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ABSTRACT

Recently, deep learning-based speech enhancement (SE) models have gained
significant improvements. However, the success is mainly based on using synthetic
training data created by adding clean speech with noise. On the other hand, in spite
of its large amount, real noisy speech is hard to be applied for SE model training
because of lack of its clean reference. In this paper, we propose a novel method
to utilize real noisy speech for SE model training based on a non-intrusive speech
quality prediction model. The SE model is trained through the guide of the quality
prediction model. We also find that a speech quality predictor with better accuracy
may not necessarily be an appropriate teacher to guide the SE model. In addition,
we show that if the quality prediction model is adversarially robust, then the
prediction model itself can also be served as a SE model by modifying the input
noisy speech through gradient backpropagation. Objective experiment results show
that, under the same SE model structure, the proposed new training method trained
on a large amount of real noisy speech can outperform the conventional supervised
model trained on synthetic noisy speech. Lastly, the two training methods can be
combined to utilize both benefits of synthetic noisy speech (easy to learn) and real
noisy speech (large amount) to form semi-supervised learning which can further
boost the performance both objectively and subjectively. The code will be released
after publication.

1 INTRODUCTION

Deep learning-based speech enhancement (SE) has gained significant improvements in different
aspects such as model structures (Xu et al., 2014; Weninger et al., 2015; Fu et al., 2017; Luo &
Mesgarani, 2018; Dang et al., 2022; Hu et al., 2020), input features (Williamson et al., 2015; Fu
et al., 2018b; Huang et al., 2022; Hung et al., 2022), and loss functions (Pascual et al., 2017; Fu
et al., 2018b; Martin-Donas et al., 2018; Kolbæk et al., 2018; Koizumi et al., 2017; Niu et al., 2020).
However, the success is mainly based on synthetic training data, which includes different clean and
noisy speech pairs. In general, the noisy speech is synthesized by adding clean speech with noise;
hence, both clean speech and noise are required for model training. Compared to real noisy speech,
pure clean speech and noise are very difficult to obtain in daily life, and they have to be recorded
in a controlled environment. Although some studies (Wisdom et al., 2020; Fujimura et al., 2021)
have been proposed to use real noisy speech for SE training, they still rely on synthetic training data
by adding noise to noisy speech to generate a noisier signal as model input with the original noisy
speech as the training target. The mismatch between synthetic training data and real noisy data may
degrade the SE performance (e.g., the recording devices and the room responses of noisy speech and
noise may be different, which results in different acoustic characteristics).

This study aims to solve the above-mentioned issues by training a SE model directly on real noisy
speech. To achieve this goal, we first train a non-intrusive speech quality predictor. If this predictor is
robust, then it should be able to guide the training of a SE model. Because the quality assessment
can be done without the need for a clean reference, real noisy speech can be applied for SE model
training. A few key characteristics of the proposed method are: 1) The training of the SE model is
based on real noisy speech and a quality prediction model; no synthetic training data is required. 2)
The loss function to train the SE model is not based on the signal level comparison (such as mean
square error between the enhanced and target speech); it is completely based on the quality predictor.

1



Under review as a conference paper at ICLR 2023

To summarize the key contributions of the paper:

1) A novel training framework for speech enhancement using real noisy speech is proposed.

2) We found that a speech quality predictor with better prediction accuracy may not lead to a better
SE model. Model structure does matter!

3) Adversarially robust quality predictor itself can directly be used for speech enhancement without
the need to train a separate SE model.

4) Under the same SE model structure, the proposed new training method can outperform the
conventional supervised trained model.

5) The conventional supervised training and proposed methods can be combined together to form
semi-supervised learning and further boost the performance.

2 RELATED WORK

Previous research has proposed using real noisy speech for SE model training. It can be further
divided into two categories depending on if clean speech or noise is needed.

SE training using unpaired noisy and clean speech: Cycle-consistent generative adversarial
network (CycleGAN) (Xiang & Bao, 2020; Yu et al., 2021) is applied to achieve this goal. Through
the framework of a GAN and cycle-consistent loss, only non-paired clean and noisy speech was
needed during training. Bie et al. (2021) used clean speech to first pre-train a variational auto-encoder
and applied variational expectation-maximization to fine-tune the encoder part during inference.

SE training using noisy speech and noise signal: MixIT (Wisdom et al., 2020) is an unsupervised
sound separation method, which requires only mixtures during training. It can also be used in SE
with some simple modifications. The input to the SE model is noisy speech and noise-only audio.
A three-output SE model is trained; outputs 1 and 3 or 1 and 2 can be used to reconstruct the noisy
speech, while outputs 2 or 3 can be used to match the noise-only audio. However, it was found that
the performance is poor if the distributions between noise in the noisy speech and the artificially
added noise are too different (Saito et al., 2021; Maciejewski et al., 2021). Trinh & Braun (2021)
apply two additional loss terms based on Wav2vec 2.0 (Baevski et al., 2020) to improve the MixIT
performance.

Similar to the input of MixIT, Fujimura et al. (Fujimura et al., 2021) proposed noisy-target training
(NyTT) by adding noise to noisy speech. The noise-added signal and original noisy speech are used
as the model input and target, respectively.

Compared to these methods, our model does not need a ‘pure’ noise or clean corpus but requires a
data set with a MOS label. In addition, the loss function of our SE model is to maximize the predicted
quality score, which may make the enhanced speech have higher subjective scores.

SE with a quality predictor: MetricGAN (Fu et al., 2019b; 2021) applies a GAN framework to make
the discriminator mimic the behavior of perceptual evaluation of speech quality (PESQ) (Rix et al.,
2001) function. Then the discriminator is used to guide the learning of the SE model by maximizing
the predicted score. Xu et al. (2022) propose a non-intrusive PESQNet as the discriminator.

’NOn-matching REference based Speech Quality Assessment’ (NORESQA) is proposed in (Manocha
et al., 2021) to estimate the quality differences between an input speech and a non-matching reference.
Then the authors apply the NORESQA model to pre-train a SE model by minimizing the predicted
quality differences between the output of a SE model and a clean recording. Manocha et al. (2020)
propose a perceptual distance metric based on just-noticeable difference (JND) labels, and the model
is applied as a perceptual loss for SE training. In Nayem & Williamson (2021), joint training is
applied to train a SE model together with a MOS predictor.

Because the calculation of PESQ and training of NORESQA rely on two signal processing measures,
Signal-to-Noise Ratio (SNR) and Scale-Invariant Signal to Distortion Ratio (SI-SDR) to compare the
quality of the two inputs, synthetic data is needed to train the quality prediction model. However, in
our proposed training method, it is not necessarily needed.
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3 METHOD

3.1 MOTIVATION

DeepDream (Mordvintsev et al., 2015) is a way to visualize what features, a particular layer of a
classifier model have learned. To maximize the activations of that layer, gradient ascent is applied on
the input image to modify its content. The resulting image will generally become psychedelic-looking
with some visual cues (e.g., dog, and cat, etc.) of the classes that the classifier was trained on.
Although it can not generate realistic image, this algorithm shows that the classifier can be used to
generate corresponding features.

Another example is the discriminator in GAN (Goodfellow et al., 2014), which can also guide the
generator to generate more realistic data. In addition, without the need of a generator, Santurkar
et al. (2019) show that a single adversarially robust classifier can be applied to different kinds of
image synthesis tasks by modifying the input image. The authors claims that adversarial robustness
is precisely what we need to directly manipulate salient features of the input. Recently, Ganz &
Elad (2021) use this technique as a post-processing step to further refine the generated images from
different generative models and obtain SOTA results.

The above examples show that a classifier may not only give us a classified result but if we use it in
an inverse way by modifying the input, the input may be changed to what we specified. Therefore, in
this study, we explore whether we can get enhanced speech through a non-intrusive speech quality
predictor such that real noisy speech can also be used for training (note that, here we train our quality
predictor as a regression model instead of a classifier).

3.2 PROPOSED METHOD

The key to being able to use real noisy speech as training data for SE is based on a non-intrusive (no
clean reference is needed) speech quality predictor. Depending on whether its weights will also be
updated during SE model training and the requirement of a separate SE model, we propose three
training schemes and a semi-supervised training method.

3.2.1 DEEPDREAM-LIKE TRAINING

Similar to the framework in DeepDream, we first train a speech quality predictor Q using Eq. (1) and
once the training converges, its weights are permanently fixed.

LQ = min
Q

Ex[Q(x)−MOSx]
2

(1)

where x and MOSx are the training pair that comes from a corpus containing both the speech signal
and its corresponding MOS label.

The quality predictor is then concatenated after a randomly-initialized SE model. To train the SE
model, the weights in the SE model are updated to maximize the predicted quality score using Eq.
(2).

LSE = min
SE

Ez[Q(SE(z))−MOSmax]
2 (2)

where z can be real noisy speech (which may come from another training corpus), SE is the SE
model, and MOSmax is the highest quality score. Note that here Q is fixed and only SE will be
updated. Compared to DeepDream, there are two differences: 1) In our training method, the particular
layer that we try to maximize its activation is the output layer. 2) In addition to the quality predictor,
we also employ another model SE to do speech enhancement.

3.2.2 GAN-LIKE TRAINING

Another training scheme follows the training style of GAN (Fu et al., 2022; Ravanelli et al., 2021), so
both the speech quality predictor (similar to the role of discriminator in GAN) D and the SE model
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Algorithm 1 Proposed adversarial attacks for speech enhancement

Input: noisy spectrogram Z, quality prediction model Q, target score S
Output: enhanced spectrogram Y

1: noise ← 0
2: for i← 1 to I do
3: Y← Z− noise.clip(min=0)
4: gnoise←∇noise L(Q(Y), S)
5: noise← noise −lr · gnoise

6: noise← noise.clip(min=0)
7: end for
8: Y← Z− noise.clip(min=0)

are alternatively updated. Therefore the loss function of the quality predictor is modified from Eq. (1)
to Eq. (3):

LD = min
D

Ex[D(x)−MOSx]
2 + [D(SE(x))−MOSSE(x)]

2
(3)

Note that to obtain MOSSE(x), a human-in-the-loop (Zanzotto, 2019) is needed which is time and
cost consuming. Therefore, in this study, we apply an off-the-shelf speech quality predictor to provide
MOSx and MOSSE(x) in GAN-like training (see Section 4.1.5 for more detail).

3.2.3 SPEECH ENHANCEMENT BY A ROBUST QUALITY PREDICTION MODEL

Motivated from (Santurkar et al., 2019), we investigate whether an adversarially robust quality
predictor itself can directly be used for speech enhancement without the need to train a separate SE
model. Adversarial robustness is a property that a model will not change its prediction when applying
small adversarial (in order to fool it) perturbation on a model’s input. To obtain such a classifier C,
one can solve the following optimization problem (Madry et al., 2017):

min
C

Ex[max
δ

L(C(x+ δ), Labelx)] (4)

where L is the loss function. We can approximate the solution of the inner maximization via
adversarial attacks (Madry et al., 2017). Then, this optimization problem can be solved iteratively
by fixing C to optimize the perturbation δ, and then fixing δ to update C. This training algorithm
is also called adversarial training. As stated in (Engstrom et al., 2019; Ganz & Elad, 2021), after
adversarial training, when modifying the input to maximize the target label, the gradient will become
perceptually aligned gradients (PAG), such that the modified input will be perceptually aligned to the
target label.

However, we believe Eq. 4 is mainly suitable for getting a robust classifier instead of a regression
model. Because given a perturbation δ, x+ δ may still belong to the label Labelx for a classification
problem. On the other hand, in our regression case, x+ δ may not match to MOSx anymore, i.e., the
target label should be MOSx+δ . Therefore, we can apply our proposed Algorithm 1 for adversarial
attacks and using a similar loss function as in Eq. 3 for adversarial training. The two clip functions
(line 3 and 6) in this algorithm are used to prevent enhanced magnitude spectrogram Y has T-F bins
smaller than zero, and constraint estimated noise spectrogram noise to be larger than zero (since we
assume it is additive noise), respectively. When this iterative training converges, we then get a robust
quality prediction model Qr.

Once we get Qr, we can apply Algorithm 1 again to do speech enhancement. Note that in this
algorithm, the only model we need is the quality predictor, no SE model is required. This training
framework is actually very similar to GAN-like training, the main difference is it removes the reliance
on a generator.

3.2.4 SEMI-SUPERVISED TRAINING

To utilize both benefits of synthetic clean/noisy speech pairs (easy to learn) and real noisy speech
(large amount), conventional supervised training method and our proposed approach can be combined
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into a semi-supervised learning. Thus the knowledge from the two sides can be incorporated and better
results are expected. For GAN-like training (Section 3.2.2), we can simply replace the randomly-
initialized SE model with the supervised trained model. For the method proposed in Section 3.2.3,
we can just replace the noisy spectrogram Z in Algorithm 1 with the enhanced spectrogram generated
by the supervised trained model. In this sense, Algorithm 1 works like a post-processing as in (Ganz
& Elad, 2021).

4 EXPERIMENTS

4.1 EXPERIMENTS SETTINGS

4.1.1 SPEECH ENHANCEMENT MODEL

The enhancement model used in the proposed training methods (Section 3.2.1 and 3.2.2) is a
CNN-BLSTM (Zhao et al., 2018; Tan & Wang, 2018). The architecture of the CNN has four 2-D
convolutional layers, each with kernel size=(9, 9) and number of filters=32 for the first three layers,
while the last layer only uses 1 filter. For the BLSTM model, it consists of two bidirectional LSTM
layers, each with 200 nodes, followed by two fully connected layers, each with 300 LeakyReLU
nodes and 257 sigmoid nodes for mask estimation, respectively. When this mask (between 0 to 1)
is multiplied with the noisy magnitude spectrogram, the noise components should be removed. In
addition, as there is no clean reference during training, the model may aggressively remove noise
which may also harm the speech component. To solve this issue, during training, we used a clamping
mechanism so that all predicted mask values smaller than a threshold will be mapped to the threshold
(Koizumi et al., 2018).

4.1.2 DATASET FOR TRAINING SPEECH ENHANCEMENT MODEL

In the scenario of semi-supervised SE model training, only a limited number of synthetic (noisy,
clean) pair data can be available, and there is a lot of real noisy speech without its corresponding clean
reference. In this study, we used the publicly available synthetic VoiceBank-DEMAND (VBD) dataset
(Valentini-Botinhao et al., 2016) as the source of (noisy, clean) pair data. The conventional supervised
SE baselines are also trained on this dataset. The training sets (11,572 utterances) consisted of 28
speakers with four signal-to-noise ratios (SNRs) (15, 10, 5, and 0 dB). We randomly selected two
speakers (p226 and p287) from this set to form a validation set (770 utterances).

The VoxCeleb2 (Vox2) (Chung et al., 2018) dev dataset is served as real noisy speech training
data. It contains over 1 million utterances for 5,994 celebrities, extracted from videos uploaded
to YouTube. Among them, we randomly select 7 speakers (id04344, id03220, id09272, id00012,
id06698, id07497, and id05423) and 10 speakers (id00019, id00995, id01452, id03379, id04178,
id05384, id06114, id07223, id08098, and id09109) to form the validation (1,001 utterances) and test
set (1,615 utterances), respectively.

Another test set is from the 3rd DNS challenge (Reddy et al., 2021a) test set (600 utterances) to
evaluate the generalization ability of different SE models on totally different acoustic conditions.

4.1.3 EVALUATION OF SPEECH ENHANCEMENT

Because the two test sets mentioned above do not contain the corresponding clean reference, we
apply non-intrusive metrics to evaluate the SE performance. DNSMOS P.835 (Reddy et al., 2022)
is a widely used metric for such scenarios. It is a neural network-based quality estimation metrics
that can be used to evaluate different deep noise suppression (DNS) methods based on MOS P.835
estimates (noa, 2003). Three scores are provided in this metric: speech quality (SIG), background
noise quality (BAK), and the overall quality (OVRL) of the audio. We use OVRL as the training stop
criteria if it reaches the maximum score on the validation set. Although we will use the information
from DNSMOS p.808 (Reddy et al., 2021b) for SE model training (Section 4.1.5), DNSMOS p.808
and DNSMOS p.835 are actually different models (i.e., model structure and training data). Therefore
DNSMOS p.835 is still a fair measure in this study (we still show the DNSMOS p.808 scores just as
a reference). In addition, in the following, unless specified otherwise, DNSMOS refers to DNSMOS
p.808.
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4.1.4 NETWORK ARCHITECTURE FOR QUALITY PREDICTION

To investigate the impact of the model structure on the quality prediction and SE performance, we
prepare three different model structures:

1) CNN: We use a similar model structure as the discriminator used in MetricGAN. It is a CNN with
four two-dimensional (2-D) convolutional layers with 15 filters and a kernel size of (5, 5). To handle
the variable-length input, a 2-D global average pooling layer was added such that the features could
be fixed at 15 dimensions. Three fully connected layers were subsequently added, each with 50 and
10 LeakyReLU neurons, and 1 linear node for quality score estimation.

2) BLSTM: A similar model structure as the one proposed in QualityNet (Fu et al., 2018a). It consists
of two bidirectional LSTM layers, each with 200 nodes. After BLSTM, three time-distributed linear
layers were subsequently added, each with 50 and 10 LeakyReLU neurons, and 1 linear node. The
global average pooling layer was finally applied to map the frame-wise scores to utterance-wise.

3) CNN-BLSTM: As reported in MOSNet (Lo et al., 2019), concatenating BLSTM after a CNN
can obtain better MOS prediction accuracy. In this study, we also follow this idea to construct a
CNN-BLSTM for quality estimation.

4.1.5 DATASET FOR TRAINING QUALITY PREDICTION MODEL

The IU Bloomington (IUB) corpus (Dong & Williamson, 2020) is used to train the quality predictor,
QIUB . There are 36,000 speech utterances, each truncated between 3 to 6 seconds long, with a total
length of around 45 hours. For validation and test set, we randomly select 1800 utterances for each of
them. In this corpus, each utterance has its corresponding MOS. Because it adopted ITU-R BS.1534
(noa, 2014) for subjective testing, which resulted in a rating range of 0∼100 instead of 1∼5, we first
linear normalized the scores to between 1∼5.

In addition to the above-mentioned corpus, we also try to simulate a larger data set based on the Vox2
training data with the corresponding MOS score given by the DNSMOS p.808 (Reddy et al., 2021b)
model. The quality predictor is hence called, QV ox2+DNSMOS .

To make the training more consistent for GAN training (1 represents real, and 0 for fake), before
training the quality predictors, we further normalize the MOS score from 1∼5 to 0∼1 by a Sigmoid
operation.

4.1.6 EVALUATION OF PREDICTION ACCURACY

Linear correlation coefficient (LCC) (Pearson, 1920), Spearman’s rank correlation coefficient (SRCC)
(Spearman, 1961) and mean square error (MSE) between the true quality scores and the predicted
ones are used to measure the performance of speech quality prediction.

4.2 EXPERIMENTS RESULTS

4.2.1 IMPACT OF THE MODEL STRUCTURE ON QUALITY PREDICTION AND SPEECH
ENHANCEMENT

In the first experiment, we want to explore the impact of the model structure of quality predictor Q
on the quality estimation accuracy and effects of training speech enhancement models.

In Table 1, three quality predictors with model structures introduced in Section 4.1.4 are trained on
the IUB training data with the training target as the corresponding MOS scores. After the training
has converged, the quality predictors are concatenated after a randomly-initialized SE model (CNN-
BLSTM, as introduced in Section 4.1.1). To train the SE model, the weights in the quality predictors
are fixed and only the weights in the SE model are updated to maximize the predicted quality score
using Eq. (2). From the table, we can first observe that this SE training scheme can really remove
noise (BAK gets improved compared to the one in the noisy condition) and improve the overall
speech quality (although some speech components may be harmed). Note that during SE model
training, no clean reference is needed, only noisy speech and quality predictor are required. This
verifies the possibility of using DeepDream-like training to get a SE model.
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Table 1: Performance comparison of different model structures of quality predictor, QIUB

on the speech quality prediction (IUB test set) and speech enhancement (Vox2 test set).

Quality prediction
training material:

(IUB)

Speech enhancement
training material:
(Vox2 + QIUB)

prediction model Q LCC SRCC MSE SIG BAK OVRL

Noisy - - - 4.47 3.40 3.50
CNN 0.8223 0.8373 4.38× 10−4 4.45 3.72 3.70

BLSTM 0.8341 0.8588 4.13× 10−4 4.45 3.49 3.59
CNN-BLSTM 0.8317 0.8570 4.24× 10−4 4.45 3.47 3.57

Table 2: Performance comparison of different model structures of quality predictor, QV ox2+DNSMOS

on the speech quality prediction (Vox2 test set) and speech enhancement (Vox2 test set).

Quality prediction
training material:

(Vox2 + DNSMOS model)

Speech enhancement
training material:

(Vox2+ QV ox2+DNSMOS)

prediction model Q LCC SRCC MSE SIG BAK OVRL

Noisy - - - 4.47 3.40 3.50
CNN 0.8542 0.7892 5.45× 10−5 4.33 4.02 3.73

BLSTM 0.7833 0.7498 7.54× 10−5 4.38 3.62 3.62
CNN-BLSTM 0.8513 0.7781 5.18× 10−5 4.26 3.78 3.62

Although the three models can achieve similar quality prediction accuracy, the SE performances are
quite different. If the quality predictor contains a BLSTM structure, the SE performance is generally
worse than that without BLSTM. We argue that it is because the recurrent characteristics make the
gradient hard to directly guide the front-end SE model. In summary, a speech quality predictor
with better accuracy may not necessarily be an appropriate teacher to guide another model.

In Table 2, compared to the results shown in Table 1, QV ox2+DNSMOS can guide the training of SE
with a much higher BAK but a lower SIG. Again, if the quality predictor contains a BLSTM structure,
its SE performance is much worse than CNN. Learning curves and enhanced spectrograms of these
three model structures can be found in Appendix A. We find that if the predictor contains BLSTM
structure, some unnatural band-like artifacts are generated. Hence in the following experiments, a
CNN will be used for quality prediction.

4.2.2 COMPARISON BETWEEN DEEPDREAM-LIKE TRAINING AND GAN-LIKE TRAINING

In the previous section (DeepDream-like training), we showed that QV ox2+DNSMOS can also guide
the learning of a SE model. Therefore, we want to compare it with the discriminator (D) in GAN-like
training. The main difference between these two models is that QV ox2+DNSMOS is first pre-trained
with a large amount of training data and once the training converges, its weights are permanently fixed.
On the other hand, D is randomly-initialized, and its weights will be updated along with the GAN
training. Fig. 1 shows the learning curves with different metrics (DNSMOS and DNSMOS P.835) of
these two training methods on the validation set of Vox2. Note that the start point (iteration 0) is the
corresponding score of noisy speech. We can first observe that for QV ox2+DNSMOS , it reaches its
maximum score (except for the SIG case) only within a few iterations and the scores start to decrease
after that. In addition, the behavior of the two models is very similar to each other for the first few
iterations. This finding seems to align with the observation made in (Fu et al., 2019a), that for fixed
QV ox2+DNSMOS , only the gradient from the first few iterations can effectively guide the SE model.
We argue that this is related to the generation scheme of adversarial examples (Yuan et al., 2019) and
the model is fooled (estimated quality scores still increase but true scores decrease) (Nguyen et al.,
2015). Adversarial training (Tramèr et al., 2017) is an effective way to prevent the model from being
fooled, this explains why the SE model guided by D can keep improving. Because GAN-like training
performs better, the following experiments will be based on this training framework.
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Figure 1: Learning curves of DeepDream-like training and GAN-like training on the validation set of
Vox2 with different metrics (a) DNSMOS (P.808), (b) SIG, (c) BAK and (d) OVRL.

4.2.3 SPEECH ENHANCEMENT RESULTS ON THE VOX2 AND 3RD DNS TEST SET

In this section, we compare different SE model training methods on the Vox2 and 3rd DNS test
sets. In addition to CNN-BLSTM, DPT-FSNet (Dang et al., 2022) is also employed to serve as
state-of-the-art (SOTA) of conventional supervised training. They are trained on the VoiceBank-
DEMAND data set and can reach PESQ scores 2.80 and 3.33 on the VBD test set, respectively. In
Table 3, it can be observed that for the CNN-BLSTM, GAN-like training can outperform conventional
supervised training in terms of BAK, and OVRL which implies it has better noise removal ability.
On the other hand, its SIG is worse than the baseline, perhaps because it never sees a corresponding
clean reference during training. The semi-supervised training uses a supervised model as initial
SE model and then applies the same training framework as GAN-like training. For CNN-BLSTM,
the results from semi-supervised can outperform the supervised baseline by a large margin, which
verifies real noisy training data can further improve the SE performance (learning curves can be found
at Appendix B). Although DPT-FSNet can already reach SOTA performance on the VBD test set,
applying semi-supervised learning can also boost its scores.

For the 3rd DNS test set, we also compare our methods with others that can use real noisy speech
during SE training. The results of MixIT (Wisdom et al., 2020), and Modifed MixIT (Trinh & Braun,
2021) come from (Trinh & Braun, 2021) and Convolutional Recurrent U-net for Speech Enhancement
(CRUSE) (Braun et al., 2021) is chosen as SE model structure. Note that because the model structure
and the training material used in (Trinh & Braun, 2021) are different from ours, their results are
just for reference not for direct comparison. From Table 4, it can be observed that, compared to
noisy, the improvement brought by MixIT is somewhat limited. On the other hand, as shown by
Modified MixIT, applying the embedding from Wav2vec 2.0 during training can further improve the
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results. Our methods basically follow the same trend as in the Vox2 test set, for CNN-BLSTM, the
results from GAN-like training can outperform the supervised baseline. In addition, semi-supervised
learning can also further boost the performance both for CNN-BLSTM and DPT-FSNet. Compared
to GAN-like training, Robust Q (Section 3.2.3) generally has higher SIG but lower BAK. For OVRL,
Robust Q performs better in the more mismatched condition (Table 4), we argue it is because there is
no SE model in this training method, hence generalization issue of SE model doesn’t exist. (please see
Appendix C and D for spectrogram comparision, and inference process of Robust Q, respectively.)

Table 3: Comparison of different SE training on the Vox2 test set. For training material, (a) represents
clean (VoiceBank) + noise (DEMAND), (b) represents noisy (Vox2) + DNSMOS model.

SE model Training Training material DNSMOS SIG BAK OVRL

Noisy - - 3.566 4.47 3.40 3.50
Wiener - - 3.484 4.00 3.94 3.59

- Robust Q (b) 3.761 4 35 4.05 3.78
Supervised (a) 3.804 4.34 4.16 3.80

CNN-BLSTM GAN-like training (b) 3.795 4.23 4.34 3.89
Semi-supervised (a) + (b) 3.922 4.33 4.40 3.99

DPT-FSNet Supervised (a) 4.000 4.49 4.41 4.02
Semi-supervised (a) + (b) 4.050 4.49 4.54 4.13

Table 4: Comparison of different SE training on the DNS3 test set. For training material, (a) represents
noisy (Vox2) + noise (DNS), (b) represents clean (VoiceBank) + noise (DEMAND), and (c) represents
noisy (Vox2) + DNSMOS model.

model Training Training material DNSMOS SIG BAK OVRL

Noisy - - 2.934 3.87 3.05 3.11
Wiener - - 2.928 3.71 3.25 3.12
CRUSE MixIT (a) - 3.80 3.28 3.16

Modifed MixIT (a) + Wav2vec 2.0 - 3.69 4.00 3.29
- Robust Q (c) 3.131 3.84 3.51 3.28

Supervised (b) 3.166 3.66 3.77 3.18
CNN-BLSTM GAN-like training (c) 3.189 3.66 3.91 3.25

Semi-supervised (b) + (c) 3.312 3.65 3.98 3.28
DPT-FSNet Supervised (b) 3.339 3.80 4.07 3.37

Semi-supervised (b) + (c) 3.457 3.88 4.17 3.49

4.2.4 RESULTS OF LISTENING TEST

To evaluate the subjective opinion of the enhanced speech, we conducted listening tests to compare the
proposed semi-supervised training methods with supervised baselines and noisy speech. Experimental
results show that our proposed training method can outperform conventional supervised training
especially under mismatch conditions (please see Appendix E for more detail).

5 CONCLUSION

In this study, we proposed a novel SE training method that can leverage real noisy speech. Speech
quality prediction and speech enhancement is connected and deeply discussed. An adversarially
robust quality predictor itself can directly be used for speech enhancement without the need to train a
separate SE model. On the other hand, although some model architectures may have better quality
prediction accuracy, they may not necessarily be an appropriate teacher to guide a SE model. Under
the same SE model structure, our proposed training method can outperform conventional supervised
training. In addition, when combining these two training methods, the results of semi-supervised
learning show further improvements both objectively and subjectively.
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Appendix

A SPEECH ENHANCEMENT RESULTS USING DIFFERENT QUALITY PREDICTOR
STRUCTURES

In sec 4.2.1, we have shown different model structures of quality predictor may result in very different
SE performance. In this section, we further present the learning curves for the DeepDream-like SE
model training with the three structures (i.e., CNN, BLSTM, and CNN-BLSTM) of QV ox2+DNSMOS

in Fig. 2. It can be observed that the curves are very different to each other, and except for SIG, CNN
performs the best in other three metrics. Note that the results reported in Table 2 are based on the
model that has maximum OVRL score on the validation set. In Fig. 3, the enhanced spectrograms by
different quality predictors are also shown. From the figure, we find that if the predictor contains
BLSTM structure, some unnatural band-like artifacts are generated. This also aligns with the
conclusion made in section 4.2.1 that recurrent structure may not be suitable to guide the SE model
training.
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Figure 2: Learning curves of DeepDream-like SE model training using different quality predictor
structures on the validation set of Vox2 (a) DNSMOS (P.808), (b) SIG, (c) BAK and (d) OVRL.
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Figure 3: Enhanced spectrograms comparison by DeepDream-like training using different quality
predictor structures.
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Figure 4: Learning curves of semi-supervised training using CNN-BLSTM as SE model on the
validation set of Vox2 (a) DNSMOS (P.808), (b) SIG, (c) BAK and (d) OVRL. Note that the start point
(iteration 0) shows the corresponding score of enhanced speech by supervised training baseline.

B LEARNING CURVES OF SEMI-SUPERVISED TRAINING

In Fig. 4, the learning curves of semi-supervised training (using CNN-BLSTM as SE model) are
presented. In our semi-supervised training. we use the supervised trained model as our initial model,
and then the proposed GAN-like training algorithm is applied. From this figure, it can be observed
that except for SIG, the other three scores can gradually improve when real noisy speeches are used
in SE model training.

C SPECTROGRAM COMPARISON BETWEEN NOISY AND ENHANCED ONES

In Fig 5, we show an example of spectrogram comparison between noisy and enhanced ones from
different SE methods. In this figure, we show that GAN-like training can successfully remove the
noise without the need of any synthethic training data. In the case of DPT-FSNet, semi-supervised
training can remove more noise (as highlighted in the rectangle region) and keep speech components
(in the circle regions) compared to the supervised baseline.

D ESTIMATED NOISE AND ENHANCED SPEECH BY ROBUST Q

In Section 3.2.3, we propose a SE method based on a robust quality predictor and gradient back-
propagation to revise the input noisy speech. In Fig. 6, we show an example of how Robust Q
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Figure 5: Spectrogram comparison (an example from the DNS3 test set) between noisy and enhanced
spectrograms from different SE methods.

estimate noise spectrogram, noise and enhanced spectrogram, Y under differ iteration number I in
Algorithm 1. In general, the enhanced spectrogram can converge within 15 iterations.

E RESULTS OF LISTENING TEST

Because the blind test set in DNS1 (Reddy et al., 2020) contains noisy speech without reverberation
(noreverb), noisy real recordings (real), and noisy reverberant speech (reverb), we believe this can
cover different acoustic conditions for a subjective listening test. Specifically, this set comprised
of 600 clips (300 synthetic and 300 real recordings). The real recordings data is collected using
Amazon Mechanical Turk (MTurk). The MTurk participants captured their speech in a variety of
noisy acoustic conditions and recording devices (headphones and speakerphones). The objective
scores using different SE methods for real, noreverb, and reverb are first shown in Table 5, 6,
7, respectively. Interestingly, as shown in Table 6, when the testing condition most matches the
supervised training condition (synthetic and noreverb), the gain brought by our proposed method is
most limited. On the other hand, as shown in Table 7, when the testing condition most mismatches the
supervised training condition, the performance gain of the proposed training method is most obvious.
In addition, although DPT-FSNet usually performs better than CNN-BLSTM, its performance gets
serious degradation when tested under reverb conditions. We argue that it is because DPT-FSNet has
superior mapping ability only in the matched acoustic conditions.

To evaluate the subjective opinion of the enhanced speech, we conducted listening tests to compare
the proposed semi-supervised training methods with supervised baselines and noisy speech. For each
acoustic conditions (real, noreverb, and reverb), 7 samples were randomly selected from the test
set; therefore, there were a total of 7 × 5 (different enhancement methods and noisy) × 3 (acoustic
conditions) = 105 utterances that each listener had to take. For each signal, the listener rated the speech
quality (SIGsub), background noise quality (BAKsub), and the overall quality (OV RLsub) follows
ITU-T P.835. 12 listeners participated in the study. Table 8, 9, 10 show the listening test results for
real, noreverb, and reverb, respectively. In general, for DPT-FSNet, comparing supervised and
proposed semi-supervised training method, we can observe that under a match condition (noreverb),
the OVRL score performs very similarly: 4.02 (Supervised) and 4.01 (proposed Semi-supervised). On
the other hand, from Tables 8 and 10, in the mismatch condition (real, and reverb), the OVRL score
can improve from 3.55 (Supervised) to 3.64 (proposed Semi-supervised) and from 1.51 (Supervised)
to 1.73 (proposed Semi-supervised), respectively.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 6: Estimated noise and enhanced spectrogram by Robust Q with different iteration number I .
(a) noisy speech, (b), (d) and (f) estimated noise at iteration 1, 5 and 10, respectively. (c), (e), and (g)
enhanced speech at iteration 1, 5 and 10, respectively.
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Table 5: Comparison of different SE models on the DNS1 real test set. For training material, (a)
represents clean (VoiceBank) + noise (DEMAND), (b) represents noisy (Vox2) + DNSMOS model.

model Training Training material DNSMOS SIG BAK OVRL

Noisy - - 3.086 4.18 2.93 3.25
- Robust Q (b) 3.297 4.01 3.56 3.37

Supervised (a) 3.324 3.91 3.67 3.31
CNN-BLSTM GAN-like training (b) 3.360 3.89 3.98 3.44

Semi-supervised (a) + (b) 3.471 3.89 3.99 3.47
DPT-FSNet Supervised (a) 3.518 4.06 3.93 3.49

Semi-supervised (a) + (b) 3.593 4.07 4.12 3.59

Table 6: Comparison of different SE models on the DNS1 noreverb test set. For training material, (a)
represents clean (VoiceBank) + noise (DEMAND), (b) represents noisy (Vox2) + DNSMOS model.

model Training Training material DNSMOS SIG BAK OVRL

Noisy - - 3.276 4.49 3.43 3.55
- Robust Q (b) 3.494 4.31 3.90 3.64

Supervised (a) 3.678 4.37 4.15 3.83
CNN-BLSTM GAN-like training (b) 3.646 4.15 4.27 3.75

Semi-supervised (a) + (b) 3.811 4.26 4.34 3.88
DPT-FSNet Supervised (a) 3.940 4.42 4.38 3.95

Semi-supervised (a) + (b) 3.952 4.35 4.48 4.01

Table 7: Comparison of different SE models on the DNS1 reverb test set. For training material, (a)
represents clean (VoiceBank) + noise (DEMAND), (b) represents noisy (Vox2) + DNSMOS model.

model Training Training material DNSMOS SIG BAK OVRL

Noisy - - 2.830 3.89 2.36 2.87
- Robust Q (b) 3.149 3.88 3.23 3.19

Supervised (a) 3.151 3.67 3.49 3.05
CNN-BLSTM GAN-like training (b) 3.239 3.70 3.86 3.16

Semi-supervised (a) + (b) 3.337 3.64 3.81 3.13
DPT-FSNet Supervised (a) 2.730 3.29 3.40 2.68

Semi-supervised (a) + (b) 3.121 3.45 3.74 2.91

Table 8: Listening test results of different SE models on the DNS1 real test set. For training material,
(a) represents clean (VoiceBank) + noise (DEMAND), (b) represents noisy (Vox2) + DNSMOS
model.

model Training Training material SIGsub BAKsub OV RLsub

Noisy - - 4.27 2.57 3.24
CNN-BLSTM Supervised (a) 4.10 3.03 3.41

Semi-supervised (a) + (b) 3.99 3.08 3.43
DPT-FSNet Supervised (a) 4.01 3.31 3.55

Semi-supervised (a) + (b) 4.12 3.31 3.64
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Table 9: Listening test results of different SE models on the DNS1 noreverb test set. For training
material, (a) represents clean (VoiceBank) + noise (DEMAND), (b) represents noisy (Vox2) +
DNSMOS model.

model Training Training material SIGsub BAKsub OV RLsub

Noisy - - 4.25 2.63 3.22
CNN-BLSTM Supervised (a) 4.17 3.42 3.67

Semi-supervised (a) + (b) 4.19 3.52 3.71
DPT-FSNet Supervised (a) 4.29 3.88 4.02

Semi-supervised (a) + (b) 4.36 4.01 4.01

Table 10: Listening test results of different SE models on the DNS1 reverb test set. For training
material, (a) represents clean (VoiceBank) + noise (DEMAND), (b) represents noisy (Vox2) +
DNSMOS model.

model Training Training material SIGsub BAKsub OV RLsub

Noisy - - 3.80 2.69 3.24
CNN-BLSTM Supervised (a) 2.97 3.15 2.85

Semi-supervised (a) + (b) 3.18 3.26 3.08
DPT-FSNet Supervised (a) 1.50 2.87 1.51

Semi-supervised (a) + (b) 1.65 2.95 1.73
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