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Abstract
In a time-dependent flow, nonlinear harmonics can be excited by coupling between linear waves
and flow-induced harmonic waves. Examining the dispersion relations and selection rules for
the coupling, we investigate nonlinearly coupled harmonics for waves propagating along the
magnetic field line in a magnetized plasma, as well as waves in an unmagnetized plasma. The
coupled harmonics in a plasma flow are described by analytic dispersion relations and selection
rules. This nonlinear coupling is corroborated by the particle-in-cell simulation. The
coupled-harmonics model describes a mechanism for the excitation of nonlinear harmonics
from linear waves in a time-dependent flow. The spectral analysis of the dispersion relation
provides a useful way to evaluate the spatiotemporal behavior of a plasma flow.

Keywords: plasma flow, fluid wave harmonics, wave-wave coupling

(Some figures may appear in colour only in the online journal)

1. Introduction

The temporal behavior of plasma flows and associated wave
instabilities have been investigated in order to understand
plasma dynamics. For magnetically confined plasmas, mag-
netohydrodynamic instabilities [1–3] have been studied in
order to achieve stable confinement [4, 5]. On the other hand,
instabilities in space plasmas, such as the ionosphere [6], mag-
netosphere [7], solar wind [8], coronal loop [9], and astrophys-
ical jet [10, 11] have been studied in order to understand field
and particle behavior.

Linear plasma theory provides a simple but useful way to
analyze wave properties such as a dielectric tensor and a wave
dispersion relation. One of the simplest models is the cold

∗
Authors to whom any correspondence should be addressed.

plasmawave [12]. The coldwave dispersion relation is derived
from fluid equations for density and flow velocity. The relation
is a good approximation for ω/k≫ vT, where ω is the angular
frequency, k is the wavenumber, and vT is the thermal speed.
By considering higher-order moments of an arbitrary distri-
bution function, the warm (fluid) wave dispersion relation,
depending on temperature and non-Maxwellian moments,
can be obtained [13, 14]. The Vlasov equation can be dir-
ectly used to derive the hot (kinetic) wave dispersion relation
[15]. The analysis of the hot plasma waves provides kinetic
effects such as energy exchange between waves and resonant
particles [16].

In the linear assumption, the modes are independent
and their interaction is ignored. However, plasmas involve
nonlinearly coupled fields and associated particle motions
[17–20]. Even when the intensity of a nonlinearly excited
wave is small compared to a linear wave, the nonlinear
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wave can carry information of a plasma or trigger instabil-
ities [17, 21–23]. By investigating the nonlinearity, one can
understand plasma kinetics which cannot be explained by lin-
ear theory.

In our previous work [23], we reported a dispersion rela-
tion that involved the nonlinear coupling of a cold (or warm)
wave and a hot wave via time-dependent plasma flows. As
an example, the couplings between extraordinary waves (X-
waves) are demonstrated by the Vlasov analysis and particle-
in-cell (PIC) simulations, where the waves are electromagnetic
and perpendicular to the equilibrium magnetic field. In this
work, we examine the dispersion relation to study the nonlin-
ear couplings between electrostatic and electromagnetic waves
propagating along themagnetic field in a plasma. This analysis
is also valid for waves in an unmagnetized plasma. The ana-
lytic relations derived from the Vlasov equation describe the
excitation of harmonics due to the time-dependent flow. The
fully kinetic PIC simulations demonstrate the nonlinear coup-
lings of linear waves and the flow-induced harmonics. This
spectral analysis of coupled harmonics is expected to provide
a way of understanding plasma flows.

Nonlinear wave analysis followed by a generalized dielec-
tric tensor is presented in section 2. The numerical verification
by PIC simulations is shown in section 3. We summarize the
results and discuss a possible application of the harmonic ana-
lysis in section 4.

2. Dispersion relation for coupled waves

We consider a time-varying plasma with a distribution func-
tion fs(t) = fs0(t)+ fs1(t) that consists of the zeroth-orderMax-
wellian distribution:

fs0(v, t) =

ns0 exp

[
− (v⊥ −us0⊥)2

v2Ts⊥
−

(v∥ −us0∥)2

v2Ts∥

]
π3/2v2Ts⊥vTs∥

, (1)

and the first-order deviation fs1 (≪ fs0), where s denotes the
species, ns0 = n̄s0 + ñs0(t) (n̄s0 ≫ ñs0) is the number density,
us0 = ūs0 + ũs0(t) is the flow velocity, vTs = (2Ts0/ms)

1/2 is
the thermal speed, Ts is the temperature, ms is the mass, and
the subscripts ⊥ and ∥ mean perpendicular and parallel with
respect to the equilibriummagnetic field B̄0ẑ. The zeroth-order
fields are decomposed into the time-independent part (denoted
by a bar) and the time-dependent part (denoted by a tilde). The
time-dependent plasma flow can be expressed as:

ũs0(t) =
N∑
l=1

3∑
r=1

ũs0lr(t)êr, (2)

where ũs0lr(t) = ũ ′
s0lrRe[expiϕslr(t)] is the êr component of

the lth mode with the amplitude ũ ′
s0lr, the fluid wave fre-

quency ω̃l = ω̃l(k̃l), and the phase shift ψslr, and ϕslr(t) =
ω̃lt+ψslr. The summation is over all fluid modes with ω̃l for
1⩽ l⩽ N and all vector components {e1,e2,e3}= {x,y,z},
where N is the number of fluid modes considered to be pre-
sumed in the zeroth-order distribution function in equation

(1). The time-dependent flow ũs0 and the associated fields
Ẽ0, B̃0 can be normal modes or driven by external forces such
as an RF source. As a normal mode, the frequency ω̃l(k̃l)
of the perturbations (ũs0, Ẽ0, B̃0) is determined by the disper-
sion relation obtained from the Vlasov equation for fs0 (or
equivalently fluid equations) by assuming a small wavenum-
ber (|k̃l · ũs0l| ≪ |ω̃l|). The lowest order solution of the zeroth-
order Vlasov equation (ω̃l/k̃l ≫ vTs) gives the cold wave dis-
persion relation and the associated mobility for ũs0. By solving
the linearizedVlasov equation for fs1,E1, andB1, the dielectric
tensor of the time-varying plasma is obtained [23].

From the generalized dielectric tensor of a time-varying
plasma (equation (24) in reference [23]), we obtain a dielectric
tensor for the parallel propagation (k→ k∥),

K= I+
∑
s

ω2
ps

ωkvTs∥

∞∑
{m}=−∞

(
N∏
l=1

Jmle
iΦl

)
κ, (3)

with the component of κ,

κab =
(
â · b̂+ iâ× b̂ · ẑ

) 1
2
×

[
ωDs−

∑N
l=1mlω̃l

ω

×
(
Z(ζs{m},1)+ (2δab− 1)Z(ζs{m},−1)

)
+
kvTs∥
2ω

×
(
1− Ts0⊥

Ts0∥

)(
Z ′(ζs{m},1)+ (2δab− 1)Z ′(ζs{m},−1)

)]
κzz =−

(
ζs{m},0 +

us0∥
vTs∥

)
Z ′(ζs{m},0), (4)

where ωps = (q2sns0/ε0ms)
1/2 is the plasma frequency, qs

is the charge, ε0 is the vacuum permittivity,
∑∞

{m}=−∞ =∑∞
m1=−∞ · · ·

∑∞
mN=−∞ indicates the sum of respective ωl

mode contributions, ml for 1⩽ l⩽ N is integer, Jml =
Jml(kũ

′
s0l∥/ω̃l) is the Bessel function of the first kind, andΦl =

mlϕsl∥ − (kũ ′
s0l∥/ω̃l)sinϕsl∥. In equation (4), the subscripts a

and b denote x or y (Kxx = Kyy, Kxy =−Kyx, and Kzx = Kxz =
Kzy = Kyz = 0). The plasma dispersion function Z(ζ) and its
derivative Z ′(ζ) = dZ/dζ are defined by:

Z(ζ) =
1√
π

ˆ ∞

−∞

e−ξ2

ξ− ζ
dξ, (5)

and

ζs{m}n =
ωDs−

∑N
l=1ml ω̃l− nωcs
kvTs∥

, (6)

where ωDs = ω− kūs0∥ is the Doppler-shifted frequency,
ωcs = qsB̄0/ms is the cyclotron frequency, and the integer val-
ues of {m}= {m1, . . . ,mN} in equations (4)–(6) are given by
the summation

∑∞
{m}=−∞ in equation (3). Note that because

of the time-dependent flow effect ω̃l, the real part of the numer-
ator of ζs{m},0 can be zero near the fluid wave harmonics ω =∑N

l=1mlω̃l. For example, when N= 3, the possible harmon-
ics areω = m1ω̃1 +m2ω̃2 +m3ω̃3 for arbitrary integersm1,m2,
and m3.

2



Plasma Phys. Control. Fusion 64 (2022) 055005 M U Lee et al

With the dielectric tensor of equation (3) substituted into
the wave equation (nn− n2I+K) ·E1 = 0 (combination of
Faraday’s and Ampère’s laws), the vanishing determinant
yields the dispersion relations, for electromagnetic waves
(E1 = E1xx̂+E1yŷ),

DR(ω,k) = Kxx− n2 + iKxy = 0, (7)

DL(ω,k) = Kxx− n2 − iKxy = 0, (8)

and, for the electrostatic waves (E1 = E1∥ẑ),

DES(ω,k) = Kzz = 0, (9)

where n= ck/ω is the refractive index and c is the speed of
light. Equations (7) and (8), respectively, are the dispersion
relations for the right-hand circularly polarized wave (R-wave)
and left-hand circularly polarized wave (L-wave).

Note that the dispersion relations for waves in an unmag-
netized plasma should be reproduced from the above disper-
sion relations by setting B̄0 = 0. For electromagnetic waves,
equations (7) and (8) become:

DEM(ω,k) = Kxx− n2 = 0, (10)

where Z(ζs{m},±1) = Z(ζs{m},0), Ts0⊥/Ts0∥ − 1= 0, and κxx =

(ωDs−
∑N

l=1mlω̃l)Z(ζs{m},0)/ω in equation (4). For electro-
static waves, the dispersion relation is clearly the same as
equation (9). When the zeroth-order flow is ignored by ūs0 = 0
(ωDs → ω) and ũ ′

s0 = 0, the dielectric tensor and the dispersion
relations in equations (3)–(10) reduce to those of the conven-
tional hot waves [15]. This is because in equation (3), only
ml = 0 terms remain (Jml ̸=0(0) = 0, Jml=0(0) = 1, Φl = 0, and
ζs{m}n → ζsn).

Equation (6) shows that the dispersion relation D(ω,k) =
0 in the time-dependent flow can generate the fluid wave
harmonics ω ≃

∑N
l=1mlω̃l. Figure 1 shows fluid wave har-

monics for a deuterium plasma of ne0 = ni0 = 1019 m−3 and
Te0 = Ti0 = 1 keV in B0 = 2 T. For a single mode of ω̃, the
harmonics ω ≃ mω̃ appear in the dispersion relation in addi-
tion to the conventional hot-wavemode ω̄, where ω̄ denotes the
frequency satisfying D = 0 for the time-independent plasma
(green dashed line). The fluid wave harmonics have finite
damping rates |Im(ω)| and the damping rate increases as the
harmonic number increases.

Nonlinear harmonic waves have been observedwith plasma
flows, such as in magnetotail reconnection [25, 26] and solar
radio bursts [27–30]. The emission mechanism has been well
explained by the quasi-linear and weak-turbulence theories
[28]. The nonlinear theories describe the interactions between
an electron beam and three types of waves in a weakly mag-
netized plasma (Langmuir, ion-sound, and electromagnetic
waves). Since general flows and wave dispersion relations
are analyzed in this work, one is able to describe the nonlin-
ear harmonic interactions induced by general fluid waves and
hot waves such as O/X-waves, R/L-waves, and electrostatic

Figure 1. Analytic calculations of D for (a) the electromagnetic
wave in the magnetized plasma (equations (7) and (8)), (b) the
electrostatic wave (equation (9)), and (c) the electromagnetic wave
in the unmagnetized plasma (equation (10)). The values of D are
plotted for the time-independent plasma (green dashed line,
Im(ω) = 0) and the time-dependent plasma (solid line, ω̃ = ωpe,
ũe0∥ = 10−2vTe, and Im(ω) =−2× 10−3ωpe), where
λDe = (ε0Te0/ne0q

2
e)

1/2 is the electron Debye length (for simplicity,
the ω axis in the figures denotes the real part of the frequency). They
show the fluid wave harmonics ω ≃ mω̃. The plasma dispersion
function is obtained by using the algorithm described in [24].

waves. Fully kinetic PIC simulations showed that a nonlin-
ear coupling between the conventional mode ω̄ and the fluid
wave harmonics

∑N
l=1mlω̃l satisfies the wavenumber selection

rule [23]:

ω ≃ ω̄+
N∑
l=1

ml ω̃l. (11)

3
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Figure 2. Field intensities from PIC simulations for the magnetized plasma: (a) Bx for the electromagnetic mode, (b) Ez for the electrostatic
mode. The panels show the results when ũ0 = 0 (top) and ũ0 = ũ0∥(ω̃ ≃ ωpe, k̃) for k̃λDe = 10−2 (middle) and k̃λDe = 10−1 (bottom);
λDe = 2rLe. Analytic dispersion relations are overlaid for (a) the R-wave (dashed lines) and L-wave (dotted lines) for a damping rate
|Im(ω̄)|< 0.1|ωce|, and overlaid for (b) the electron plasma wave (dashed line) for |Im(ω̄)|< 0.1ωpe. The coupled harmonics overlaid in
the middle and bottom panels are plotted from ω̄(k̄) and the selection rules for several m. It is observed that a strongly damped R-mode, an
electron plasma mode, and higher harmonics have weaker intensities as predicted by the analytic dispersions.

Figure 3. Temporal Fourier transforms of field intensities for figures 2(a) and (b). The dash-dotted lines indicate the coupled harmonics
ω = ω̄+mω̃.

For example, the conventional cyclotron harmonics ω̄ ≃
nωcs due to thermal motions and the fluid wave harmonics∑N

l=1mlω̃l due to plasma flows excite the harmonics ω ≃
nωcs+

∑N
l=1mlω̃l. On the other hand, from various studies of

the coupling between oscillation modes [31–35], it has been
shown that the coupling may satisfy the wavenumber selection
rule as well as the frequency selection rule. The wavenumber
selection rule associated with equation (11) is:

k≃ k̄+
N∑
l=1

ml k̃l. (12)

The combination of the linear dispersion relation (equations
(3)–(10)) and the selection rules (equations (11) and (12))
provides the dispersion relation for the nonlinearly coupled
harmonics in a time-dependent plasma. The selection rules and

4
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the associated nonlinear dispersions are verified using the PIC
simulation [33, 35].

In equation (3), we reveal that the time-dependent flow
(ml ̸= 0 terms) contributes to the wave dispersion relation
only when the longitudinal flow amplitude ũ ′

s0l∥ is finite since
Jml ̸=0(0) = 0. This means that the longitudinal flow motion
is the origin of the fluid wave harmonics

∑N
l=1mlω̃l and the

resulting wave-wave coupling. For a perpendicular propagat-
ing wave in a magnetized plasma, the electromagnetic X-wave
produces a longitudinal flow resulting in the coupling between
electromagnetic waves [23]. For a parallel propagating wave,
the electrostatic wave drives the coupled harmonics since the
longitudinal flow oscillation (ω̃ ≃ ωpe in a small wavenumber
limit) is only associated with the electrostatic wave.

It is shown analytically that the wave nonlinearity provides
the excitation mechanism of the coupled harmonics (equations
(11) and (12)) induced by a plasma flow of ω̃(k̃). In section 3,
the dispersion relations for the nonlinear couplings between
the electrostatic waves and other waves are demonstrated
by the PIC simulation.

3. Particle-in-cell simulation

We demonstrate the coupled harmonics by using PIC simula-
tions [36] in the one-dimensional position (periodic boundary
condition in the z direction) and three-dimensional velocity
space. The reliability and convergence of the numerical sim-
ulation have been confirmed as follows. The spatial grid is
less than 3% of the electron Debye length λDe while the total
length is longer than 103λDe, including several wavelengths of
the initial perturbation. The time step satisfies the Courant–
Friedrichs–Lewy criterion for the given spatial grid. The
number of superparticles per cell is of the order of 104 (cor-
responding to the order of 105 per λDe). The energy conser-
vation has been confirmed and an instability has not been
observed.

Considering the plasma condition used in figure 1, we
examine the dispersion relation satisfying the selection rules
for coupled harmonics excited by a time-dependent flow of
ω̃(k̃). Initiating an electron plasma wave with density perturb-
ation ñe0(x)/n̄s0 = 0.05cos(k̃x) with ω̃ ≃ ωpe, we observe the
excitation of coupled harmonics in the simulation. The initial
profiles of ñ0, ũ0∥, and Ẽ0∥ are determined by the zeroth-order
Vlasov equation and Maxwell’s equations. We compare the
analytic dispersion relation and the spatiotemporal Fourier
transform of the simulation result. From the dispersion rela-
tion for ω̄(k̄) of the time-independent plasma, we can obtain
the dispersion for the coupled harmonics by using the selection
rules ω = ω̄+mω̃(k̃) and k= k̄+mk̃.

Figure 2 shows the simulation results when the electro-
static wave is initially perturbed in the magnetized plasma.
The analytic solutions overlaid on the simulation results con-
firm the nonlinearly coupled harmonics. The frequency selec-
tion rule ω ≃ ω̄+mω̃ and the wavenumber selection rule k=
k̄+mk̃ are also confirmed in the middle and bottom panels.
The frequency spectrum in figure 3 clearly shows the coupled
harmonics ω ≃ ω̄+mω̃.

Figure 4. Bx intensities from PIC simulations for the unmagnetized
plasma. The panels show the results when ũ0 = 0 (top) and
ũ0 = ũ0∥(ω̃ ≃ ωpe, k̃) for k̃λDe = 10−2 (middle) and k̃λDe = 10−1

(bottom). Analytic dispersion relations are overlaid as described in
figure 2.

Figure 4 shows the simulation results for the unmagnetized
plasma, where the conditions are the same as in figure 2 except
that B̄0 = 0. Comparison of the analytic and numerical results
demonstrates the coupled electromagnetic harmonics. In the
frequency spectrum, only the ωpe harmonics were observed
as seen in figure 4 middle. This is because, unlike for the
waves in the magnetized plasma, the spectral peak does not
exist in the electromagnetic spectrum of the unmagnetized
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plasma wave. The simulation results for the electrostatic wave
in the unmagnetized plasma are the same as figure 2(b), as
expected.

In addition to the examples shown above, we have con-
firmed the selection rules for multiple ω̃l(k̃l). It has been
observed that the intensities of the coupled harmonics increase
as the amplitude of a time-dependent flow increases.

4. Summary and discussion

We study nonlinearly coupled harmonics by investigating
the dispersion relation for parallel propagating waves in a
time-dependent plasma flow. The analytic dispersion relations
are derived from a generalized dielectric tensor of the time-
dependent plasma. The dispersion relations show that har-
monics of the fluid plasma wave are generated in addition to
the conventional hot plasma wave. It is demonstrated that a
coupling between a hot wave and fluid wave harmonics drives
nonlinearly coupled harmonics, satisfying the frequency and
wavenumber selection rules. The kinetic analysis reveals that
the fluid wave harmonics and the resulting nonlinearity are
induced by the flow motion longitudinal to the wave propaga-
tion. The coupled harmonics are corroborated by the fully kin-
etic particle-in-cell simulation. Fourier transforms of the sim-
ulation results reproduce the coupled harmonics, as predicted
by the kinetic analysis. The coupled harmonics appearing in
the time-dependent plasma illustrate a mechanism for the non-
linear wave excitation from linear waves.

The coupled-harmonics theory in this work provides a use-
ful way to interpret plasma flow behavior. The kinetic ana-
lysis and PIC simulations demonstrate that the spectral ana-
lysis of a plasma wave can display the ω̃(k̃) of a plasma
flow. For example, the spectral analysis can be used for
plasma diagnostics to measure flow scales via harmonic fre-
quency. This is because when a flow perturbation such as an
instability is initiated in the plasma, the spatial wavenumber
k̃ of the flow can generate the corresponding fluid oscillation
ω̃(k̃). This wave can excite the nonlinearly coupled harmon-
ics, satisfying the frequency and wavenumber selection rules,
which can be analyzed by the dispersion relations, as in this
paper.

We have found that flow-induced wave coupling originates
from the time-dependent fluid motion which is longitudinal
to the wave propagation. This coupling mechanism can be
examined in a more general situation where the wave propaga-
tions are not parallel to each other. For example, when an
R-wave propagates along the magnetic field line, the associ-
ated fluid mode oscillates in the direction perpendicular to the
magnetic field. Since the flow oscillation is longitudinal to an
X-wave that propagates perpendicular to the magnetic field,
coupling between the R-wave and the X-wave can occur. If
one measures the coupled X-wave (e.g. harmonics of elec-
tron cyclotron emission), the embedded R-wave modulation
can be detected. This situation is similar to the recent obser-
vation [37], where a whistler wave (quasi-parallel R-wave),
along with fluid instabilities, was detected by measuring the
wave that propagates perpendicular to the magnetic field. The

experimentally observed coupling can be investigated by two-
dimensional PIC simulations.
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