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Abstract

State-of-the-art (SOTA) methods for certified ro-
bust training including interval bound propaga-
tion (IBP) and CROWN-IBP usually use a long
warmup schedule with hundreds or thousands
epochs and are thus costly. In this paper, we
identify two important issues, namely exploded
bounds at initialization, and the imbalance in
ReLU activation states, which make certified
training difficult and unstable, and thereby long
warmup was previously needed. For fast training
with short warmup, we propose three improve-
ments, including a weight initialization for IBP
training, fully adding Batch Normalization (BN),
and regularization during warmup to tighten certi-
fied bounds and balance ReLLU activation states.
With a short warmup for fast training, we are al-
ready able to outperform literature SOTA trained
with hundreds or thousands epochs under the
same network architecture.

1. Introduction

Methods for improving the empirical adversarial robustness
of DNN:ss, such as adversarial training (Madry et al., 2018),
provide no provable robustness guarantees, while some re-
cent works aim to pursue certified robustness. Specifically,
the robustness is evaluated in a certifiable manner using
robustness verification methods (Katz et al., 2017; Zhang
et al., 2018; Wong & Kolter, 2018; Singh et al., 2018; 2019;
Bunel et al., 2017; Raghunathan et al., 2018b; Wang et al.,
2018b), which verify whether the model is provably robust
under all possible input perturbations, usually by efficiently
computing the output bounds.

To improve certified robustness, certified robust training
methods minimize a certified loss computed by a verifier,
and the certified loss is an upper bound of the worst-case
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loss given specified input perturbations. So far, Interval
Bound Propagation (IBP) (Gowal et al., 2018; Mirman
et al., 2018) and CROWN-IBP (Zhang et al., 2020; Xu
et al., 2020) are the most efficient and effective methods for
general models. IBP computes an interval with the output
lower and upper bounds for each neuron, and CROWN-
IBP further combines IBP with tighter linear relaxation-
based bounds (Zhang et al., 2018; Singh et al., 2019) during
warmup. They both can have a per-batch training time com-
plexity similar to standard DNN training. However, certified
robust training remains costly, mainly due to their need for
a long warmup schedule where the perturbation radius for
training is gradually increased from O to the target value.
For example, generalized CROWN-IBP in Xu et al. (2020)
used 900 epochs for warmup and 2,000 epochs for a CNN
model on CIFAR-10 (Krizhevsky et al., 2009).

In this paper, we identify two important issues in existing
certified training. First, we find that the certified bounds can
be exploded at the training start, which is partly due to the
suboptimal weight initialization. Prior works generally use
weight initialization originally designed for regular network
training, while certified training is essentially optimizing an
augmented network (Zhang et al., 2020). Existing initializa-
tions can lead to exploded certified bounds at initialization.
The long warmup with gradually increasing perturbation
radii in prior works can somewhat be viewed as finding a
better initialization for final training with the target radius,
but it is too costly. Second, we also observe that IBP leads to
imbalanced ReLU activation states, where the model prefers
inactive (dead) ReLLU neurons significantly more than other
states because inactive neurons tend to tighten IBP bounds.
It can however hamper classification performance if too
many neurons are dead.

We focus on improving IBP training since IBP is efficient
per batch, with the following improvements: 1) We derive a
new weight initialization, IBP initialization, for IBP-based
certified training. The new initialization can stabilize the
tightness of certified bounds at initialization; 2) We identify
the benefit of Batch Normalization (BN) in certified training,
and we find BN can balance ReLU activation states and also
stabilize variance. We propose to fully add BN to every
layer, while it was partly or fully missed in prior works;
3) We further propose regularizers to explicitly stabilize
certified bounds and balance ReLU activation states.
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We are able to efficiently train certifiably robust models that
outperform previous SOTA performance in significantly
shorter training epochs. We achieve a verified error of
65.03% (¢ = %) on CIFAR-10 in 160 total training
epochs, and 82.36% on TinylmageNet (¢ = %5) in 80
epochs, based on efficient IBP training. Under the same
convolution-based architecture, we significantly reduce the
total training cost by 20 ~ 60 times compared to previous
SOTA (Zhang et al., 2020; Xu et al., 2020) or concurrent
work (Lyu et al., 2021).

2. Background

The objective of  robust optimization is:
ming E(x y)ex [maxseax) L(fo(x +6),y)], for neu-
ral network fy, data x, ground-truth y, perturbation ¢
constrained by A(x), and loss function L. Adversarial
training (Goodfellow et al., 2015; Madry et al., 2018)
solve the inner maximization with adversarial attack. For
robustness guarantees, certified robust training computes a
certified upper bound for the inner maximization. Some
works used costly relations (Raghunathan et al., 2018a;
Wong & Kolter, 2018; Mirman et al., 2018; Dvijotham
et al., 2018; Wang et al., 2018a)., while Interval Bound
Propagation (IBP) (Mirman et al., 2018; Gowal et al.,
2018) computing interval bounds is an effective and more
efficient method. CROWN-IBP (Zhang et al., 2020) further
combined IBP with linear relaxation bounds (Zhang et al.,
2018) during warmup, generalized and accelerated in
Xu et al. (2020). In concurrent works, Lyu et al. (2021)
proposed a parameterized ramp function for activation;
Zhang et al. (2021) proposed to use a different architecture
with “/, distance neurons”. Yet these works still need long
training schedules.

3. Methodology
3.1. Notations and Definitions

We focus on improving IBP training. We consider a com-
monly adopted ¢, perturbation setting in adversarial robust-
ness on a K'-way classification task. For a DNN fy(x) with
clean input x, there can be some perturbation ¢ satisfying
6]l < €, and the actual perturbed input to the model is
x + . We want to verify whether

[fo(x+0)]y = [fo(x+0)]i >0, V][[d]loc <€i7y (1)

holds true, where [ fg(x+0)]; is the logit score for class ¢ and
1y is the ground-truth. This is equivalent to verifying whether
the DNN provably makes correct prediction for all input
x4+ (||0]|co < €). We assume that there are m hidden affine
layers (either convolutional or fully-connected layers) with
ReLU activation. We use h; to denote the pre-activation
output value of the i-th layer, and use z; = ReLU(h;) for

post-activation value. We use W; and b; to denote the
parameters of the convolutional or fully-connected layer,
where W; € R"*" b € R", and r; and n; are called the
“fan-out” and “fan-in” number of the layer respectively (He
et al., 2015b). In particular, we use hy = x+ 9 to denote the
input layer and zg is not applicable. IBP computes and prop-
agates the lower and upper bound interval of each h; layer
by layer until the last year or verification objective, denoted
as interval [h;, h;] such that h; < h; < h; (V||§]|ee < ).
Finally Eq. (1) can be verified by checking the lower bound
of [fo(x + )]y — [fo(x + )]s

3.2. Issues in Existing Certified Robust Training

In this section, we analyze two issues in existing certified
robust training methods.

Exploded Bounds at Initialization For affine layer h; =
‘W;z;_1 + b;, IBP computes:

h, =W, .z, | +W;_2; 1+Dby, ()
h,=W, .z, 1+W,_z, ,+b,, 3)

where W | stands for retaining positive elements in W,
and vice versa for W; _. We check the tightness:A; =
Hi — hz = |Wi\(2i,1 — Zi—l) = |Wi‘5i71a where Al de-
notes the difference between the upper and lower bounds,
which can reflect the tightness of the bounds, and |W;]|
stands for taking the absolute value element-wise. We as-
sume each W; is randomly initialized with each weight fol-
lowing a distribution with zero mean and variance o?. Then
we view A, as a random variable and use E(A,) to measure
the expected tightness at layer i. As W, and §;_1 are inde-
pendent, we have E(A;) = n;E(|W;|)E(d;—1). Detailed
in Appendix D.1, we further have E(§;) = E(ReLU(h;) —
ReLU(h,)) = 1E(A;), and

2
Uz
E(Ai) = S E(Wil)E(Ai-1). )
Definition 1. We define the difference gain when bounds
are propagated from layer i — 1 to layer i:

E(A)/E(Aim1) = SE(W,)). 5)

Bounds are considered to be stable if the difference gain
E(A;)/E(A;—1) is close to 1.

A large difference gain indicates explosion, but it cannot
be much smaller than 1 either to avoid signal vanishing in
the model. We find that weight initialization in prior works
have large difference gain values especially for layers with
larger n;. For example, for the widely used Xavier initializa-
tion (Glorot & Bengio, 2010), the difference gain is %\/n»l R
and it can be as large as 45.25 when n; = 32768 for a fully-
connected layer in experiments. This indicates that certified
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Figure 1. Ratios of active and unstable ReLU neurons a CNN on
CIFAR-10 with different settings. The vanilla ones do not have
regularization, and “vanilla (w/o BN)” does not use BN either.

bounds are exploded at initialization. We illustrate the ex-
plosion and compare different initializations in Appendix A.
As a result, small perturbation radii are used in the early
stage of the training to gradually make the model suitable
for the target perturbation radius, but it is inefficient.

Imbalanced ReLU Activation States We also find an-
other issue where the models have a bias towards inactive
ReLU neurons, defined as neurons with non-positive pre-
activation upper bounds (h; ; < 0 for some neuron j in
layer ¢).Similarly, active ReLU neurons have non-negative
pre-activation lower bounds.There are also unstable ReLU
neurons with uncertain activation states given different input
perturbations L . <0<h; ;). In IBP training, inactive neu-
rons have tlghter bounds than active and unstable ones as
shown in Figure 3 in Appendix B, and thus the optimization
tends to push the neurons to be inactive. However, too many
inactive neurons indicates that many neurons are essentially
unused or dead, which will harm the model’s capacity and
block gradients as discussed by (Lu et al., 2019) on standard
training.

3.3. The Proposed Method

To address the aforementioned issues, we propose our
method in three parts: 1) We derive a new weight initializa-
tion for IBP training to stabilize the tightness of bounds at
initialization; 2) We propose to fully add BNs to mitigate
imbalanced ReLU and stabilize the variance of bounds; 3)
We further propose regularizations to stabilize the tightness
and the balance of ReLLU neuron states during warmup.

3.3.1. IBP INITIALIZATION

We propose IBP initialization. We independently initial-
ize each element in W, following a normal distribution
N(0,0%), and we aim to choose a value for o; such that
the difference gain defined in Eq. (5) is exactly 1. When
elements in W; follow the normal distribution, we have
E(|W;|) = +/2/m0o;, and thereby we take o; = ‘/ﬂ,
which makes the difference gain %2 E(|W;|) exactly 1.

3.3.2. BATCH NORMALIZATION

For IBP, BN (loffe & Szegedy, 2015) can normalize the
variance of bounds, and importantly, it can also improve the
balance of ReLU activation states by shifting the center of
upper and lower bounds to zero. But BN was partly or fully
missed in prior certified training works (Gowal et al., 2018;
Zhang et al., 2020; Xu et al., 2020). We will demonstrate the
benefit of fully adding BN in the experiments. Shifting and
scaling parameters of BN are computed from unperturbed
data following Wong et al. (2018); Xu et al. (2020).

3.3.3. WARMUP REGULARIZATION

We further add two regularizers to the warmup stage of
IBP training, to explicitly stabilize the tightness of certified
bounds and balance ReLU neuron states. It is principled
and motivated by the identified issues.

Bound tightness regularizer We also expect to keep the
mean value of A; in the current batch, E(Ai), stable during
the warmup. Here E(A;) is empirically computed from a
concrete batch and different from the expectation E(A;) in
initialization. In our initialization, we aim to make E(A;) ~
E(A,_1) stable. Here we relax goal to making 7E(A;) <
E(Ag) with a configurable tolerance value 7 (0 <7 < 1),
to balance the regularization power and the model capacity.
We add the following regularization:

=

(2o ;> ©)

Elighmess = — Z RCLU T —

E)

ReLU activation states balancing regularizer To bal-
ance ReLU activation states, we expect to balance the im-
pact of active ReLLU neurons and inactive neurons respec-
tively. Here, we consider the center of the interval bound,
c; = (h; + h;)/2, and we model the impact as the contri-
bution of each type of neurons to the mean and variance
of the whole layer, i.e., E(c;) and Var(c;) respectively.
We use «; to denote the ratio between the contribution
of the active neurons and inactive neurons respectively to
[(c;), and similarly we use §; for Var(c;). We compute:
a; = Z]‘ H(%i,j >0)ci,; 61' _ Z]‘ H(%i,j >0)(ci,j *I:E(Ci))Q

=32 I(h j<0)e; ;7 > I(h;, ;<0)(es,5—E(es))?’
where h; ;. h; ;, h; ; stand for the value and bounds of each
neuron in layer 4, and in general o, 8; > 0 unless in the
training start. With the same aforementioned tolerance T,
we expect to make 7 <c«;, 3; <1/7, which is equivalent to
making min(a;, 1/a;) > 7, min(f;,1/6;) > 7. Thereby
we design the following regularization term:

m

Z(ReLU(T — min(a;, ai))

i=1 v

+ReLU(7 — min(5;, ﬁl))) @)

1
ﬁrelu =
™
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Table 1. Standard and verified error rates (%) of models trained with different methods respectively on CIFAR-10 (€uarget = 8 /255).
Schedule is represented as the total number of epochs and the number of epochs in each phase (in the parentheses), e = 0, increasing
€ € (0, €arget) and final € = €qrger respectively. We report the mean and standard deviation of the results on 5 repeats for CNN-7 and 3
repeats for Wide-ResNet and ResNeXt respectively. We also report the result of our best run in “Ours (best)”, since main results in prior
works did not have repeats, and we include literature results for reference. Literatures with the “f” mark are concurrent preprint works.

Dataset ‘ Schedule Method CNN-7 Wide-ResNet ResNeXt
(epochs) Standard Verified Standard Verified \ Standard Verified
Vanilla IBP 58.72 £ 0.27 69.88 £0.10 | 58.85+022 69.774+0.32 | 60.10£0.27 71.19+0.21
70 (1+20+49) | CROWN-IBP 63.19 £+ 0.36 7129 £0.19 | 62.76 £0.23  71.82+0.30 | 64.75+0.50 72.50 £+ 0.20
Ours 56.64 + 0.48 68.81 +0.24 | 56.74 + 040 68.71 +0.29 | 59.33 +0.86 70.62 + 0.59
Vanilla IBP 53.80 £0.71 67.01 £0.29 | 5431 +£046 6745+£021 | 5523 £0.12 6828 £0.15
160 (1480+79) CROWN-IBP 58.76 £ 0.76 69.67 £0.38 | 60.39+0.33 70.07+042 | 61.08 £035 71.26 £0.11
Ours 51.72 £+ 0.40 65.58 £0.32 | 51.95 +0.27 65.91+0.14 | 53.68 +0.33 66.91 + 0.40
Ours (best) 51.06 65.03 51.63 65.72 53.38 66.41
CIFAR-10 Literature results Warmup Total (epochs) Standard Verified
Gowal et al. (2018) (5K+50K) steps 3,200 50.51 68.44
Zhang et al. (2020) (320 + 1600) epochs 3,200 54.02 66.94
Balunovic & Vechev (2020) N/A® 800 48.3 72.5
Xu et al. (2020) (100 + 800) epochs 2,000 53.71 66.62
TIBP+ParamRamp (Lyu et al., 2021) (320 + 1600) epochs 3,200 55.28 67.09
fCROWN-IBP+ParamRamp (Lyu et al., 2021) (320 + 1600) epochs 3,200 51.94 65.08
T0oo-dist net (other architecture) (Zhang et al., 2021) ° N/A® 800 48.32 64.90

* Balunovic & Vechev (2020) used a different training scheme and train the network layer by layer.
® Concurrent Zhang et al. (2021) use a very different model architecture with £, distance neurons rather than traditional DNNs, but still need a long

schedule on both € and £, norm where p is gradually increased until co.

Training Objectives The overall training objective is
L=1L(x,y,¢)+ A(Liightness + Lrelu ), Where L(x,y,¢€)isan
original IBP loss, and A is for balancing the original loss and
regularization. During warmup, we gradually decrease A
from Ao to 0 as € grows to €grger, Where A = Ao(1—€/€arger).-

Table 2. Comparison of estimated time cost (seconds), for CNN-7
on CIFAR-10. We also include the total training cost of literature
works using long schedules, where literatures with the “}”” mark
are concurrent works.

Method Epochs ‘ Total
IBP (Gowal et al., 2018) 3200 40496 x 4 ¢
CROWN-IBP (w/o loss fusion) (Zhang et al., 2020) 3200 91288 x 4*
CROWN-IBP (Xu et al., 2020) 2000 52362 x 4
"IBP+ParamRamp (Lyu et al., 2021) 3200 40496 x 4 x 1.09°
fCROWN-IBP+ParamRamp (Lyu et al., 2021) 3200 91288 x 4 x 1.51°
Vanilla IBP (verified error 67.01£0.29) 160 87479
CROWN-IBP (verified error 69.67+0.38) 160 10641.3
Ours (verified error 65.58+0.32) 160 9512.3

“They used 4 GPUs; *Overhead factor by Lyu et al. (2021).

4. Experimental Results
4.1. Settings

We adopt two datasets, CIFAR-10 (Krizhevsky et al., 2009)
and TinyImageNet (Le & Yang, 2015). We mainly compare
our improved IBP training with two baselines. Vanilla
IBP (Gowal et al., 2018) with existing initialization and no
warmup regularizer; CROWN-IBP (Zhang et al., 2020; Xu
et al., 2020) that combines IBP bounds and linear relaxation
bounds with weight —— and (1 — ——) respectively during

€target €target

training. We report more details in Appendix C.

4.2. Certified Robust Training with Short Warmup

We use relatively short warmup schedules to demonstrate for
fast training, and we show our results in Table 1 for CIFAR-

10, and Appendix B.2 for TinylmageNet. Compared to
Vanilla IBP and CROWN-IBP, our improved IBP training
consistently achieves lower errors under same schedules
respectively, where BN is added to the models for all these
three training methods. We achieve verified error 65.03%
on CIFAR-10 ¢ = 8/255, and 82.36% on TinylmageNet
€rarget = 1 /255, which significantly outperform literature
SOTA (Gowal et al., 2018; Xu et al., 2020). Compared to
concurrent preprint works (Lyu et al., 2021; Zhang et al.,
2021) with different improvement techniques, we have com-
parable verified errors, but much shorter training schedule.
We tried the code of concurrent Zhang et al. (2021), on
CIFAR-10 using 160 total epochs by reducing their training
schedule proportionally, their verified error is 68.44% which
is much higher than ours.

4.3. Comparison on Training Cost

We compare the training cost of different methods, using a
single Nvidia RTX 2080 Ti GPU. We show results of CNN-
7 for CIFAR-10 in Table 2, and others in Appendix B. We
only have a small overhead compared to Vanilla IBP and
the cost is still around lower than CROWN-IBP, while we
achieve lower verified errors than the baselines (see Table 1).
And importantly, compared to literatures using long training
schedules, we significantly reduce total training time.

5. Conclusion

In this paper, we propose to improve IBP training and reduce
the length of warmup schedule for fast training. We are
able to achieve better verified errors using much shorter
training schedules compared to literatures under the same
convolution-based network architecture.
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Table 3. List of several weight initialization methods and their difference gain. We show each difference gain in both closed form, and
also empirical values when n; € {27,576, 1152, 32768} for a 7-layer CNN model in our experiments. The concrete values are obtained
by computing the mean of 100 random trials respectively. For orthogonal initialization, obtaining a closed form of difference gain is
non-trivial so we omit its closed-form result, but it has large difference gains under empirical measurements.

Difference Gain

Method Adopted by Closed form  m; =27 n; =576 n; = 1152 n; = 32768
Xavier (uniform) (Glorot & Bengio, 2010)  Zhang et al. (2020); Xu et al. (2020) i ;i 1.30 6.00 8.48 45.25
Orthogonal (Saxe et al., 2013) Gowal et al. (2018) - 2.09 9.58 13.54 72.22
Kaiming (uniform) (He et al., 2015b) - ?Jnﬁ 3.20 14.70 20.77 110.85
IBP Initialization This work 1 1.01 1.00 1.00 1.00

By Conv.. 5 Conv.,.

n=27 n=576

Conv Iy FC

hy
n=576 n=43264

4
3
log(E(A)) 2
]

0

0 1 2 3 4 Layer i

Figure 2. We show a simple untrained CNN (the classification layer
is omitted) with Xavier initialization. We evaluate the mean of
each layer’s A; as an estimation of E(A;) and plot log E(A;).
Interval bounds explode in deeper layers.

A. Supplementary Illustrations for
Motivation and Methodology

A.1. List of Initialization Methods in Prior Works

In Table 3, we list several weight initialization methods and
their corresponding difference gain. Prior weight initializa-
tion methods lead to large difference gain values especially
when n; is larger, which indicates exploded certified bounds
at initialization. In contrast, our initialization yields a con-
stant difference gain of 1 regardless of n;.

A.2. Illustration of Exploded Bounds using Existing
Initialization

In Figure 2, we illustrate that certified bounds can explode
for a model initialized using prior Xavier (Glorot & Bengio,
2010) initialization.

A.3. Illustration of IBP Relaxations for Different
Neuron States

In Figure 3, we illustrate IBP relaxations for ReLU neurons
with the three different states respectively. Inactive neurons
have no relaxation error compared with the other two kinds

of neurons, and thus IBP training tends to prefer inactive
neurons more to tighten certified bounds, compared to the
other two ReLU neuron states. This leads to an imbalance
in ReLU neuron states for vanilla IBP on models without
BN. In this paper, we identify the benefit of fully adding BN
layers to mitigate the imbalance, because BN normalizes
pre-activation values. We also add a regularization to further
encourage ReLU balance.

B. Additional Experiments
B.1. Ablation Study and Discussions

In this section, we empirically verify whether each part of
our modification contribute to the improvement and whether
they behave as we expect. We first conduct an ablation
study and we also plot the curve of the regularization terms
to reflect the bound tightness and ReLU balance in different
settings.

In the ablation study, we use CIFAR-10 with the currently
best CNN-7 model under the “1+20” and “1 + 80” warmup
schedules as used in Table 1. We start from a vanilla set-
ting, and we add BN, IBP initialization, and the warmup
regularizers to the model or training. We report the results
in Table 4. The first three rows show that fully adding BN
improves the training when vanilla IBP is used, and it is
important to add BN for the fully-connected layer, which
was missed in prior works. Based on the improved model
structure, adding both IBP initialization and warmup regu-
larization further improves the performance, and removing
either of these parts leads to a degraded performance.

We notice that adding IBP initialization alone may not nec-
essarily bring improvement to the verified error. A factor is
that IBP initialization can reduce the variance of the outputs,
as discussed in Appendix D.2, and it may harm the train-
ing during the early warmup when € is small and certified
training is close to standard training. Also, the effect of
initialization can be weakened during the warmup when ¢
is much smaller than €. But when we combine it with
the regularizers, the regularization can continue to tighten
the bounds, and the IBP initialization can benefit the op-
timization for the tightness regularizer. Nevertheless, IBP
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z; = ReLU(h;)

z; = ReLU(h;)

Inactive

Active

Unstable

Figure 3. Three activation states of ReLU neurons determined by pre-activation lower and upper bounds and their corresponding IBP

relaxations. The relaxed areas are shown in light blue.

Table 4. Ablation study results. We use the CNN-7 model on CIFAR-10. “BN-Conv” stands for BN layers after each convolutional layer,
and “BN-FC” stands for BN layers after the hidden fully-connected layer. “v"” means that the component is enabled, and “x” means that
the component is disabled. We repeat each setting for 5 times and report the mean and standard deviation.

BN-Conv BN-FC IBP Initialization  Lightness  Lrelu 70 (1+20+49) 160 (1+80+79)
Standard (%)  Verified (%) | Standard (%) Verified (%)
X X X X X 59.334+0.70 70.184+0.18 57.0840.29 69.434+0.28
v X X X X 61.954+0.80 71.1240.42 57.2140.65 69.214+0.30
v v X X X 58.724+0.27 69.88+0.10 53.80+0.71 67.01+0.29
v v v X X 58.931+0.29 69.60+0.35 54.59+0.64 67.631+0.34
v v v v X 56.761+0.38 68.964+0.49 53.0840.26 66.7440.20
v v v X v 58.4940.42 69.384+0.23 53.2940.76 66.46+0.44
v v X v v 58.7940.40 69.2940.28 52.4540.34 66.344+0.38
v v v v v 56.64+0.48 68.81+0.24 | 51.72+0.40 65.58+0.32
—— Vanilla IBP 1.6 1 — vanilla 18P
Vanilla IBP (w/o BN) 1.4 Vanilla IBP (w/o BN)
0.81 —— IBP initialization only —— IBP initialization only
—— Regularizers only 1.2 —— Regularizers only /
0.6 Initialization & regularizers 104 — Initialization & regularizers
g ; 0.8 A
) 9
3 0.4
= 0.6
0.2 041
0.2 A
0.0 1 004 & _

0 10 20 30 40 50 60 70 80
Training epoch

Figure 4. Lightness during warmup. Liighiess 1S optimized only for
“regularizers only” and “initialization & regularizers” setting, and
BN is fully added except for “Vanilla IBP (w/o BN)”.

initialization is more beneficial for deep models where the
exploded bound issue is more severe. In Figure 6, we show
that for a ResNeXt on TinylmageNet, IBP initialization is
helpful for reaching lower verified errors especially at early
epochs.

In Figure 4, we plot the Lghimess during training for differ-
ent settings. Note that for the settings without regularizers,
we only plot the loss terms but not optimize them during
training. By using the regularization in training, Lighiess de-

0 10 20 30 40 50 60 70 80
Training epoch

Figure 5. Lo, during warmup, with same settings as in Figure 4.

scends faster, and further adding the IBP initialization leads
to even faster descent during the early epochs. In Figure 5,
we show that the L, term is indeed under control with
our regularizer added in training, which indicates the ReLU
activation states is more balanced during training, while
Lew could gradually grow larger when the regularization
is not added in training. Notably, when BN is removed and
the regularization term is not optimized (Vanilla IBP (w/o
BN)), L, becomes extremely large in later epochs, and
Liightness 18 also large in the end, which suggests the training
is hampered.
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Table 5. Standard and verified error rates (%) of models trained on TinylmageNet (e; = 1/255). The best result in literature (Xu et al.,
2020) is standard error 72.18% and verified error 84.14% using 800 epochs.

Model Schedule Vanilla IBP w/o BN Vanilla IBP CROWN-IBP Ours
ode (epochs) Standard  Verified | Standard Verified | Standard Verified | Standard Verified
CNN-7 80 (1+10+69) 80.28 86.59 75.50 82.92 76.00 82.81 75.20 82.45

80 (1+20+59) 79.35 86.06 74.68 82.84 76.27 83.35 74.29 82.36

Wide-Resnet *

80 (1+10+69) 79.26 85.40 75.89 83.00 75.85 83.65 74.90 82.49
80 (14+20+59) 78.45 85.19 75.65 83.17 75.95 83.08 74.59 82.75

ResNext

80(1+10+69) 83.27 88.14 82.39 87.15 85.47 89.11 80.20 85.77
80 (1+20+59) 82.04 87.88 81.72 87.10 80.81 86.43 78.91 85.78

2 The Wide-ResNet model used here is 5 times smaller than the one used in (Xu et al., 2020) to save cost.

0-961 — Vanilla IBP
—— IBP Initialization only
0.94 1 —— Regularizers only

Initialization & Regularizers

Verified Err.

0 10 20 30 40 50 60 70

Epoch i

Figure 6. Curve of training verified error of a ResNeXt on Tiny-
ImageNet. Note that the verified errors can increase during the
warmup as € increases.

B.2. Results on Tiny-ImageNet

In Table B.2, we report standard and verified error results
on TinyImageNet. Our improved method consistently out-
performs the baselines.

B.3. Computational Cost for All Datasets and Models

In this section, we report full results on the computational
cost comparison for all datasets and models. We measure
the per-epoch time during three € phases, and we then esti-
mate the total training time according to the schedule. We
show the results in Table 6. In addition to the time cost
comparison on CNN-7 on CIFAR shown in Section 4.3,
we report computation cost results for all the datasets and
models in Table 6. For ¢ = 0, Vanilla IBP and CROWN-
IBP use regular training while we compute IBP bounds for
regularization and have a small overhead, but this phase
is extremely short (no more than 1 epoch here) and thus
negligible. For 0 < € < €grger, Our method has a smaller
overhead on regularizers compared to Vanilla IBP, while
CROWN-IBP using linear relaxation can be more costly. In
€ = €qrget, all the three methods use the same pure IBP.

Under same training schedules, results show that our pro-

posed method has a small overhead over vanilla IBP, and the
cost is still lower than that of CROWN-IBP. Meanwhile, our
method is able to achieve lower verified errors compared
to the two baselines (Table 1 and Table 5). More impor-
tantly, we are able to use much shorter training schedules
to achieve SOTA results compared to prior literatures, to
enable fast certified robust training, shown in Table 2.

B.4. Other Perturbation Radii

In Table 7, we present results using perturbation radii other
than those used in our main experiments. Here we consider
€arget € {0.1,0.3} for MNIST, and €qareer € {525, 5= } for
CIFAR-10. In particular, on MNIST models are trained
with target perturbation radii e, larger than used for test-
ing €arger t0 Mitigate overfitting — we use €3 = 0.2 when
€rarget = 0.1 and €qain = 0.4 when €rger = 0.3 following
Zhang et al. (2020). We use the CNN-7 model in this ex-
periment. Results show that improvements over Vanilla
IBP and CROWN-IBP are consistent as in Table 1. Over-
all, the experimental results demonstrate that our proposed
method is effective on settings with different perturbation
radii, compared to vanilla IBP and CROWN-IBP.

B.5. ReL.U Imbalance with Shorter Warmup Length

In Figure 1, we show two 7-layer CNN models with different
warmup length respectively, and the model tends to have
more inactive neurons and thus more severe imbalance in
ReL.U neuron states for shorter warmup length, as previously
mentioned in Section 3.2.

C. Experiment Details

Implementation Our implementation is based on the
auto_LiRPA (Xu et al., 2020) liblraryl for robustness ver-
ification and certified training on general computational
graphs. Baselines including Vanilla IBP and CROWN-IBP
with loss fusion are inherently supported by the library.
In auto_LiRPA, Xavier initialization (Glorot & Bengio,

'nttps://github.com/KaidiXu/auto_LiRPA
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Table 6. Comparison of estimated time cost (seconds) on all the datasets and models. We report the per-epoch time during training phases
with different e ranges, and we report the total time when the 0 4- 20 4 50 schedule is used for MNIST, the 1 4 80 + 79 schedule is used
for CIFAR-10, and the 1 + 10 + 69 schedule for TinyImageNet respectively. “-” in the table means that there is no e = 0 warmup stage
for MNIST following Zhang et al. (2020). Note that on each dataset, for phases of same or different methods that are supposed to be
equivalent in algorithm implementation, we make them share the same time estimation result respectively.

Dataset Model Method Per-epoch for e Total
0 (07 6largel) Etarget

Vanilla IBP - 27.9 27.9 1955.1

CNN-7 CROWN-IBP - 49.6 27.9 2387.5

Ours - 37.0 27.9 2135.8

Vanilla IBP - 81.0 81.0 5668.3

MNIST Wide-ResNet CROWN-IBP - 142.1 81.0 6890.2
Ours - 99.0 81.0 6029.3

Vanilla IBP - 73.2 73.2 5127.2

ResNeXt CROWN-IBP - 147.7 73.2 6616.9

Ours - 104.4 73.2 5750.7

Vanilla IBP 30.0 54.8 54.8 8747.9

CNN-7 CROWN-IBP | 30.0 78.5 54.8 10641.3

Ours 64.0 64.0 54.8 9512.3

Vanilla IBP 43.7 114.7 1147 183584

CIFAR-10 Wide-ResNet CROWN-IBP | 43.7 170.7 114.7 22764.9
Ours 134.7 134.7 1147  19976.0

Vanilla IBP 38.7 102.7 102.7 16432.0
ResNeXt CROWN-IBP | 38.7 183.3 102.7 22813.6

Ours 129.6 129.6 102.7 18611.7
Vanilla IBP 282.2 4314 4314  34362.0

CNN-7 CROWN-IBP | 282.2 663.8 4314 36686.5

Ours 500.4 500.4 4314  35270.3
Vanilla IBP 270.2 399.8 399.8 31861.6

TinyImageNet | Wide-ResNet CROWN-IBP | 270.2 592.1 399.8 33789.3
Ours 464.6 464.6 399.8 32703.0
Vanilla IBP 197.2 430.5 430.5 34206.7

ResNeXt CROWN-IBP | 197.2 883.1 430.5 38735.1
Ours 626.3 626.3 430.5 36595.8

2010) is used by default, which is also the default initial-
ization in PyTorch for regular DNN training. We find that
orthogonal initialization (Saxe et al., 2013) originally used
by (Gowal et al., 2018) does not seem to improve the per-
formance over Xavier initialization. We add to implement
our IBP initialization and warmup with regularizers for fast
certified robust training.

Datasets For MNIST and CIFAR-10, we load the datasets
using torchvision.datasets? and use the original
data splits. On CIFAR-10, we use random horizontal flips
and random cropping for data augmentation, and also nor-
malize input images, following Zhang et al. (2020); Xu et al.
(2020). For TinylmageNet, we download the dataset from
Stanford CS231n course website®. Similar to CIFAR-10,
we also use data augmentation and normalize input images
for TinyImageNet. Unlike Xu et al. (2020) which cropped
the 64 x 64 original images into 56 x 56 and used a central

https://pytorch.org/vision/0.8/datasets.
html

*http://cs231n.stanford.edu/
TinyImageNet-200.zip

56 x 56 cropping for test images, we pad the cropped train-
ing images back to 64 x 64 so that we do not need to crop
test images. We use the validation set for testing since test
images are unlabelled, following Xu et al. (2020).

Models We use three model architectures in the experi-
ments: a 7-layer feedforward convolutional network (CNN-
7), Wide-ResNet (Zagoruyko & Komodakis, 2016) and
ResNeXt (Xie et al., 2017). All the models have a hid-
den fully-connected layer with 512 neurons prior to the
classification layer. For CNN-7, there are five convolutional
layers with 64, 64,128, 128,128 filters respectively. For
Wide-ResNet, there are 3 wide basic blocks, with a widen
factor of 8 for MNIST and CIFAR-10 and 10 for TinyIm-
ageNet. For ResNeXt, we use 1,1, 1 blocks for MNIST
and CIFAR-10, and 2, 2, 2 blocks for TinyImageNet; the
cardinality is set to 2, and the bottleneck width is set to 32
for MNIST and CIFAR-10 and 8 for TinyImageNet. For all
the models, ReLU is used as the activation. These models
were similarly adopted in Xu et al. (2020). But we fully
add BNss after each convolutional layer and fully-connected
layer, while some of these BNs were missed in Xu et al.


https://pytorch.org/vision/0.8/datasets.html
https://pytorch.org/vision/0.8/datasets.html
http://cs231n.stanford.edu/TinyImageNet-200.zip
http://cs231n.stanford.edu/TinyImageNet-200.zip
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Table 7. The standard errors (%) and verified errors (%) of a CNN-7 model trained with different methods on other perturbation radii not

included in the main results.

Dataset  W: . Vanilla IBP CROWN-IBP Ours
atase armup €arget  €main  grandard  Verified Standard  Verified Standard  Verified
01 02 112 217 .07 217 116 2.05
MNIST 0420 53 g4 274 7.61 2.88 7.55 2.33 6.90
37255 3365 4875 3400 4828 3316 4715
CIFAR-10  1+80 16/255 6452 7636 7175 7943 6335  75.52

0.08

0.06

0.04

0.02 A

Active & Unstable ReLU neurons

0.00 -

Warmup Length

Figure 7. Ratio of active and unstable neurons in two 7-layer CNN
models trained with Vanilla IBP using different warmup lengths
respectively.

(2020). For example, the CNN-7 model in Xu et al. (2020)
had BN for convolutional layers but not the fully-connected
layer. Besides, we remove the average pooling layer in
Wide-ResNet as we find it harms the performance of all the
considered training methods, and this modification makes
the Wide-ResNet align better with the CNN-7 model, which
does not have average pooling either but achieves best re-
sults compared to other models (Table 1 and Table 5).

Training During certified training, models are trained
with Adam (Kingma & Ba, 2014) optimizer with an ini-
tial learning rate of 5 x 10™%, and there are two milestones
where the learning rate decays by 0.2. We determine the
milestones for learning rate decay according to the training
schedule and the total number of epochs, as shown in Ta-
ble 8. Gradient clipping threshold is set to 10.0. We train
the models using a batch size of 256 on MNIST, and 128
on CIFAR-10 and TinyImageNet. The tolerance value 7 in
our warmup regularization is fixed to 0.5. For Vanilla IBP
and IBP with our initialization and regularizers, we train
the models on a single Nvidia GeForce GTX 1080 Ti or
Nvidia GeForce RTX 2080 Ti GPU. For CROWN-IBP, we
train the models on two GPUs for efficiency, while in time
estimation we still use one single GPU for fair comparison.
The number of training and evaluation runs is 1 for each
experiment result respectively. In the evaluation, the major

metric is verified error, which stands for the rate of test ex-
amples such that the model cannot certifiably make correct
predictions given the /., perturbation radius. For reference,
we also report standard error, which is the standard error
rate where no perturbation is considered.

Table 8. Milestones for learning rate decay when different total
number of epochs are used. “Decay-1" and “Decay-2" denote the
two milestones respectively when the learning rate decays by a
factor of 0.2.

Dataset Total epochs  Decay-1  Decay-2
50 40 45
MNIST 70 50 60
70 50 60
CIFAR-10 160 120 140
TinyImageNet 80 60 70

Warmup scheduling During the warmup stage, after
training with ¢ = 0 for a number of epochs, the pertur-
bation radius € is gradually increased from O until the target
perturbation radius €gger, during the 0 < € < €gureer phase.
Specifically, during the first 25% epochs of the ¢ increas-
ing stage, € is increased exponentially, and after that € is
increased linearly. In this way, € remains relatively small
and increases relatively slowly during the beginning, to sta-
bilize training. We use the SmooothedScheduler in
the aut o_LiRPA as the scheduler for € similarly adopted
by Xu et al. (2020). On CIFAR-10, unlike some prior works
which made the perturbation radii used for training 1.1 times
of those for testing respectively (Gowal et al., 2018; Zhang
et al., 2020), we find this setting makes little improvement
over using same perturbation radii for both training and test-
ing in our experiments as also mentioned in Lee et al. (2021),
and thus we directly adopt the later setting for simplicity.

D. Proofs
D.1. Proof of Eq. (4)

In this section, we provide a proof for Eq. (4):

E(5;) = E(ReLU(h;)) — ReLU(h;)) = %E(Ai), (8)

where A; = h; — h;, and §; = Z; — z;.
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Proof. We first have

E(5;) =E(ReLU(h;)—ReLU(h,))

A; Ai
=E(ReLU(c; + =) ~ReLU(c; — 7)) 9)

=E(ReLU(c; + AQ')) E(ReLU(c; Az')).

Note that ¢; = $W;(z; + Z;) and A; = [W,|é;, and thus
p(—ci | [Wi]) = p(c; | [W;]) and p(—c;|A;) = p(ci|Aq),

where we use p(+) to denote the probability density function
(PDF). Thereby,

E(ReLU(c; + A7))

[ e

)
- /00 /:o(ci— %)p(cimz')p(Ai)dcidAi_
0

(C1|A ) ( )dCldA“

(10)

E(ReLU(c;+ %)) —E(ReLU(c;— %))

A4

:/OO( . A+ /j (ci + %))p(ci|Ai)p(Ai)dcidAi

// —pcz|A p(A)de:dA,

—SE(A)
1D
O

D.2. Proof on the Bounds of Var(h,) and Var(h;)

In this section, we show that Var(h;) and Var(h;) will not
explode or vanish at initialization, so that the magnitude of
forward signals will not vanish or explode when we use IBP
initialization which focuses on stabilizing the tightness of
certified bounds.

We can derive that

Var(h;) = Var(W; .Z; 1 + W, _z, ;)

= Var([W; +2; 1 + W, _z,_ 1] ) (0<7 <)
- Var<zz;1<[w-b,k[z_ﬂk I([Wiljx > 0)))
30 (Wililze ]k - T(Wij < 0))).

Since W is initialized with mean 0, the numbers of negative
elements and positive elements are approximately equal, and

thus
Var(l;) ~ 2’ Var(W, 1 Z;_1) + %Var(wi,_gi,l)
= 5 (Var(W, 1 )E(Zi-1)”
Va2 E(W, )
VW, Bl Vot BV )
— Z(- 2B@,) + - Var@i-)
(1 2B )+ Var(z )

Note that E(z;) > E(J;) and we have made E(J;) stable
in each layer. Thus Var(h;) > % Var(W; , )E(z;_1)? and
will not vanish when the network goes deeper. Also note
that n; > 1 in neural networks, and therefore Var(h;) will
not explode. The same analysis can also be applied to h,.

However, when we use the IBP initialization, variance of
the standard forward value h; will be smaller than that of
Xavier and Kaiming Initialization. Following the analysis
in (He et al., 2015a), we have

Var(hi) =

%Var(Wi)Var(hi_l).

In IBP initialization, we have Var(W;) = 2%, and the vari-
ance of h; can become smaller after goingl through each
affine layer. Therefore, as mentioned in Section B.1, simply
adding IBP initialization may not finally improve the veri-
fied error, because it may harm the early warmup when e
is small and certified training is close to standard training.
In this paper, in addition to IBP initialization, we further
add regularizers to stabilize certified bounds and the balance
of ReLU neuron states, while the variance is stabilized by
fully adding BN. The effect of these parts of our proposed
method is discussed in Section B.1.



