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Abstract
Controllable text generation (CTG) seeks to001
craft texts adhering to specific attributes, tradi-002
tionally employing learning-based techniques003
such as training, fine-tuning, or prefix-tuning004
with attribute-specific datasets. These ap-005
proaches, while effective, demand extensive006
computational and data resources. In contrast,007
some proposed learning-free alternatives cir-008
cumvent learning but often yield inferior re-009
sults, exemplifying the fundamental machine010
learning trade-off between computational ex-011
pense and model efficacy. To overcome these012
limitations, we propose FreeCtrl, a learning-013
free method that dynamically modulates the014
weights of selected feedforward neural network015
(FFN) vectors to increase the likelihood of gen-016
erating sentences with desired attribute-related017
keywords. Specifically, we first identify the018
key characteristics and challenges of using FFN019
layers for CTG and then introduce a structured020
workflow to build and adaptively activate con-021
trol centers constructed by FFN vectors to reg-022
ulate the language model outputs on desirable023
attributes. Extensive experiments on single-024
and multi-attribute control reveal that the pro-025
posed learning-free FreeCtrl outperforms other026
learning-free and learning-based methods, suc-027
cessfully resolving the dilemma between learn-028
ing costs and model performance.029

1 Introduction030

Controllable text generation (CTG) focuses on di-031

recting language models to produce diverse and032

fluent sentences that adhere to predefined single033

or multiple attributes such as topics and senti-034

ment (Yang et al., 2023; Gu et al., 2023; Zhang035

et al., 2023; Zhong et al., 2023). Recent works on036

CTG can be roughly categorized into two groups037

based on their dependency on a learning process:038

learning-based methods and learning-free methods039

(Mireshghallah et al., 2022).040

Learning-based methods usually involve train-041

ing (Yang and Klein, 2021; Krause et al., 2021; Lin042
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Figure 1: Trade-off between learning cost and perfor-
mance for CTG. Learning-based methods excel in de-
livering superb results but demand significant training
resources. Conversely, learning-free methods are more
resource-efficient but tend to yield inferior performance.
Numerical performance details are available in §5.

and Riedl, 2021), fine-tuning (Ficler and Goldberg, 043

2017; Keskar et al., 2019; Wang et al., 2021), or 044

prefix-tuning (Qian et al., 2022; Zhang and Song, 045

2022; Gu et al., 2022, 2023; Yang et al., 2023; 046

Zhong et al., 2023) language models or discrim- 047

inators based on attribute-specific data. Despite 048

their effectiveness, these approaches come with 049

high computational costs for training and a depen- 050

dency on vast, attribute-specific datasets, posing 051

challenges for deployment in environments with 052

limited data or computational capacity. 053

Only a few existing methods are learning-free, 054

avoiding the need for training. For instance, K2T 055

(Pascual et al., 2021) employs attribute-focused 056

keywords to influence token output probability 057

during generation. Another method, Mix&Match 058

(Mireshghallah et al., 2022), integrates diverse 059

black-box experts as a probabilistic energy model 060

to steer large language model (LLM) outputs. 061

These learning-free methods, despite bypassing the 062

training process, tend to fall short in performance 063

compared to advanced learning-based approaches. 064

The analysis spotlights the classic dilemma in 065

machine learning between the cost of learning and 066
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model performance, as shown in Figure 1. To over-067

come this obstacle, particularly in avoiding learn-068

ing expenses for CTG while ensuring high perfor-069

mance, we propose FreeCtrl: Constructing Con-070

trol Centers with Feedforward Layers for Learning-071

Free Controllable Text Generation. FreeCtrl’s cen-072

tral idea is to manipulate FFN vectors1 to regulate073

the outputs of LLMs, inspired a recent finding that074

the tokens generated by LLMs can be attributed to075

the weights of vectors in FFN layers (Geva et al.,076

2022).077

Specifically, the key principle is that increasing a078

single FFN vector’s weight alters the output distri-079

bution, raising specific tokens’ output probability.080

This strategy enables the targeted enhancement of081

certain FFN vector weights to raise attribute key-082

words’ output probability, directing LLM genera-083

tion towards preferred attributes. Our study first084

examines the possibility of this strategy by pin-085

pointing three key characteristics of FFN vectors:086

1) Convergence: Increasing the weight of an FFN087

vector can result in a stable and convergent output088

distribution in LLMs, thereby elevating the prob-089

abilities of specific tokens. 2) Diversity: Diverse090

FFN vectors can increase the output probabilities091

for most tokens in the LLM vocabulary, covering092

keywords relevant to general attributes in CTG; 3)093

Prompt-Invariance: the observed effects of con-094

vergence and diversity remain consistent across dif-095

ferent input prompts. These characteristics suggest096

FFN vectors can enable stable, diverse controls for097

LLM outputs, directing sentence generation toward098

desired attributes.099

However, we also identify a major limitation100

of FFN vectors: the high-maintenance challenge,101

where adjusting their weights for precise control102

proves difficult. Low weights lack the power to103

steer LLMs, while high weights compromise out-104

put diversity and fluency. To mitigate this, FreeCtrl105

initially sets up control centers using FFN vectors106

for various attributes, then navigates LLM output107

via a cycle of initialization, monitoring, adaptation,108

and filtering during the generation process. Contin-109

uous monitoring ensures that token generation is110

assessed at each step, allowing for adaptive weight111

adjustments of the control centers. Ultimately, a112

score-based filtering mechanism is employed to re-113

fine the outputs. Notably, this framework requires114

no training or attribute-specific data yet surpasses115

1FFN vectors refer to the value vectors in the second
weight matrix of the FFN layer. More details and definitions
can be found in §3.1.

the efficacy of advanced learning-based models. 116

Therefore, FreeCtrl addresses the cost-performance 117

dilemma, situating it at the optimal upper-left cor- 118

ner in Figure 1, denoting learning-free but high 119

performance. Our main contributions are summa- 120

rized as follows: 121

1. We conduct a systematic analysis of using 122

FFN vectors for CTG in §3, identifying three 123

key characteristics: convergence, diversity, 124

and prompt-invariance, alongside a notable 125

challenge of high maintenance. 126

2. We propose FreeCtrl in §4, a learning-free 127

approach that identifies and utilizes FFN vec- 128

tors governing various attributes to establish 129

control centers, thus enabling precise manage- 130

ment of LLM outputs through initialization, 131

monitoring, adaptation, and filtering. 132

3. Comprehensive experiments in §5 on both sin- 133

gle and multi-attribute control demonstrate 134

that FreeCtrl, without incurring any learning 135

costs, outperforms existing learning-free base- 136

lines and achieves superior results to cutting- 137

edge learning-based models. 138

2 Related Work 139

Learning-based Methods Initial research efforts 140

concentrate on adapting language models into 141

attribute-conditional language models, utilizing 142

methods like fine-tuning (Ficler and Goldberg, 143

2017; Keskar et al., 2019; Wang et al., 2021) and re- 144

inforcement learning (Ziegler et al., 2019; Khalifa 145

et al., 2020; Kim et al., 2023). Weighted decoding 146

stands out as another key strategy in CTG. These 147

methods are primarily learning-oriented, involv- 148

ing updates to the model’s hidden states based on 149

decoded logits (Dathathri et al., 2019) or training 150

attribute discriminators to modify model output 151

probabilities (Yang and Klein, 2021; Krause et al., 152

2021; Lin and Riedl, 2021). Amidst the growth 153

of large language models like GPTX (Radford 154

et al., 2019; OpenAI, 2023) and LLaMA2 (Tou- 155

vron et al., 2023), recent techniques often preserve 156

LLM parameters and utilize lightweight fine-tuning 157

methods such as prefix-tuning (Li and Liang, 2021; 158

Lester et al., 2021) followed by decoding-time con- 159

trol (Qian et al., 2022; Zhang and Song, 2022; Gu 160

et al., 2022, 2023; Yang et al., 2023; Zhong et al., 161

2023). These methods generally necessitate a large 162

volume of attribute-specific data and considerable 163
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computing resources for training either prefixes or164

discriminators.165

Learning-free Methods The realm of learning-166

free approaches, which eschew any training pro-167

cess, is sparsely populated with research. One such168

example is K2T (Pascual et al., 2021), which shifts169

the output logit distribution by calculating the se-170

mantic similarity between vocabulary words and171

target attribute keywords. Notably, Mix&Match172

(Mireshghallah et al., 2022) stands as the pio-173

neer in introducing a “learning-free” control frame-174

work. This innovation leverages external black-175

box scoring experts to evaluate the attributes of176

generated content, thereby regulating the model177

outputs. Compared to cutting-edge learning-based178

methods like PriorControl (Gu et al., 2023), these179

approaches often fall short in performance.180

3 FFN Vectors for CTG181

This section first details the theoretical basis for182

using FFN vectors to control LLM outputs, then183

examines their characteristics and challenges.184

3.1 Theoretical Foundations185

In line with previous findings (Sukhbaatar et al.,186

2015, 2019; Geva et al., 2021, 2022), the outputs187

from FFNs can be viewed as linear vector combi-188

nations:189

FFNℓ(xℓ) = f(W ℓ
Kxℓ)W ℓ

V190

=

dm∑
i=1

f(xℓ · ki)vi =

dm∑
i=1

mℓ
ivi191

where f is the activation function, W ℓ
K and W ℓ

V192

are the weight matrices, and xℓ is the input at layer193

ℓ. FFN then can be conceptualized as a neural194

key-value memory system, where the columns in195

WK represent the keys and rows in WV are the196

values. Given an input vector xℓ, the keys generate197

the coefficients mℓ = f
(
W ℓ

Kxℓ
)
∈ Rdm , which198

assign weights to the values in WV .199

In other words, within each layer, the value vec-200

tors denoted as vi are extracted from the rows of201

the secondary weight matrix, WV . Taking GPT2-202

medium (Radford et al., 2019) as an example, WV203

is dimensioned at 4096 × 1024. This dimension-204

ality implies the existence of 4096 value vectors,205

each extending to a 1024-dimensional space within206

each individual FFN layer. With 24 such layers207

incorporated within the GPT2-medium, the model208
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Figure 2: Convergence. As the value vector weight in-
creases, its corresponding output distribution converges.

encompasses 24 × 4096 = 98, 304 value vectors 209

in total. 210

Prior research (Geva et al., 2022) has verified 211

that the outputs generated by LLMs can be ex- 212

plained by examining the weights associated with 213

the value vectors. The weights of various value 214

vectors directly influence the probabilities of dif- 215

ferent token outputs. Building on this foundation, 216

our study explores the identification of value vec- 217

tors controlling different attributes in CTG and the 218

feasibility of manipulating their weights to achieve 219

attribute-specific control. 220

3.2 Characteristics of Value Vectors 221

Effective control via value vectors depends on three 222

core requirements: stable impact on output distri- 223

butions, the ability to manage a wide range of CTG 224

attributes, and consistent behavior under different 225

prompts. We highlight three key properties that 226

affirm the value vectors’ utility in achieving trust- 227

worthy CTG. Utilizing GPT2 as an example, we 228

iteratively select a single value vector, denoted as 229

vi, and then incrementally increase its weight, de- 230

noted as u. The resultant model output distribution, 231

represented as pu
i ∈ R|V|, is observed, where V 232

signifies the GPT2’s vocabulary and |V| is its size. 233

Convergence While progressively increasing the 234

weight u from 1 to 50, the distribution influenced 235

by each value vector progressively attains a state 236

of stability and constancy, as shown in Figure 2. 237

Specifically, we treat the output distribution con- 238

trolled by a weight of 502 as the ground-truth pg
i 239

and calculate Spearman’s rank correlation between 240

distributions controlled by different weights and 241

pg
i . The mean correlation across all 98,304 resul- 242

tant distributions is reported in Figure 2. Spear- 243

2A weight of 50 is considered exceptionally large accord-
ing to Geva et al. (2022).
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Attribute Keywords & Positions
POLITICS politics (20, 1651), government (22, 3127), election (17, 1620), republic (0, 2991), state (19, 84)
SPORTS sports (14, 1078), champion (21, 4020), football (17, 573), game (23, 1928), coach (17, 1773)

Table 1: Politics and sports-related keywords along with their respective value vectors in GPT2. The position is
denoted by (a, b), where a represents the layer number and b is the position of the value vector within that layer.

man’s rank correlation is used because it directly244

compares token ranks and mitigates the impact of245

topk/p sampling and temperature variations. In246

summary, increasing the weights u establishes sta-247

ble token ranking and distribution patterns. Such248

convergence enables the discovery of patterns re-249

lated to target attributes in CTG and facilitates sta-250

ble control.251
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Figure 3: Diversity. The percentage of top-k tokens in
the whole vocabulary grows with increasing weights.

Diversity The second question explores whether252

value vectors can sufficiently control a wide range253

of tokens representing various attributes in CTG.254

Our analysis is twofold: first, we assess the per-255

centage of top-k controllable tokens in pu
i over256

the whole covabulary; second, we identify specific257

value vectors that govern general attributes. Figure258

3 shows that with increasing weights, the top-1 to-259

kens controlled by the 98,304 vectors account for260

up to 20% of the GPT2 vocabulary, and this figure261

rises to over 80% for top-50 tokens. This demon-262

strates the vectors’ capacity to influence most to-263

kens in the entire vocabulary. To provide further264

clarity, Table 1 lists several value vectors alongside265

their corresponding attributes. More attributes and266

their associated vectors are detailed in Appendix A.267

These findings confirm the value vectors’ ability to268

control a broad spectrum of attributes in CTG.269

Prompt-Invariance To ensure effective control270

in LLMs, it is critical that value vectors maintain271

their properties across various input prompts. Our272

analysis involves feeding GPT2 with 35 different273

prompts, as provided by Dathathri et al. (2019).274

The results for various prompts mirror the earlier 275

results, showcasing the characteristics of prompt- 276

invariance. 277

3.3 Limitation of High Maintenance 278

While value vectors show promise for CTG, a 279

significant challenge is their high maintenance 280

due to the difficulty in setting optimal weights. 281

Low weights fail to effectively direct LLMs to- 282

wards desired attribute-specific tokens, whereas 283

high weights can reduce output diversity and flu- 284

ency. Furthermore, the ideal weights for various 285

value vectors can be different. As illustrated in Ap- 286

pendix B, a weight of 1 for politics-related vectors 287

does not steer the model towards political content, 288

but increasing the weight to 5 results in constrained 289

and lower-quality outputs. Conversely, a weight of 290

5 is effective for sports-related attributes, produc- 291

ing relevant and high-quality generations. 292

4 Methodology 293

To maximize the benefits and mitigate the limita- 294

tions of FFN value vectors, we introduce FreeCtrl: 295

Constructing Control Centers with Feedforward 296

Layers for Learning-Free Controllable Text Gener- 297

ation. FreeCtrl begins by gathering attribute key- 298

words, subsequently constructing a control center 299

for each attribute. It then guides the LLM to pro- 300

duce outputs relevant to the target attribute through 301

a systematic pipeline of initialization, monitoring, 302

adaptation, and filtering. The overall framework is 303

illustrated in Figure 4. 304

4.1 Attribute Keyword Collection 305

For a given attribute ai in the attribute set A = 306

{a1, · · · , an}, we begin by gathering its associated 307

keywords to promote diverse generations. Vari- 308

ous external knowledge bases such as WordNet 309

(Miller, 1994), ConceptNet (Speer et al., 2017), 310

RelatedWords3, and ChatGPT (OpenAI, 2023) can 311

be utilized for this purpose. To reduce the noises 312

from these external sources, we apply a refinement 313

function: 314

3https://relatedwords.org/
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SPORTS

sports

champion

football

game

coach

...

(14, 1078), (18, 2708)

(21, 4020), (12, 2719)

(17, 573), (14, 1078)

(23, 1928), (21, 1045)

(17, 1773), (16, 3898)

...

Input
In summary,

Language Model Generation

Monitoring

AdaptationInitialization

Attribute Attribute Keywords Control Center

controlling vectors,

adaptive weights

Filtering

Output
In summary, 

sports fans can 

expect the soccer 

game on Sunday 

evening....

Figure 4: Overview of FreeCtrl. For the target attribute “SPORTS”, FreeCtrl initially identifies related keywords
and value vectors to establish a control center. Throughout the generation phase, it dynamically adjusts the control
center’s weights based on real-time output monitoring, ensuring adaptive feedback for subsequent token generation.
Finally, a filter is applied to verify compliance with the required attribute. Notably, the position (a, b) specifies the
layer number a and the value vector’s position b within that layer.

G(z) = r (z, ai)
|A| − 1∑

aj∈A,aj ̸=ai
r (z, aj)

(1)315

where z represents the collected keyword for at-316

tribute ai, and r(·) indicates the cosine similarity.317

This function incorporates ideas from both TF-318

IDF (Spärck Jones, 2004) and KPT (Hu et al.,319

2022). It operates on the premise that a suitable320

attribute keyword should have a relevance score for321

its corresponding attribute that is higher than the322

average relevance score for other attributes. Conse-323

quently, keywords where G(z) < 1.0 are deemed324

less relevant and are filtered out for refinement. As325

this is not the primary focus and contribution of326

our work, we offer only a brief introduction here.327

For more detailed information, please refer to KPT328

(Hu et al., 2022).329

4.2 Control Center Construction330

Leveraging attribute-specific keywords, we can331

identify corresponding value vectors to direct the332

LLM toward outputs focused on these keywords333

and attributes. Building on §3.2, we iteratively as-334

sign a weight of 50 to each vector and examine the335

output distribution to locate dominant value vectors336

that control the attribute keywords.337

Formally, let Pumax ∈ RN×|V| represent the338

softmaxed output distribution across the vocab-339

ulary V , modulated by all the N value vectors340

with a set weight of umax = 50. The control341

effect for a specific keyword z is captured by342

Pumax [:, dV(z)] ∈ RN , where dV(z) denotes the 343

index of token z in the vocabulary, and N signifies 344

the total number of value vectors. To pinpoint vec- 345

tors controlling the keyword z, we choose value 346

vectors with top-k probabilities: 347

cz = dvec{max
k

(Pumax [:, dV(z)])} (2) 348

where dvec(·) retrieves the index of value vectors 349

in N . For instance, the positions (21,4020) and 350

(12,2719) in Figure 4 of value vectors correspond 351

to the top-2 output probabilities for the attribute 352

keyword “champion”. 353

Finally, the control center for an attribute ai is 354

established by aggregating the value vectors of the 355

keywords related to the attribute ai: 356

Cai =
⋃

cz, z ∈ Z(ai) (3) 357

where Z(ai) denotes the set of keywords for the 358

attribute ai. 359

4.3 Single-Attribute Control 360

To precisely control LLMs through control centers, 361

we adopt a structured process that includes initial- 362

ization, monitoring, adaptation, and filtering. We 363

constantly monitor the LLM’s generation and then 364

adaptively adjust control parameters to steer output 365

toward the desired attribute. A final filtering step 366

verifies the output’s compliance with the specified 367

attribute. 368

Initialization For a specified attribute ai, we 369

first locate value vectors to construct the control 370
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center Cai .371

Monitoring At this stage, each token produced372

by the LLM in response to a prompt is evaluated373

for its relevance to the attribute ai. We construct374

current output sait by integrating the input prompt375

with tokens generated by the LLM at timestamp t376

for attribute ai. The embedding for token si in sait377

is derived as E[si] ∈ Rde , where E[·] is the LLM’s378

embedding matrix with dimension de. The attribute379

embedding E[Z(ai)] can be obtained in a similar380

way. The correlation between current output sait381

and target attribute ai can be calculated as:382

ρait =
1

lt

lt∑
j=1

max{r(E[sj ], E[Z(ai)]} (4)383

where lt denotes the length of the current sentence384

and the correlation score ρait ranges from 0 to 1.385

This equation initially computes the maximum co-386

sine similarity between each token in the current387

output and all target attribute keywords, subse-388

quently calculating the mean value of these cor-389

relation scores.390

To enhance the correlation with the target at-391

tribute while minimizing it with other attributes,392

we utilize Eq.5, which resembles Eq.1 and is de-393

signed to calculate the score of the current output.394

By continuously tracking the sentence score µai
t ,395

we are able to quickly modify the weights of Cai ,396

ensuring a coherent and seamless output that aligns397

with the targeted attribute.398

µai
t = ρait

|A| − 1∑
aj∈A,aj ̸=ai

ρ
aj
t

(5)399

Adaptation Utilizing µai
t , we can dynamically400

adjust the weights for timestamp t + 1, facilitat-401

ing smooth control and generation. To clarify, the402

model is required to generate a token at every times-403

tamp. The primary reason for this adaptation is the404

high maintenance of value vector weights, as dis-405

cussed in §3.3. The weight for timestamp t + 1406

is determined as Eq.6. Here, µω denotes a preset407

hyperparameter of the sentence score, λ is a scaling408

parameter, and µai
slt

is the last token score obtained409

by Eqs.4 and 5. We regard µ̂ai
t = max(µai

t , µai
slt
)410

as final score to ensure the fluency.411

ωai
t+1 =

{
λ

1+exp[−(µω−µ̂
ai
t )·lt]

µω − µ̂ai
t > 0

0 otherwise
(6)412

To clarify, a value of µω − µ̂ai
t > 0 indicates 413

that the score of the current sentence or the last- 414

generated token is below the predefined threshold, 415

and as a result, the weight should be determined by 416

the difference between µω and µ̂ai
t . Additionally, 417

the sentence length lt implies that weights at the 418

outset of generation will be higher than those as- 419

signed later. This is grounded in the rationale that 420

initially higher weights are necessary to guide the 421

generation towards the desired direction. Once this 422

direction is established, the LLM tends to continue 423

generating tokens along this path, allowing for re- 424

duced weights in later stages to maintain fluency. 425

Conversely, when µω − µ̂ai
t < 0, it signifies that 426

the sentence or the last-generated token at times- 427

tamp t has an adequate score and aligns with the 428

target attribute, eliminating the need for a higher 429

weight. Setting the weight to 0 is a deliberate strat- 430

egy to prevent the LLM from generating outputs 431

associated with contrary attributes. 432

Filtering Through continuous monitoring and 433

adaptation, the LLM can be steered to generate 434

outputs focused on target attributes. However, 435

some generations might not meet the µω thresh- 436

old throughout the generation process, despite 437

maintaining high weights. To filter out such non- 438

compliant generations, a final screening is con- 439

ducted using Eq.7. Only those sentences that 440

achieve scores in accordance with Eq.7 are con- 441

sidered valid outputs. 442

µai
T > µω (7) 443

where T represents the final timestamp in the gener- 444

ation process, with a token produced at each times- 445

tamp. 446

4.4 Multi-Attribute Control 447

A significant strength of our method is its 448

seamless adaptability to controlling multiple at- 449

tributes. Specifically, in the case of multi-attributes 450

{a1, · · · , aM}, we initially gather the respective 451

control centers for these attributes based on Eqs. 452

2 and 3. We then calculate sentence scores and 453

weights for all M attributes by Eqs. 4-6. At each 454

timestamp, we select the control center with the 455

highest weight for control. Assuming the control 456

center Cam for the m-th attribute am has the maxi- 457

mum weight ωam
t+1, then the weight for Cam is set 458

to ωam
t+1, while weights for control centers of all 459

other attributes are set to 0. Through this process, 460

different control centers are activated at different 461
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Methods Sentiment↑ (%) Topic↑ (%) Detox.
↑(%)

PPL
↓

Dist.-1/2/3
↑Avg. Neg. Pos. Avg. P. S. B. T.

Learning-based Methods
PPLM 80.0 97.2 62.7 70.6 74.9 46.5 62.4 98.6 93.2 63.2 31.1/70.9/85.9
GeDi 88.4 96.6 80.2 90.8 84.3 92.6 87.1 99.2 95.4 134.1 47.5/88.9/93.0
Contra. Prefix 89.5 88.4 90.6 86.7 74.5 85.3 93.5 93.6 93.8 37.7 17.3/47.0/71.1
Discrete 92.5 99.1 85.9 90.4 84.5 95.0 84.6 97.5 90.1 46.2 36.9/76.3/87.0
PriorControl 97.1 99.9 94.3 95.9 95.5 99.3 90.2 98.7 90.7 54.3 29.1/70.1/86.9
Learning-free Methods
Mix&Match 82.8 99.2 63.3 75.6 79.5 57.4 69.6 99.3 96.9 65.2 31.5/74.8/88.8
FreeCtrl (Ours) 97.7 99.9 95.4 96.5 93.7 96.1 96.5 99.6 97.3 27.2 20.2/61.3/84.1

Table 2: Automatic results on single-attribute control. Results are reported for the attributes of Positive, Negative,
Politics, Sports, Business, Technology, and Detoxification, in addition to the computed Average score. Fluency is
measured using perplexity (PPL), and diversity (Dist-1/2/3) is evaluated by distinct uni-, bi-, and tri-grams.

timestamps, ultimately yielding an output that inte-462

grates multiple attributes after undergoing a filter-463

ing process as Eq.7.464

5 Experiments465

5.1 Experimental Setups466

To align with established methods for CTG and467

ensure fair comparisons, our experimental setups468

rigorously follow Discrete (Gu et al., 2022) and469

PriorControl(Gu et al., 2023).470

Tasks Our analysis includes three CTG tasks:471

topic, sentiment, and detoxification, under both472

single- and multi-attribute control scenarios. Fol-473

lowing PPLM (Dathathri et al., 2019), we utilize474

35 neutral prompts. The GPT2-medium (Radford475

et al., 2019) is employed to generate sentence com-476

pletions. For single-attribute control, GPT2 pro-477

duces 5 completions for each attribute across all478

prompts, culminating in a total of 35 prompts ×479

(2+4+1) attribute scenarios × 5 completions=1225480

sentences. In the multi-attribute control, the model481

generates a total of 1,400 sentences, calculated as482

35 prompts × (2×4×1) attribute combinations ×483

5 completions.484

Implementation Details Implementation details485

and hyperparameter settings for our methods and486

comparative baselines are detailed in Appendix C.487

Baselines We compare our FreeCtrl with both488

learning-based and learning-free methods. The489

learning-based approaches include (1) PPLM490

(Dathathri et al., 2019), which leverages classifiers’491

gradients as bias indicators to guide the model’s492

outputs; (2) GeDi (Krause et al., 2021), which493

steers the decoding stage using compact condi-494

tional generative models; (3) Contrastive Pre-495

fix (Qian et al., 2022), incorporating contrastive496

learning into the prefix strategies to control the 497

LLM generations; (4) Discrete (Gu et al., 2022), 498

employing discrete sampling to map the distribu- 499

tion of attributes within latent space to guide the 500

LLM output; and (5) PriorControl (Gu et al., 501

2023), which transfers complex distributions as 502

simple Gausian distributions by using normalizing 503

flow. For learning-free baselines, we compare with 504

the advanced Mix&Match (Mireshghallah et al., 505

2022), which uses external scoring experts to assess 506

generated content attributes. 507

Evaluation We conduct both automatic and hu- 508

man evaluation. For automatic evaluation, we 509

leverage classifiers from prior research (Gu et al., 510

2022, 2023) to assess topic relevance and senti- 511

ment accuracy. Additionally, we utilize the Google 512

Perspective API 4 to evaluate the effectiveness of 513

detoxification. We also report the generation flu- 514

ency using the mean perplexity and diversity calcu- 515

lated by the mean number of unique n-grams (Li 516

et al., 2016). In human evaluation, three anno- 517

tators evaluate each output based on text quality 518

and the relevance of the specified attribute. These 519

elements are scored on a 1 to 5 scale, where higher 520

scores signify superior performance. 521

5.2 Single-Attribute Control 522

Table 2 presents the automatic evaluation results 523

on single-attribute control. When compared to the 524

advanced learning-free approach Mix&Match, our 525

proposed method, FreeCtrl, demonstrates superior 526

performance across all attributes, with average im- 527

provements of 14.9% in sentiment control, 20.9% 528

in topic control, and 0.4% in detoxification. These 529

results distinctly showcase FreeCtrl’s significant 530

4https://www.perspectiveapi.com
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Methods Average ↑ (%) Sentiment ↑ (%) Topic ↑ (%) Detoxification ↑ (%) PPL. ↓ Dist. ↑
Learning-based Methods
PPLM 71.0 ± 21.4 64.7 ± 24.8 63.5 ± 22.7 84.9 ± 6.5 62.6 62
GeDi 81.4 ± 14.7 76.1 ± 17.2 73.8 ± 11.3 94.2 ± 1.9 116.6 75.1
Contra. Prefix 81.3 ± 16.5 74.4 ± 19.6 76.9 ± 16.7 92.7 ± 3.5 31.9 43.3
Discrete 87.4 ± 10.9 86.7 ± 10.5 84.8 ± 14.2 90.7 ± 7.4 28.4 49.5
PriorControl 89.9 ± 8.7 88.0 ± 10.6 87.4 ± 8.5 94.3 ± 3.2 34.7 55.5
Learning-free Methods
Mix&Match 79.7 ± 21.8 73.5 ± 25.9 69.9 ± 21.1 95.8 ± 1.9 63.0 61.8
FreeCtrl (Ours) 93.4 ± 6.9 95.7 ± 8.4 89.7 ± 5.8 94.7 ± 2.2 25.7 53.4

Table 3: Automatic evaluation results on multi-attribute control. The overall and individual average scores for
sentiments, topics, and detoxification are reported.

Method Quality↑ Attribute↑ Avg.↑
Single-Attribute Control
Mix&Match 3.2 3.4 3.3
PriorControl 4.2 4.3 4.3
FreeCtrl (Ours) 4.1 4.5 4.3
Multi-Attribute Control
Mix&Match 3.0 3.1 3.1
PriorControl 3.9 4.1 4.0
FreeCtrl (Ours) 3.8 4.3 4.1

Table 4: Human evaluation results. Quality and At-
tribute are assessed on a 1 to 5 scale, focusing on text
quality and relevance to the specified attribute.

advancement over current state-of-the-art (SOTA)531

learning-free techniques in CTG. Compared to532

learning-based approaches, FreeCtrl demonstrates533

competitive or superior performance against the534

SOTA PriorControl. Specifically, FreeCtrl achieves535

an average improvement of 0.6% over PriorControl536

in both sentiment and topic control domains and537

significantly outpaces PriorControl by a notable538

margin of 6.6% in detoxification. The results from539

human evaluation, as shown in Table 4, further re-540

veal a similar trend as automatic evaluations. It541

is noteworthy that FreeCtrl operates without the542

need for a learning/training phase or training data,543

yet it still secures the best results. This underlines544

FreeCtrl’s potential in addressing the challenge of545

optimizing the balance between cost and perfor-546

mance, as depicted in Figure 1.547

5.3 Multi-Attribute Control548

Table 3 details the results of multi-attribute con-549

trol evaluations, where FreeCtrl markedly outper-550

forms both the learning-based SOTA PriorControl551

and the learning-free SOTA Mix&Match by sig-552

nificant margins. Specifically, FreeCtrl exceeds553

Mix&Match’s performance by 22.2% and Prior-554

Control’s by 7.7% in sentiment control, and by555

19.8% and 2.3% in topic control, respectively. Fur- 556

thermore, FreeCtrl enhances the overall average 557

score by 13.7% over Mix&Match and by 3.5% 558

over PriorControl. The human evaluation results 559

presented in Table 4 further highlight the superior 560

performance of our method. These findings under- 561

score FreeCtrl’s efficiency in CTG, demonstrating 562

its capability to excel without relying on a training 563

set or undergoing a learning process. 564

5.4 Further Analysis 565

Further analysis is provided as follows: 566

• Hyperparameter analysis: We examine three 567

hyperparameters in FreeCtrl for adjusting the 568

control strength in Appendix D. 569

• Case study: For a visual illustration of control 570

effects, output examples along with their cor- 571

responding control weights are presented in 572

Appendix E. 573

• Inference speed: Given that monitoring, adap- 574

tation, and filtering could add additional time 575

costs, we assess FreeCtrl’s inference speed 576

and compare it with other methods in Ap- 577

pendix F. 578

6 Conclusions 579

In this paper, we introduce FreeCtrl, a learning-free 580

approach for controllable text generation (CTG). 581

FreeCtrl employs FFN value vectors to establish 582

control centers tailored to each attribute, enabling 583

dynamic control via a structured process of initial- 584

ization, monitoring, adaptation, and filtering. Com- 585

prehensive experiments demonstrate that FreeC- 586

trl markedly outperforms both learning-based and 587

learning-free methods. 588
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Limitations589

Our FreeCtrl approach effectively navigates the590

trade-off between learning expenses and model ef-591

ficacy. We believe its control mechanism could be592

further streamlined while maintaining satisfactory593

outcomes. Additionally, delving deeper into the594

dynamics of value vectors, including their interac-595

tions, can enrich our comprehension and enhance596

CTG design strategies. These areas offer promising597

directions for future research.598
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A Attributes and Corresponding Value817

Vectors in GPT2818

Table 5 details the general attribute keywords in819

CTG along with their associated value vectors.820

B Examples of High Maintenance821

We begin by identifying value vectors linked to822

particular attributes and then vary their weights to823

assess the impact on LLM outputs, as summarized824

in Table 6. A weight of 1 for politics-related vectors825

is insufficient to direct the model’s focus towards826

political themes. Elevating the weight to 5 leads to827

diminished output diversity and quality. In contrast,828

applying a weight of 5 to sports-related vectors829

successfully generates relevant and high-quality830

content. These results verify the high maintenance831

of value vectors.832

C Implementation Details833

Learning-based methods typically require exten-834

sive attribute-specific datasets. In line with prior835

studies, we provide them with the AGNews (Zhang836

et al., 2015), IMDB (Maas et al., 2011), and Jigsaw837

Toxic datasets 5 for topics, sentiments, and detoxifi-838

cation, respectively. Our approach is learning-free839

and obviates the need for training datasets. Follow-840

ing KPT (Hu et al., 2022), we gather and refine841

topic-attribute keywords using RelatedWords and842

source sentiment-related keywords for positive and843

negative attributes from the AFINN (Nielsen, 2011)844

sentiment lexicon. Our method constructs a control845

center using positive versus toxic keywords from846

Gehman et al. (2020) for single-attribute detoxi-847

fication and filters out toxic words from negative848

keywords to enable the generation of non-toxic,849

negative content for multi-attribute control. In this850

way, each attribute contains 200 to 300 keywords.851

Our proposed FreeCtrl features three hyperparam-852

eters: the number of value vectors k for each at-853

tribute keyword in Eq.2, the sentence threshold µω,854

5https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge/
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Figure 5: Influence of k on topic control.

and the scaling factor λ in Eq.6. Hyperparame- 855

ter configurations for single- and multi-attribute 856

control experiments are detailed in Table 7. 857

D Hyperparameter Analysis 858

Our proposed FreeCtrl has three hyperparameters: 859

the number of value vectors k for each attribute 860

keyword in Eq.2, the sentence threshold µω, and 861

the scaling factor λ in Eq.6. 862

The hyperparameter k represents the number of 863

value vectors used to regulate a single attribute key- 864

word. Empirical evidence suggests that k = 30 865

for single-attribute control and k = 200 for multi- 866

attribute control yield satisfactory results. The ne- 867

cessity for a greater number of value vectors in 868

multi-attribute control arises from the increased 869

complexity and heightened competition among at- 870

tributes. Figure 5 outlines the average impact of 871

varying k on topic control. Observations reveal 872

that when k ranges from 10 to 50, the control ef- 873

fects fluctuate slightly between 95.4% and 96.5%, 874

illustrating the robustness of FreeCtrl. 875

The second hyperparameter, µω, defines the sen- 876

tence score threshold for control, affecting the final 877

output collection. Figure 6 shows the effect of alter- 878

ing µω between 1.0 and 1.2 on topic control effec- 879

tiveness. As µω increases from 1.0 to 1.1, there is 880

a gradual improvement in performance. Adjusting 881

µω further, from 1.1 to 1.2, results in stable and sat- 882

isfactory performance, ranging between 95% and 883

97%. 884

The third hyperparameter, λ, acts as a scaling 885

factor for the control weight. Figure 7 indicates 886

that setting λ to 0.5 yields a 94.1% effectiveness in 887

topic control. As λ increases from 1.0 to 2.5, per- 888

formance improves, ranging between 95.7% and 889

96.5%. This suggests that a higher λ enhances the 890

control effect. Consistently achieving over 95.7% 891

effectiveness with λ above 1.0 underscores FreeC- 892
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Attribute Keywords & Positions
POLITICS politics (20, 1651), government (22, 3127), election (17, 1620), republic (0, 2991), state (19, 84)
SPORTS sports (14, 1078), champion (21, 4020), football (17, 573), game (23, 1928), coach (17, 1773)
BUSINESS business (21, 1631), commerce (16, 2225), trade (17, 3938), market (22, 876), finance (22, 2709)
TECHNOLOGY technology (0, 3260), engineering (0, 3780), science (13, 3160), internet (15, 547), robotics (0, 3260)
POSITIVE admire (10, 459), great (23, 318), wonderful (12, 3475), good (20, 841), happy (20, 2959)
NEGATIVE worse (17, 3792), bad (19, 3834), abuse (23, 2534), corrupt (0, 2890), fake (21, 1027)
FOOD food (21, 3922), rice (14, 423), meat (15, 3011), milk (19, 2113), salt (13, 1992)
AMERICAN America (19, 684), us (12, 3116), Trump (16, 558), bush (22, 819), American (23, 1417)
ASIAN Asia (2, 1409), Japan (18, 1794), Korea (7, 2880), Singapore (18, 1794), China (19, 3818)
COMPUTER laptop (19, 741), hardware (16, 1933), cpu (4, 283), processor (18, 3717), disk (18, 2619)
MILITARY military (14, 2816), war (6, 989), army (23, 3142), navy (23, 1396), soldier (11, 469)
LEGAL legal (18, 1137), court (19, 999), justice (18, 4022), legislation (15, 596), rule (21, 634)
RELIGION religion (18, 3564), faith (21, 3294), god (8, 1710), bless (20, 691), church (14, 3094)

Table 5: Commonly-used attribute keywords and their corresponding positions in GPT2. The position is denoted by
(a, b), where a represents the layer number and b signifies the position of the value vector within that layer.

Attribute Weight Output
politics 1.0 This essay discusses there is sufficient evidence to support the conclusion that there is ...
politics 3.0 This essay discusses political philosophy, including how philosophy can aid us as ...
politics 5.0 This essay discusses a state of state mind is a state of state...
sports 5.0 This essay discusses soccer in America. It’s about the beautiful games that we watch...

Table 6: GPT2 outputs controlled by value vectors of different weights. The input prompt is “This essay discusses".

Hyperparameter k µω λ

Single -Attribute
Topic 30 1.15 1.5
Sentiment 30 1.15 0.3
Detoxification 30 1.15 0.3
Multi-Attribute
Topic 200 1.1 0.5
Sentiment 200 1.1 0.5
Detoxification 200 1.1 0.5

Table 7: Hyperparameter setting for single- and multi-
attribute control tasks.
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Figure 6: Influence of µω on topic control.
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Figure 7: Influence of λ on topic control.

trl’s efficacy and robustness. 893

E Case Study 894

To visually demonstrate the control effects, Fig- 895

ure 8 displays generation results alongside their 896

respective controlling weights. The figure uses red 897

to denote the weights of topic keywords and blue 898

for the weights of sentimental keywords, with the 899

intensity of each color reflecting the magnitude of 900

the weight. 901

F Inference Speed 902

FreeCtrl comprises four main phases: initializa- 903

tion, monitoring, adaptation, and filtering, poten- 904

tially adding to run-time. Initialization occurs pre- 905

inference, incurring no extra time. Monitoring 906
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POLITICS

SPORTS

BUSINESS

TECHNOLOGY

POSITIVE

NEGATIVE

POLITICS + POSITIVE

POLITICS + NEGATIVE

In summary, justice has state, political and social functions. In this respect, the concept...

In summary, soccer is a great sport but we need to be careful with the way we play it...

In summary, trade is the means of exchange for goods or services and is a business activity... 

In summary, power technology is now available to the military, and we are seeing the benefits...

In summary, I am happy to report success in my quest for a new home, and I am grateful to...

In summary, the government has been guilty of gross negligence in the handling of sensitive...

In summary, I love our country's great military, and government officials. The world is needed..

In summary, the government's failure to investigate and prosecute the perpetrators of the attacks...

Figure 8: Examples of FreeCtrl’s control effects and results. The figure employs red to indicate the weights assigned
to topic keywords and blue for sentimental keywords, with color saturation corresponding to the weight’s intensity.

and adaptation involve evaluating model gener-907

ation at each timestamp through simple calcula-908

tions, with negligible added time. Filtering, how-909

ever, eliminates outputs not meeting certain crite-910

ria, leading to wasted generation efforts and addi-911

tional run-time. We benchmark FreeCtrl’s infer-912

ence time against the SOTA learning-free model,913

Mix&Match. We calculate FreeCtrl’s average infer-914

ence time using total run-time in §5 for all outputs915

(valid and invalid) divided by the number of valid916

outputs (1225+1400), resulting in an average of917

9.8 seconds for FreeCtrl compared to 20 seconds918

for Mix&Match. Thus, FreeCtrl not only signifi-919

cantly enhances performance but also substantially920

reduces inference time.921
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