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ABSTRACT

Negative sampling is widely used in modern recommender systems, where nega-
tive data is randomly sampled from the whole item pool. However, such a strategy
often introduces false-negative noises. Existing approaches about de-noising rec-
ommendation mainly focus on positive instances while ignoring the noise in the
large amount of sampled negative feedback. In this paper, we propose a meta
learning method to annotate the unlabeled data from loss and gradient perspec-
tives, which considers the noises on both positive and negative instances. Specif-
ically, we first propose inverse dual loss (IDL) to boost the true label learning
and prevent the false label learning, based on the loss of unlabeled data towards
true and false labels during the training process. To achieve more robust sam-
pling on hard instances, we further propose inverse gradient (IG) to explore the
correct updating gradient and adjust the updating based on meta learning. We con-
duct extensive experiments on a benchmark and an industrially collected dataset
where our proposed method can significantly improve AUC by 9.25% against
state-of-the-art methods. Further analysis verifies the proposed inverse learning
is model-agnostic and can well annotate the labels combined with different rec-
ommendation backbones. The source code along with the best hyper-parameter
settings is available at this link: https://anonymous.4open.science/
r/InverselLearning—-4F4F.

1 INTRODUCTION

As one of the most successful machine learning applications in industry, recommender systems are
essential to promote user experience and improve user engagement (Ricci et al., 2011; Xue et al.,
2017; Liu et al., 2010b), which are widely adopted in online services such as E-commerce and
Mirco-video platforms. Aiming to capture users’ preference towards items based on their histori-
cal behaviors, existing recommenders generally focus on explicit or implicit feedback. Specifically,
explicit feedback (Liang et al., 2021) refers to rating data that represents the user preference explic-
itly. However, collecting sufficient explicit data for recommendations is difficult because it requires
users to actively provide ratings (Jannach et al., 2018). In contrast, implicit feedback, such as user
clicks, purchases, and views (Liang et al., 2016), is much richer (Liu et al., 2010b) and frequently
used in modern recommender systems (Chen et al., 2020). Particularly, in feed recommendation for
online platforms such as Micro-video, users are passive to receive the recommended items without
any active clicking or rating action. That is to say, we have a large number of unlabeled feedback,
with extremely sparse labeled data, which becomes a key challenge for recommendation.

To tackle the unlabeled feedback, most works (He et al., 2017; Chen et al., 2019) randomly sample
unlabeled data and treat it as negative feedback, resulting in unavoidable noise. Specifically, the
collected user click data is often treated as positive feedback, and the unclicked data is sampled
as negative feedback (He et al., 2017; Chen et al., 2019). However, there may be some positive
unlabeled data sampled by the negative sampling strategy, which means that these instances will be
false-negative. There are also some works about hard negative sampling which will decrease the
false-positive but increase the false-negative instances (Zhang et al., 2013; Ding et al., 2019; 2020).
These hard negative methods tend to perform poorly when tested on both true positive and negative
data instead of true positive but sampled negative data (as shown in Appendix 5). A recent work
DenoisingRec (Wang et al., 2021) denoises positive feedback by truncating or reweighing the loss
of false-positive instances without further consideration of the noisy negative feedback. In general,
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existing works either focus only on the positive or the negative perspectives. To resolve the data-
noise problem from both positive and negative perspectives at the same time, we propose a novel
Inverse Learning approach that automatically labels the unlabeled data via inverse dual loss and
inverse gradient, assuming there are both positive and negative feedbacks in the unlabeled data.
Firstly, based on the property that the loss of a false positive/negative instance will be larger than
that of a true positive/negative instance (Wang et al., 2021), we assign both positive and negative
labels to the unlabeled instance with different weights calculated by inverse dual loss. Specifically,
we assign larger (smaller) weight to the label with smaller (larger) loss value. In this way, we take
full advantage of true positive/negative instances, and eliminate the noise of false positive/negative
instances. To achieve more robust sampling on hard instances, we further propose an inverse gradient
method. Here we build a meta-learning process (Finn et al., 2017; Li et al., 2017) and split the
training data into training-train and training-test data. We first exploit training-train data to pre-train
the model. Then we further use training-test data to validate the correctness of classification on
the sampled instance. Specifically, we calculate the gradient for the inverse dual loss of sampled
instances as well as the additive inverse of the gradient. The model is optimized by either the direct
gradient or the additive inverse of gradient, determined by the split training-test data. Experimental
results illustrate that inverse gradient can truly improve the inverse dual loss. In summary, the main
contributions of this paper are as follows:

* To the best of our knowledge, we are the first to sample both positive and negative data in recom-
mendation, which is far more challenging while existing works only sample negative data.

* We propose inverse dual loss to learn the label for sampled instances and further exploit inverse
gradient to adjust the false label for hard instances.

* We experiment on two real-world datasets, verifying the superiority of our method compared with
state-of-the-art approaches. Further studies sustain the effectiveness of our proposed method in
label annotation and gradient descent.

2 PROBLEM FORMULATION AND OUR APPROACH

In this section, we will firstly formulate the problem and perform in-depth analysis of existing so-
lutions and their limitations. Then we will propose inverse dual loss to address the limitations of
existing works for easy samples. Finally, we further propose inverse gradient to address the limita-
tion of inverse dual loss and make it capable for not only easy samples but also hard samples.

2.1 PROBLEM DEFINITION

The recommendation task aims to model relevance score 42, = f(u,i|6) of user u towards item i
under parameters 0. The LogLoss function (Zhou et al., 2018; 2019) function to learn ideal param-

eters 0* is as:
1

(u,i,ys,)€D*
where £ (3%, 5,) = — (v log (9;) + (1 — ;) log (1 92,)). s € {0,1} is the feedback of

user u towards item i. D* = {(u,4,y;) | w € U, € T} is the reliable interaction data between all
user-item pairs. Indeed, due to the limited collected feedback, the model training is truly formalized
as: @ = argming Lpi(0) + Lpu(6), where D' ~ D* is the collected labeled data, and D* =
{(u,%,Jui) | v € U, i € T} is the sampled unlabeled data where g,,; = 0 is often assumed in existing
recommenders for negative sampling. However, such a strategy will inevitably introduce noise
because there are some positive unlabeled instances in the sampled data. As a consequence, a
model (i.e., 0) trained with noisy data tends to exhibit suboptimal performance. Thus, our goal is to
construct a denoising recommender approximating to the ideal recommender 8 as:

0" = argmin Lp:(6) + LEse(9), 2)

where £%1°¢(§) indicates the loss on unlabeled data with all samples annotated correctly, i.e. de-
noising sampling.
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Figure 1: Illustrations of existing solutions, and our inverse dual loss’s effectiveness and limitation.
(a)-(d) are the illustrations of existing solutions: (a) illustrates there are lot of unlabeled data; (b)
illustrates the traditional negative sampling approach; (c) illustrates the reweighted loss of Denois-
ingRec; (d) illustrates the truncated loss of DenoisingRec adapted on the false-negative instance.
(e)-(f) are the illustrations of our inverse dual loss’s effectiveness with easy sampling: (¢) illus-
trates the easy negative instances are sampled; (f) illustrates labeling the sampled instances as true
negative; (g) illustrates the easy positive instances are sampled; (h) illustrates labeling the sampled
instances as true positive and approximate to ground-truth. (i)-(1) are the illustrations of our
inverse dual loss’s limitation with hard sampling: (i) illustrates the hard negative instances are
sampled; (j) illustrates labeling part of the sampled instances as false positive; (k) illustrates the hard
positive instances are sampled; (1) illustrates labeling part of the sampled instances as false negative.

2.2 INVERSE DUAL LoOSS

In this section, we first analyze the characteristics of existing solutions on the sampled unlabeled
data. Then we introduce the proposed inverse dual loss solution to denoise sampled data.

2.2.1 ANALYSIS OF EXISTING APPROACH

We first explain the data sparsity problem in recommender systems from the perspective of classifi-
cation boundary, based on which we will introduce the existing solutions. As shown in Figure 1 (a),
in recommender systems, labeled data tends to be extremely sparse compared with a large number
of unlabeled data. A recommendation model is prone to overfitting if it is only trained based on the
sparse labeled data, compared with the ground-truth in Figure 1 (h).

In practice, existing recommenders often sample from unlabeled data and treat all the sampled data
as negative feedback. Such an approach introduces false negative, which fails to retrieve items that
users may be interested in, as shown by the classification boundary in Figure 1 (b). That is, there
exists noise in the sampled negative data. However, existing denoising approaches mainly focus
on the noise in positive samples (false positive). For example, DenoisingRec (Wang et al., 2021)
attempts to achieve denoising for false positive instances as:

6" = argmin LENS .0i.c (6) + L1 (6) 3)

where D"°1%¢ = {(u,i,1) | u € U,i € Ty}, = 0} is the noisy false positive data they introduce in
experiments. For example, R-CE (Reweight Cross-Entropy) of DenoisingRec assigns lower weight
on false-positive instances with large loss (Figure 1 (¢)), and T-CE (Truncated Cross-Entropy) of
DenoisingRec discards those false positive instances with large loss (Figure 1 (d)). Though achiev-
ing denoising for false-positive instances, they ignore false-negative instances and fail to address the
noise brought by the negative sampling.
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In fact, the collected labeled data is much cleaner than sampled unlabeled data, and the number of
false-positive instances is limited in real-world recommender systems. On the contrary, the noise
brought by negative sampling is far more harmful. In other words, the noise level of positive un-
labeled data incorrectly sampled as negative feedback is much higher than that of negative samples
wrongly regarded as positive feedback.

To sum up, existing solutions either introduce noise or perform incomplete denoising, which moti-
vates us to propose a denoising solution for unlabeled data.

2.2.2 LABELING WITH INVERSE DUAL LOSS

As an existing attempt in DenoisingRec, we have discovered that the false positive instances are
with a greater loss. It is also an apparent phenomenon in machine learning. For example, if we have
a positive instance and a well-trained model, the loss of classifying it as negative will be greater than
that of classifying it as positive. Otherwise, if we have a negative instance and a well-trained model,
the loss of classifying it as positive will be greater. Hence, we can assume the sampled unlabeled
instances are both possibly positive and negative and then exploit this inherent characteristic to
automatically weigh more on the true positive or negative instances while weighing less on the false
ones.

Definition 1 (Inverse Dual Loss) The inverse dual loss is defined as denoising loss to automatically
classify the unlabeled data as:

1

LB (0) = Lo O) = o >, wH (1) + (i 0) )
(u,t,§ui ) EDY
~0 ~6
where w! = zzlf\(ey(;gi)ll)\ ,wl = zzlf\(ey(;‘jl?) l)‘ are the weights for positive loss and negative loss, re-

. o le(98:0)1 | le(ad; 1)l
spectively. z,, = eG@e. T (s, 0)

data and 0 is the model parameters to be learned.

is the normalization parameter. D" is the sampled unlabeled

The pros of inverse dual loss are as shown in (e)-(h) of Figure 1: (e) when the easy negative in-
stances are sampled, the loss of classifying them as positive will be greater than that of classifying
them as negative, and thus inverse dual loss will assign more weights on the negative loss; (f) grad-
ually assigning more and more weights on the negative loss, the negative unlabeled instances will
eventually be classified as negative; (g) likewise, when the easy positive instances are sampled, the
inverse dual loss will assign more weights on the positive loss; (h) the positive unlabeled instances
will eventually be classified as positive and approximate to the ground-truth.

2.2.3 LIMITATION OF INVERSE DUAL LOSS

When sampling the easy positive or negative instances, our inverse dual loss can boost the learning
via correctly labeling the sampled instances. However, it may be an obstacle when there are some
hard positive or negative instances. As shown in (i)-(1) of Figure 1, given some hard positive or
negative instances, the classification boundary will be prevented from the ground-truth: (i) the hard
negative instances are sampled; (j) half of the negative unlabeled instances will be classified as pos-
itive and become noise; (k) the hard positive instances are sampled; (1) half of the positive unlabeled
instances will be classified as negative and become noise. That is to say, our inverse dual loss relies
heavily on the current training classification boundary and the difficulty of sampled data, requiring
us to further improve its robustness.

2.3 INVERSE GRADIENT

To improve the robustness of inverse dual loss on the hard sampled data towards the current training
model, in this section, we further propose inverse gradient to adjust the gradient of hard sampled
data, inspired by the meta-learning framework (Finn et al., 2017; Li et al., 2017). Then we analyze
the convergence of the proposed inverse gradient.
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2.3.1 LEARNING TO LABEL WITH INVERSE GRADIENT
In this part, we introduce our solution for tackling the hard sampled data of inverse dual loss.

Definition 2 (Inverse Gradient) We define the gradient and additive inverse of gradient calculated
by equation 4 w.rt.VLEN(0) and —V LE(0) as direct gradient and inverse gradient, respec-
tively, of the loss for unlabeled data D".

Theorem 1 Given learning rate o € R, o # 0, assume the temporal model parameters updated by
the direct gradient and inverse gradient, respectively, are as 0% = 0 — o o VLEY(0) and 6° =
0+ ao Vﬁ%%“l(e). Then, the relationship between the loss of them and the model with parameter
0 on data D' will be either L (0%) > Lpi(0) > Lpi(0°) or Lpi(07) > Lpi(0) > L (67).

The proof of Theorem 1 can be found in Appendix A.1. Based on this theorem, we can have the
following gradient updating strategies. Generally, we will first split the training data into training-
train data and training-test data, where we pre-train the model on the training-train data. Then we
will calculate the direct gradient of inverse dual loss on the sampled unlabeled data, which can
further results in the following three cases:

* When the sampled data is easy, we can exploit the direct gradient to update the model, and it will
gain a smaller test loss on the training-test data, as shown in Figure 2 (a);

* When the sampled data is hard, exploiting the inverse gradient to update the model will gain a
smaller test loss on the training-test data, and thus we exploit inverse gradient here as shown in
Figure 2 (b);

* When the model is approximately optimal, either direct gradient or inverse gradient will prevent
it from ground-truth, and we discard this batch of unlabeled data as shown in Figure 2 (c);

OTraining model {:LOptimal model Direct gradient Inverse gradient  ==$Test gradient
o a3 O -
O o @)
1 2 1 2
(a) Update with direct gradient (b) Update with inverse gradient
[ 1][ ow 21 3} SN S S
(c) Pass this batch of unlabeled data ﬂ(d) Convergf;nce analysisr

Figure 2: llustrations of inverse gradient adaption.

Specifically, we present the procedure of exploring these three cases as Algorithm 1 in the Ap-
pendix A.2. The algorithm first pre-trains the model using the split training-train data. Then the
model will update with direct gradient or inverse gradient or even do not update, determined by the
validation on the split training-test data.

2.3.2 CONVERGENCE ANALYSIS

As shown in Figure 2 (d), the first case illustrates when the unlabeled data is ideally sampled, the
updating with direct gradient will lead to a smaller loss and better convergence on the training-
test data, while the third case with poorly sampled data supposes to update with inverse gradient.
However, when the model approximates convergence on the training-test data, updating with either
direct gradient or inverse gradient may be poorer than no updating as shown in the stage 2 of Figure 2

(d).

To avoid the gradient ascent problem for the second case, we can set the learning rate for the inverse
dual loss to be smaller than the test loss, i.e., @ < -y in Algorithm 1. In this way, the scale of
updating by the gradient for inverse dual loss will be within the scale of updating by the gradient for
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test loss. That is to say, the gradient ascent problem is less likely to occur on the inverse dual loss
for unlabeled data than the loss for labeled data.

3 EXPERIMENTS

In this section, we perform experiments on two real-world datasets, targeting three research ques-
tions (RQ): (1) How does the proposed method perform compared with the state-of-the-art denoising
recommenders? (2) How does our proposed inverse dual loss identify the unlabeled data? (3) What
is the effect of the inverse gradient on convergence?

Datasets To practice and verify the effectiveness of our proposed method, we conduct experiments
on an industrial Micro-Video dataset and a public benchmark ML1M dataset which is widely used
in existing work for recommender systems (Lian et al., 2018; Cheng et al., 2020). Micro-Video
is the extremely sparse dataset where users are passive to receive the feed videos and have rare
active feedback. We introduce the details of these datasets, including the pre-processing steps, in
Appendix A.3.

Baselines and Backbones To demonstrate the effectiveness of our proposed inverse learning on
unlabeled data, we compared the performance of recommenders trained by our inverse gradient
(IG) with recommenders trained by inverse dual loss (IDL) and normal training by standard loss or
negative sampling (NS) (Rendle et al., 2012; He et al., 2017; Chen et al., 2019). Besides, we also
compare our inverse learning method with the state-of-the-art methods for denoising recommender
systems. Specifically, we also compare two adaptive denoising training strategies, T-CE and R-CE,
of DenoisingRec (Wang et al., 2021).

* Traditional strategies: standard loss without sampling and with negative sampling (NS) (Rendle
etal, 2012; He et al., 2017; Chen et al., 2019).

* Denoising strategies: T-CE (Wang et al., 2021) of DenoisingRec that truncates the loss for false-
positive instances and R-CE (Wang et al., 2021) of DenoisingRec weighs less on the loss for
false-positive instances; Our inverse dual loss that weighs more on the label with smaller loss.

Following DenoisingRec (Wang et al., 2021), we select GMF and NeuMF (He et al., 2017) as back-
bones, which are neural Collaborative Filtering models.

* GMF (He et al., 2017): A variant of matrix factorization with the element-wise product and a
linear neural layer as the interaction function instead of the inner product.

* NeuMF (He et al., 2017): A combination of GMF and Multi-Layer Perceptron (MLP).

Evaluation Metrics We adopt widely-used AUC and GAUC as accuracy metrics (Gunawardana &
Shani, 2015). Besides, two widely-used ranking metrics (Chang et al., 2021), MRR and NDCG @10,
are also adopted for evaluation.

Hyper-parameter Settings For the two denoising strategies (Wang et al., 2021), we followed their
default settings and verified the effectiveness of our methods under the same conditions. The em-
bedding size and batch size of all models are set as 32 and 1,024, respectively. Besides, we adopt
Adam (Kingma & Ba, 2015) to optimize all the model parameters with the learning rate + initialized
as 0.0001 and 0.00001 for labeled data on ML1M and Micro-Video datasets, respectively, while the
learning rate for sampled data is set as &« = 0.1v. As for the inverse gradient, we split 90% of the
training data as training-train data, and the left is used as training-test data. The sampling rate is set
as 1. The provided code has included the best hyper-parameters.

3.1 OVERALL PERFORMANCE
The performance comparison is shown in Table 1, from which we have the following observations.

* QOur inverse gradient performs best. Our inverse gradient (IG) method achieves the best perfor-
mance compared with four baselines and our inverse dual loss (IDL) for three metrics. Specifi-
cally, our IG improves the backbone sharply, which shows the ability of our proposed method to
well classify the unlabeled data and achieve effective data augmentation to resolve the data spar-
sity problem of existing recommenders. Besides, IG outperforms the existing negative sampling
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Table 1: Performance comparisons with GMF and NeuMF backbones on two datasets. Bold and
underline refer to the best and second best result, respectively. Here IG includes the IDL method.
MLIM Micro-Video
Model  Method —RIcG—AUC  GAUC NDCG  AUC GAUC
None 0.9285 0.7671 0.6919 0.7365 0.8024 0.7558
NS 0.9400 0.7639 0.7200 0.7049 0.7802 0.7247
T-CE 09349 0.7612 0.7163 0.6994 0.6486 0.6956

GMF  —p CE 00397 07632 07192 0.7069 0.7820 0.7260
IDL 05996 07304 0.6400 0.7272 0.7858 0.7335

IG 09521 08318 0.7642 07773 0.8033 0.7593

Nome 090214 07524 06856 06649 0.7504 0.6916

NS 00298 07495 0.7088 0.6350 0.7191 0.6639

Neuntp _T-CE 0935107587 07158 06725 0.7469 06911

R-CE 09349 0.7521 0.7117 0.6288 0.7038 0.6568
IDL 09212 0.7962 0.6984 0.6466 0.7174 0.6647
IG 0.9449 0.8253 0.7569 0.7809 0.8198 0.7689

(NS) method, which means there is truly a large number of positive unlabeled data, and directly
treating them all as negative feedback will confuse the model. Finally, IG also outperforms exist-
ing state-of-art denoising methods, T-CE and R-CE, showing the importance of tackling the noise
from both positive and negative feedback.

* Inverse gradient can make inverse dual loss more robust. Inverse dual loss (IDL) only outper-
forms the NeuMF on ML1M dataset for AUC and GAUC, which shows the inferior robustness
of IDL since it depends heavily on the training model and sampled data. Besides, it is even out-
performed by GMF on ML1M and NeuMF on Micro-Video, which means the poor sampling of
unlabeled data will have a negative impact on the model training. These results show the signifi-
cance of improving the robustness of IDL and confirm that it is necessary to exploit IG to adjust
IDL.

3.2 IDENTIFICATION ON UNLABELED DATA
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Figure 3: Positive and negative weight distributions for dual loss on ML1M at first (up) and final
(bottom) epochs.

We visualize the distribution of weights for positive loss and negative loss on ML1M dataset in
Figure 3. In specific, the upper part represents the weights at the first epoch after pre-training on the
training-train data, and the bottom part represents the weights at the convergence epoch. From the
figure, we can observe that: (1) at the beginning, GMF model fails to well classify the unlabeled data
but NeuMF model has well captured the pattern of unlabeled data, which shows the generalization
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Figure 4: Positive and negative weight distributions for dual loss on Micro-Video at first (up) and
final (bottom) epochs.

ability of deep learning model (Cheng et al., 2016); (2) after convergence, both GMF and NeuMF
can well classify the unlabeled data and capture the similar pattern where most sampled instances
are labeled as positive with more positive weights.

Besides, Figure 4 demonstrates the distribution of weights for positive loss and negative loss on
Micro-Video dataset, which shows similar results as that on ML1M dataset despite there being more
balanced positive and negative labels on the unlabeled data.

3.3 IMPACT OF INVERSE GRADIENT ON CONVERGENCE
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Figure 5: The loss on training-test data with adapted gradient from the dual loss of unlabeled data.
Each point of the loss curve is marked by its updated gradient direction.

To investigate the convergence of our proposed inverse gradient, we also plot the loss curve on the
training-test data as shown in Figure 5. Based on the results on ML1M dataset, we can discover
that: (1) the pre-training on training-train data can promote the model learning effectively at the
early stage for both GMF and NeuMF models, while NeuMF will come into a fast convergence in
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the first epoch; (2) GMF model is updated with direct gradient, then with a hybrid of direct and
inverse gradients, and finally with inverse gradient while in NeuMF model we can discover more
hybrid of gradients in the valley of loss curve, this is because the test gradient is more likely to ascent
at the valley and thus pushes the gradient for dual loss to adjust its direction. Besides, based on the
results on Micro-Video dataset, we can discover that: (1) the models are always updated with direct
gradient. This is because the learning rate is relatively low here (as analyzed in the Appendix A.5),
leading to almost no gradient ascent problem; (2) the pre-training on the training-train data will
conflict with the test data, which means deep learning based model is prone to be overfitting (Cheng
et al., 2016) in the sparse data. Most importantly, we can discover that there is no case of passing
gradient in the descent procedures, which confirms our analysis at Section 2.3.2 that setting a lower
learning rate o can avoid the gradient ascent problem for inverse dual loss.

4 RELATED WORK

Implicit Feedback with Negative Sampling. Existing recommenders are generally based on im-
plicit feedback data, where the collected data is often treated as positive feedback, and negative
sampling (Rendle et al., 2012; He et al., 2017; Chen et al., 2019) is exploited to balance the lack
of negative instances. However, the negative sampling strategy will introduce noise because there
are some positive unlabeled (Elkan & Noto, 2008; Bekker et al., 2019; Saito et al., 2020) data in
the sampled instances. To improve existing implicit feedback recommendation, the identification
of negative experiences (Fox et al., 2005; Kim et al., 2014) has grabbed the researchers’ attention.
However, these methods collect either the various user feedback (e.g., dwell time (Kim et al., 2014)
and skip (Wen et al., 2019)) or the item characteristics (Lu et al., 2018), requiring additional feed-
back and manual labeling, e.g., users are supposed to actively provide their satisfaction. Besides, the
evaluation of items relies heavily on manual labeling and professional knowledge (Lu et al., 2018).
Thus in practice, these methods are too expensive to implement in real-world recommenders. In
addition, hard negative sampling is adopted to improve the negative sampling (Zhang et al., 2013;
Ding et al., 2019; 2020). However, with less false positive samples, the hard negative instances also
brings more false-negative samples. Our meta-learning method elegantly annotates the unlabeled
instances based on the sparse labeled instances.

Denoising Recommender Systems. One intuitive approach to reduce noise is to directly include
more accurate feedback (Liu et al., 2010a; Yang et al., 2012), such as dwell time (Yi et al., 2014) and
skip (Wen et al., 2019)). However, forcefully requiring additional feedback from users may harm
the user experiences. To address this problem, DenoisingRec (Wang et al., 2021) achieves denoising
recommendation for implicit feedback without any additional data. More specifically, they perform
denoising on the false positive instances via truncating or reweighting the samples with larger loss.
However, they only consider the positive feedback without further addressing the noise brought by
negative sampling. Our work considers the sampled instances as possibly positive and negative, then
achieve denoising data augmentation from both positive and negative perspectives.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel method that learns the sampled data with both positive and
negative feedback. Such exploration not only tackled the unavoidable noise brought by widely used
negative sampling but also improved the current denoising recommenders. Specifically, we proposed
inverse learning from both loss and gradient perspectives. The first one was the inverse dual loss
that assumed the sampled data to be possibly positive or negative. If the positive loss was greater
than the negative loss (difficult to label the data as positive), the inverse dual loss would inversely
assign more weights to the negative loss and vice versa. Since the inverse dual loss depended heavily
on the training model and sampled data, we further proposed inverse gradient which makes inverse
dual loss more robust by adjusting the gradient. We designed a meta-learning method with the
training data split into training-train data and training-test data. The model was first pre-trained on
the training-train data. Then the pre-trained model would explore to update with the gradient or the
additive inverse of gradient, or even do not update, determined by the training-test data.

As for future work, we plan to apply our inverse learning with more recommendation models as the
backbones to further verify the generalization of our proposed methods.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Theorem 1 Given learning rate o € R, # 0, assume the temporal model parameters updated
by the direct gradient and inverse gradient, respectively, are as 0% = 0 — «a o VL (0) and
0° = 0 + a o VLY (). Then, the relationship between the loss of them and the model with
parameter 6 on data instance (u,i,y;;) € D' will be either Lp1(0%) > Lpi1(0) > Lpi(0%) or
ﬁpz(ei) < Lopi (0) < ﬁpz(ed).

Proof 1 To simplify the problem, from a stochastic perspective with one instance (u,i,yy,;). Our
target is to satisfy:

L£(0%) > L£(6) > L£(6), (5)
or

L(0%) < L(8) < L£(6"), (6)
where L(0%), £(0), L(0") are the loss functions for the models with parameters 0¢,0.6". To sim-
plify the proof procedure, we define the prediction function as the hypothesis function of the well
known logistic regression (Hosmer Jr et al., 2013)':

1

N s o ) _
Yui = f(uvl|9) - f(qu'e) - 1+ =0Ty i’ (7)

where x,, ; is the input feature under the interaction between user u and item i. Given learning rate
a€R,a#0with@? =6 —ao VLY (0) and 01 = 0 + o o VLE () as the temporal model
parameters updated by the direct gradient and inverse gradient, respectively, we can have:

Hd:nu’i =0x,, —«ao Vﬂ%%“l(e)a:u,i (8)
O'z,; =0z, + oo VLEM(0)x,, 9)
Assume oo VLE (@), ; < O then we have:
Gdacw' > 0z, ; > Hia:u,i (10)
Review the loss function from a stochastic perspective with one instance (u, 1, yy;):
£(6) = —yy;log () — (1= yii) log (1 — diyy) - (1n
Suppose (u,i,yy,;) is positive instance with y, = 1, then we can have:
£(6) = —log (§1;) . (12)

which is a decreasing function towards predicted probability §2,.

L(0) will decrease towards 92, and further decrease towards 0z, ;. Base on the assumption of
Egn.equation 10, we can have:

L£(0%) < L£(8) < L(9"), (13)
which satisfies the target of Eqn.equation 6. Besides, similarly, if y*, = 0, we can have: £L(6%) >
L(0) > L(6%). If a o VLY (0)x,, ; > 0, we can have similar conclusion. That is to say, whatever
cases, targets of Eqn.equation 5 and Eqn.equation 6 will be satisfied.

The case o o VﬁdD%“l(B)wu’i = 0 will result in gradient vanishing and modern machine learning
approach often randomly initialize the features to avoid such case.

A.2 ALGORITHM

The algorithm of our proposed inverse gradient is as Algorithm 1, where labeled data D', unlabeled
data D" and learning rate -, « are required as input. The first iteration aims to pre-train the model
using the split training-train data. The second iteration aims to explore the direct gradient and inverse
gradient on the loss for sampled unlabeled data, where three strategies are explored here as line 13-
15 with 8¢,0" and @ as the model parameters updated by the direct gradient, inverse gradient and
without being updated by the gradient on the loss for sampled unlabeled data, respectively. Finally,
the explored updated direction with minimal test loss on the training-test data will be selected to
update the model for this iteration.

"https://www.coursera.org/learn/machine-learning
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Algorithm 1: Inverse Gradient Adaptation

input : Labeled data D', unlabeled data D, learning rate -y, o

output: 6

Initialize 0, split D into training-train data train (Dl) and training-test data test (Dl);
while not done do

fort =1to71 do

Sample batch of training labeled data train(D}) ~ D',

T 1 N N AN
Larain(24) 0) = oo Ltwians,) cuvain(ot) ¢ (B T
| 0 =0—70VLyain,)(0):

fort =1to T do

Sample batch of training unlabeled data train(Dy') ~ D*;
dual _ 1 1 ~6 0 ~0 .
Etrain(Dy)(e) = Jtrain(Dp)] Z(u,vﬁ,ﬂm)etrain(vy) wt (ym, 1) +w't (?Juwo)7

04 =0 — oVt (28) (0);

train

0" =0+ aovLivd (D8) (0);

train

Sample batch of test labeled data test(D}) ~ D';

dy __ 1 .00 4\,
Lrese(py)(07) = Wz(u,i,y;i)aest(pg)f(yunyui),

) 1 Lot ).
EteSt(Di)(e ) - W Z(u,i,y:i)etest(Dé) £ (yuivyui),
EtCSt(Di)(e) = m Z(u,ixyzi)Gtcst(Di) 14 (ggw y;z), .

6 = argminou,0.01){Loeur(4) (0): Lrcar(p}) (0): Lecor () (0)}:
[,test(’l)i)(e) = min{ﬁtest(’Di)(ed)a ’Ctest(Di) (0), Ltest(Dé) (01)}’
0

=60 — Yo v‘ctest(Di)(O);

A.3 DATASETS AND PRE-PROCESSING

Table 2: Data statistics for processed Micro-Video dataset and ML1M dataset.
Feedback .
Dataset Users Items Positive  Negative Total Density
Micro-Video 37,692 131,690 4,915,745 4,546,747 9,462,492  0.19%

MLIM 6,041 3,953 836,478 163,731 1,000,209  4.19%

The public ML1M dataset is published at’> and we also have uploaded the processed dataset on
the Github of the code and the supplementary material. The statistics of our adopted Micro-Video
dataset and ML1M dataset are as Table 2. We will put the Micro-Video dataset public to benefit the
community.

Table 3: Interaction statistics for Micro-Video dataset.
Dataset Like Hate Total Like/Total Hate/Total

Micro-Video 382,570 6,157 8,008,965 4.78% 0.08%

Micro-Video This dataset is collected from one of the largest Micro-Video platforms in China,
where user behaviors such as playing time, like and hate are recorded. The data is downsampled
from September 11 to September 22, 2021. Users are passive to receive the recommended videos
here, and there are extremely limited active feedback such as like and hate as shown in Table 3.
That is to say, we have extremely limited reliable feedback in this data which is very challenging
in modern industries. We take the active feedback of like and hate to analyse the regular pattern of
playing time and duration of each video which are included in each interaction. From Figure 6, we
can discover that the users’ like and hate behaviors are related to the finish rate of playing time (user’s

https://grouplens.org/datasets/movielens/1m/
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Figure 6: Joint distribution of playing time and duration for like (left) and hate (right).

Table 4: Performance comparison of GMF on Micro-Video dataset based on feedback classification
by finish rate and playing time.

metric AUC GAUC
Finish Rate  0.8024 0.7558
Playing Time  0.751 0.528

playing time towards certain item) to be divided by duration (item’s total time): when the users like
the video, they are more likely to finish watching it, and vice versa. Thus we treat the finish rate
greater than 80% and less than 20% as positive and negative feedback, respectively. Another way
to classify the positive and negative feedback is according to the playing time, and we also report
the results by treating the playing time over upper quartile and under lower quartile as positive and
negative feedback, respectively. From Table 4, we can observe that finish rate is more suitable for
pattern capturing and we adopt such way as feedback processing in experimental evaluation.

ML1M? This is a widely used public movie dataset in recommendation. The rating score in ML1M
ranging from 1 to 5 and we treat the rating score over 3 and under 2 as positive and negative feedback,
respectively, following DenoisingRec (Wang et al., 2021).

Besides, we splite 60%, 20% and 20% of the data as training, validation and test data, for these two
datasets.

A.4 IMPLEMENTATION DETAILS

All the models are implemented based on Python with a Pytorch* framework based on the repository
DenoisingRec>. The environment is as below.

e Anaconda 3

python 3.7.3

pytorch 1.4.0

* numpy 1.16.4

*https://grouplens.org/datasets/movielens/1m/
‘nttps://pytorch.org/
‘https://github.com/WenjieWWJ/DenoisingRec
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A.5 HYPER-PARAMETER STUDY

Impact of learning rate for convergence We vary the learning rate for inverse dual loss with 1, 10,
50 and 100 times as much as the learning rate for test loss, to investigate the convergence analysis
at Section 2.3.2. From Figure 7, we can discover that the greater of a will truly result in gradient
ascent, as there appears pass gradient when o = 100v. Besides, the greater of «, the faster of
convergence on training-test data but also overfitting.

GMF on Micro Video Dataset GMF on Micro Video Dataset
0.60 | direct gradient | 0.60 ‘ direct gradient
' pass gradient pass gradient
a inverse gradient & 0.40 inverse gradient |-
3 0.40 | | I S
' 0.20
0 2000 40:00 6000 8000 0 2000 4000 6000 8000
Training Iteration Training lteration
Ma=ry 2) o = 10y
GMF on Micro Video Dataset GMF on Micro Video Dataset
0.60 direct gradient 0.60 direct gradient
pass gradient pass gradient
g 0.40 inverse gradient - § 0.40 inverse gradient |
| |
0.20 0.20
0.00 0.00 = i
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Training lteration Training Iteration
3) a = 50y 4) a = 100y

Figure 7: The loss on training-test data with different learning rate for adapted gradient.

A.6 COMPARISON WITH HARD NEGATIVE SAMPLING

Table 5: Performance comparisons towards hard negative sampling with GMF and NeuMF back-
bones on two datasets. Bold and underline refer to the best and second best result, respectively
MLIM Micro Video
Model - Method —grc—AUC  GAUC NDCG AUC  GAUC
None 0.9285 0.7671 0.6919 0.7365 0.8024 0.7558
NS 0.9400 0.7639 0.7200 0.7049 0.7802 0.7247
DNS 09178 0.6290 0.6290 0.6878 0.6310 0.6356

GMF SRNS 09176 0.6253 0.6293 0.6799 0.6293 0.6302
IDL 0.8996 0.7304 0.6400 0.7272 0.7858 0.7335

IG 0.9521 0.8318 0.7642 0.7773 0.8033 0.7593

None 0.9214  0.7524 0.6856  0.6649 0.7504 0.6916

NS 09298 0.7495 0.7088 0.6350 0.7191 0.6689

NeuMF DNS 09168 0.6277 0.6283 0.6203 0.6274 0.6261

SRNS 09172 0.6282 0.6284 0.6212 0.6296 0.6295
IDL 09212  0.7962 0.6984 0.6466 0.7174 0.6647
IG 0.9449 0.8253 0.7569 0.7809 0.8198 0.7689

The results of performance comparison with hard negative sampling are as Table 5, where we can
discover that the hard negative sampling methods truly perform worse in our setting where both
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ground-truth positive and negative samples are tested. The typical and state-of-the-art baselines of
hard negative sampling are illustrated as below.

* DNS (Zhang et al., 2013): Dynamic Negative Sampling (DNS) samples unlabeled instances as
negatives and picks the hard instances with high predicted score.

* SRNS (Ding et al., 2020): SRNS further selects true negatives with high-variance to improve
DNS.
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