux 84.07 51.02 51.42 73.95 74.79 91.89 64.83 53.58 80.33 60.56
εpfy = εoracle∗ 94.06 59.45 62.29 86.94 88.88 96.93 71.85 63.10 88.96 73.66

Table 3: CIFAR-100 results

Method ResNet-18 Wide-ResNet-28

No Atk FGSM PGD CW DF No Atk FGSM PGD CW DF
No Def 65.56 3.81 0.01 0.00 12.30 78.16 13.76 0.06 0.01 9.05
FGSM AT 44.35 20.30 17.41 4.23 18.15 46.45 88.24 0.15 0.00 13.40
PGD AT 42.15 21.92 20.04 3.57 17.90 62.71 28.15 21.34 0.65 16.57
SOAP-RP
εpfy = 0 40.47 2.53 0.45 0.03 11.89 60.33 13.30 4.65 0.09 12.19
εpfy = εmin-aux 35.21 11.65 11.73 32.97 33.51 60.80 22.25 22.00 54.11 54.70
εpfy = εoracle∗ 45.57 12.44 12.04 41.13 46.51 72.03 24.42 24.19 63.04 67.86

SOAP-LC
εpfy = 0 57.86 6.11 0.01 0.01 12.72 74.04 16.46 0.49 0.00 9.65
εpfy = εmin-aux 52.91 22.93 27.55 50.26 50.57 61.01 31.40 37.53 56.09 53.79
εpfy = εoracle∗ 69.99 27.52 31.82 62.87 68.65 82.74 37.56 47.07 71.19 73.39

For CIFAR10, on ResNet-18 SOAP-RP beats Pixel-Defend on all attacks except for FGSM and beats
PGD adversarial training on `2 attacks; on Wide-ResNet-28 it performs superiorly or equivalently
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(a) SOAP-RP

(b) SOAP-LC

Figure 4: Adversarial and purified CIFAR10 examples by SOAP with Wide-ResNet-28 under PGD
attacks. True classes are shown on the top of each column and the model predictions are shown
under each image.

against other methods on all attacks. SOAP-LC achieves superior accuracy compared with other
methods, where the capacity is either small or large. Note that we choose Pixel-Defend as our
purification baseline since Defense-GAN does not work on CIFAR10. Specifically, our method
achieves over 50% accuracy under strong PGD attack, which is 10% higher than PGD adversarial
training. SOAP also exhibits great advantages over adversarial training on the `2 attacks. Also,
compared with vanilla training (‘No Def’) the multi-task training of SOAP improves robustness
without purification (εpfy = 0), which is similar on MNIST. Examples are shown in Figure 4.

For CIFAR100, SOAP shows similar advantages over other methods. SOAP-RP beats PGD ad-
versarial training on PGD attacks when using large Wide-ResNet-28 model and on `2 attacks in
all cases; SOAP-LC again achieves superior accuracy compared with all other methods, where the
capacity is either small or large.

Our results demonstrate that SOAP is effective under both `∞ and `2 bounded attacks, as opposed to
adversarial training which only defends effectively against `2 attacks for MNIST with a CNN. This
implies that while the formulation of the purification in Eq. (4) mirrors an `∞ bounded attack, our
defense is not restricted to this specific type of attack, and the bound in Eq. (4) serves merely as a
constraint on the purification perturbation rather than a-prior knowledge of the attack.

Auxiliary-aware attacks Previously, we focus on standard adversaries which only rely on the
classification objectives. A natural question is: can an adversary easily find a stronger attack given
the knowledge of our purification defense? In this section, we introduce a more ‘complete’ white-
box adversary which is aware of the purification method, and show that it is not straightforward to
attack SOAP even with the knowledge of the auxiliary task used for purification.

In contrast to canonical adversaries, here we consider adversaries that jointly optimize the cross
entropy loss and the auxiliary loss with respect to the input. As SOAP aims to minimize the auxiliary
loss, the auxiliary-aware adversaries maximize the cross entropy loss while also minimizing the
auxiliary loss at the same time. The intuition behind this is that the auxiliary-aware adversaries try
to find the auxiliary task “on-manifold” (Stutz et al., 2019) examples that can fool the classifier. The
auxiliary-aware adversaries perform gradient ascent on the following combined objective

max
θ
{Lcls(f(x), y; θenc, θcls)− βLaux(g(x; θenc, θaux))}, (9)

where β is a trade-off parameter between the cross entropy loss and the auxiliary loss. An auxiliary-
aware adversary degrades to a canonical one when β = 0 in the combined objective.
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(a) SOAP-DR (b) SOAP-RP (c) SOAP-LC

Figure 5: Purification against auxiliary-aware PGD attacks. Plots are classification accuracy before
(blue) and after (orange) purification.

As shown in Figure 5, an adversary cannot benefit from the knowledge of the defense in a straight-
forward way. When the trade-off parameter β is negative (i.e. the adversary is attacking the auxiliary
device as well), the attacks are weakened (blue plot) and purification based on all three auxiliaries
achieves better robust accuracy (orange plot) as the amplitude of β increases. When β is positive,
the accuracy of SOAP using data reconstruction and label consistency increases with β. The reason
for this is that the auxiliary component of the adapted attacks obfuscates the cross entropy gradient,
and thus weakens canonical attacks. The accuracy of rotation prediction stays stable as β varies, i.e.
it is more sensitive to this kind of attack compared to the other tasks.

4.2 BLACK-BOX ATTACKS

Table 4 compares SOAP-DR with adversarial training against FGSM black-box attacks (Papernot
et al., 2017). Following their approach, we let white-box adversaries, e.g. FGSM, attack a substitute
model, with potentially different architecture, to generate the black-box adversarial examples for the
target model. The substitute model is trained on a limited set of 150 test images unseen by the target
model. These images are further labeled by the target model and augmented using a Jacobian-based
method. SOAP significantly out-performs adversarial training on FCN; for CNN it out-performs
FGSM adversarial training and comes close to PGD adversarial training.

Table 4: MNIST Black-box Results

Target FCN CNN

Substitute No Atk FCN CNN No Atk FCN CNN
No Def 98.10 25.45 39.10 99.15 49.49 49.25
FGSM AT 79.76 40.88 58.74 98.78 93.62 96.52
PGD AT 76.82 62.87 69.07 98.97 97.79 98.09
SOAP-DR
εpfy = 0 97.57 78.52 92.72 99.04 95.25 97.43
εpfy = εmin-aux 97.56 90.35 94.51 98.94 96.02 97.80
εpfy = εoracle∗ 98.93 94.34 97.33 99.42 98.12 98.81

5 CONCLUSION

In this paper, we introduced SOAP: using self-supervision to perform test-time purification as an
online defense against adversarial attacks. During training, the model learns a clean data manifold
through joint optimization of the cross entropy loss for classification and a label-independent auxil-
iary loss for purification. At test-time, a purifier counters adversarial perturbation through projected
gradient descent of the auxiliary loss with respect to the input. SOAP is consistently competitive
across different network capacities as well as different datasets. We also show that even with knowl-
edge of the self supervised task, adversaries do not gain an advantage over SOAP. While in this paper
we only explore how SOAP performs on images, our purification approach can be extended to any
data format with suitable self-supervised signals. We hope this paper can inspire future exploration
on a broader range of self-supervised signals for adversarial purification.
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A APPENDIX

A.1 ILLUSTRATION OF SELF-SUPERVISED TASKS

For those readers who are not familiar with self-supervised representation learning, we detailed
the self-supervised tasks here. As data reconstruction is straight-forward to understand, we simply
illustrate rotation prediction and label consistency in Figure 6. As shown on the left-hand side, to
perform rotation prediction, we duplicate a input image to 4 copies and rotate them by one of the
four degrees. We then use the auxiliary classifier to predict the rotation of each copy. For the label
consistency auxiliary task on the right-hand side, we duplicate a input image to 2 copies and apply
separate data augmentation to each of them. The left copy is augmented with random cropping and
the right copy is augmented with random cropping as well as horizontal flipping. We require the
predictive distributions of these 2 augmented copies to be close.

(a) Rotation prediction (b) Label consistency

Figure 6: An illustration of auxiliary self-supervised tasks.

A.2 HYPER-PARAMETERS OF THE PURIFIER

Beyond εpfy, the two additional hyper-parameters of SOAP are the step size of the purifier γ, and
the number of iterations performed by the purifier T . The selection of these hyper-parameters is
important for the efficacy of purification. A step size that is too small or a number of iterations that
is too large can cause the purifier to get stuck in a local minimum neighboring the perturbed example.
This is confirmed by our empirical finding that using a relatively large step size for a small number
of iterations is better than using a relatively small step size for a large number of iterations. Although
a large step size makes it hard to get the cleanest purified examples, this drawback is compensated
by adding noise in training. Training the model on corrupted examples makes the model robust to
the residual noise left by purification.

A.3 TRAINING DETAILS

Table 5: Basic modules & specifics

Module Specifics

Conv(m, k × k, s) 2-D convolutional layer with m feature maps, k × k kernel size,
and stride s on both directions

Maxpool(s) 2-D maxpooling layer with stride s on both directions
FC(m) Fully-connected layer with m outputs
ReLU Rectified linear unit activation

BN 1-D or 2-D batch normalization
Dropout(p) Dropout layer with probability p
ShortCut Residual addition that bypasses the basic block
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Table 6: ResNet basic blocks

Block(m, k × k, s) Wide-Block(m, k × k, s, p)

Conv(m, k × k, s) Conv(m× 10, k × k, 1)
BN Dropout(p)

ReLU BN
Conv(m, k × k, 1) ReLU

BN Conv(m× 10, k × k, s)
ShortCut ShortCut

ReLU BN
ReLU

Table 7: Architectures

FCN CNN ResNet-18 Wide-ResNet-28

FC(256) Conv(32, 3× 3, 2) Conv(16, 3× 3, 1) Conv(16, 3× 3, 1)
ReLU ReLU BN BN

Dropout(0.5) Conv(64, 3× 3, 2) ReLU ReLU
FC(128) ReLU Block(16, 3× 3, 1) × 2 Wide-Block(16, 3× 3, 1, 0.3) × 4
ReLU BN Block(32, 3× 3, 2) Wide-Block(32, 3× 3, 2, 0.3)

Dropout(0.5) FC(128) Block(32, 3× 3, 1) Wide-Block(32, 3× 3, 1, 0.3) × 3
FC(10) ReLU Block(64, 3× 3, 2) Wide-Block(64, 3× 3, 2, 0.3)

BN Block(64, 3× 3, 1) Wide-Block(64, 3× 3, 1, 0.3)
FC(10) FC(10) FC(10)

The architectures of the networks and training details are described as followed. Table 5 describes
the basic modules and their specifics, and Table 6 describes the low-level building blocks of residual
networks. Full architectures of the networks are listed in Table 7.

For MNIST, we evaluate on a 2 hidden layer FCN and a CNN which has the same architecture as in
Madry et al. (2017). FCN is trained for 100 epochs with an initial learning rate of 0.01 and CNN for
200 epochs with an initial learning rate of 0.1 using SGD. The learning rate is decreased 10 times
at halfway in both cases. The batch size is 128. In both FGSM and PGD adversarial training, the
adversaries are l∞ bounded with εadv = 0.3. For PGD adversarial training, the adversary runs 40
steps of projected gradient descent with a step size of 0.01. To train SOAP, the trade-off parameter
α in Eq. (1) is 100.

For CIFAR10, we evaluate our method on a regular residual network ResNet-18 and a 10-widen
residual network Wide-ResNet-28-10. Both networks are trained for 200 epochs using a SGD op-
timizer. The initial learning rate is 0.1, which is decreased by a factor of 0.1 at the 100 and 150
epochs. We use random crop and random horizontal flipping for data augmentation on CIFAR10.
εadv = 8/255 for both FGSM and PGD adversarial training. For PGD adversarial training, the ad-
versary runs 7 steps of projected gradient descent with a step size of 2/255. The trade-off parameter
of SOAP for rotation prediction and label consistency α are 0.5 and 1 respectively.

While we implement adversarial training and SOAP ourselves, we use authors’ implementation for
both Defense-GAN and Pixel-Defend. Notice that our white-box Defense-GAN accuracy is lower
than the accuracy reported in (Samangouei et al., 2018). Part of the reason is the difference in
architecture and training scheme, but we are still not able to replicate their accuracy using the exact
same architecture following their instructions. Nonetheless, our results are close to (Hwang et al.,
2019) where the authors also reported lower accuracy.

A.4 TRAINING EFFICIENCY

The comparison of training efficiency between SOAP and other methods is shown in Figure 7. To
measure the training complexity, we run each training method for 30 epochs on a single Nvidia
Quadro RTX 8000 GPU, and report the average epoch time consumption. When the network ca-
pacity is small, the training complexity of SOAP is close to FGSM adversarial training and much
lower than PGD adversarial training. When the network capacity is large, the training complexity
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(a) Data Reconstruction (b) Rotation prediction and Label consistency

Figure 7: Comparison of training efficiency between SOAP, vanilla training (‘No Def’) and adver-
sarial training (FGSM and PGD). The y-axis is the average time consumption of 30 training epochs.

of SOAP is higher than FGSM adversarial training but still significantly lower than PGD adversarial
training.

Note that it is hard to compare with other purification methods because they are typically trained in
2 stages, the training of the classifier and the training of another purifier such as a GAN. While the
training of those purifiers is typically difficult and intense, SOAP does not suffer from this limitation
as the encoder is shared between the main classification network and the purifier. Therefore it is
reasonable to claim that SOAP is more efficient than other purification methods.

A.5 PURIFIED EXAMPLES

We have shown some PGD examples of adversarial images purified images by SOAP in Figure 4.
In Figures 8-10 we present some examples of every attack. The adversary is shown on the top of
each column. The network prediction is shown at the bottom of each example.

(a) FCN (b) CNN

Figure 8: MNIST examples with data reconstruction.

(a) ResNet-18 (b) Wide-ResNet-28

Figure 9: CIFAR10 examples with rotation prediction.
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(a) ResNet-18 (b) Wide-ResNet-28

Figure 10: CIFAR10 examples with label consistency.

A.6 SUCCESS RATE OF `2 ATTACKS

To provide more details about the robustness under `2 attacks, in Tables 8 and 9 we report the success
rate of generating `2 attacks. For the MNIST dataset, generating an `2 attack is considered a success
if the `2 norm of the perturbation is smaller than 4; for the CIFAR10 dataset, the bound is set as 2.
PGD adversarial training typically results in low success rate compared with other methods; SOAP,
on the other hand, is typically “easy” to attack before purification because there is no adversarial
training involved. Notice that the Wide-ResNet-28 model trained on label consistency is robust
to the DeepFool attack even before purification. This explains why SOAP-LC robust accuracy in
Table 2 is relatively low because its DeepFool perturbations are larger than other cases.

Table 8: MNIST `2 attacks success rate

Attack Architecture No Def FGSM AT PGD AT SOAP-DR

CW FCN 100.00 99.98 99.98 99.78
CNN 100.00 100.00 100.00 99.82

DF FCN 99.88 94.90 99.10 99.53
CNN 99.92 100.00 18.97 95.33

Table 9: CIFAR10 `2 attacks success rate

Attack Architecture No Def FGSM AT PGD AT SOAP-RP SOAP-LC

CW ResNet-18 100.00 97.31 96.88 100.00 100.00
Wide-ResNet-28 100.00 100.00 97.95 99.92 99.99

DF ResNet-18 100.00 88.20 87.01 99.99 99.85
Wide-ResNet-28 100.00 100.00 83.68 96.31 28.22
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