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ABSTRACT

Deep image prior (DIP) is known for leveraging the spectral bias of the con-
volutional neural network (CNN) towards lower frequencies in various single-
image restoration tasks. Such inductive bias has been widely attributed to the
network architecture. Existing studies therefore either handcraft the architecture
or use automated neural architecture search (NAS). However, there is still a lack
of understanding on how the architectural choice corresponds to the image to
be restored, leading to an excessively large search space that is both time and
computationally-expensive for typical NAS techniques. As a result, the architec-
ture is often searched and fixed for the whole dataset, while the best-performing
one could be image-dependent. Moreover, common architecture search requires
ground truth supervision, which is often not accessible. In this work, we present
a simple yet effective training-free approach to estimate the required architecture
for every image in advance. This is motivated by our empirical findings that the
width and depth of a good network prior are correlated with the texture of the
image, which can be estimated during pre-processings. Accordingly, the design
space is substantially shrunk to a handful of subnetworks within a given large
network. The experiments on denoising across different noise levels show that a
subnetwork with proper setups could be a more effective network prior than the
original network while being highly under-parameterized, making it not critically
require early-stopping as with the original large network.

1 INTRODUCTION

Image restoration tasks such as denoising, inpainting and super-resolution are known as ill-posed
problems, where priors are often required for regularizing the solution space. Convolutional neural
networks (CNNs) have emerged as the tool of choice for such inverse problems (Mao et al., 2016;
Zhang et al., 2017a;b; Pathak et al., 2016; Ledig et al., 2017; Dong et al., 2015; Lim et al., 2017;
Yu et al., 2019), due to the common belief that they are powerful in learning natural image priors
from large-scale datasets. Yet, as an exception, deep image prior (DIP) (Ulyanov et al., 2018) shows
that a CNN by itself can regularize the restoration through its architecture along with early-stopping
optimization, when fitting a single degraded image without being exposed to external training data.
While such network priors have been quite competitive across various inverse problems, how to
choose the architecture that better represents the image at hand remains an open question.

Early work by Heckel & Hand (2018) suggested that an under-parameterized network could be a
good denoising model that represents the image with a concise set of network weights and limited
capacity to overfit to noise. Nevertheless, the model requires handcrafting and even under the same
parameter budget there exists multiple possibilities, where model setup improper to the images could
still lead to noise-fitting or over-smoothing (A.0.2 Fig. 11). Chen et al. (2020) then leveraged a
reinforcement learning based controller with PSNR as the reward to automatically search for the
ideal architecture for the whole dataset. With no prior knowledge about the suitable architectures,
the search space ranges from kernel size and up-sampling types to cross-level skip connections,
which can be so large (∼ 500 models) that the training and evaluation of all candidate architectures
is computationally and time costly. This further prohibits image-wise NAS, yielding sub-optimal
restoration for certain images. To alleviate the computational burdens, a recent study (Arican et al.,
2022) proposed to rank the models at initialization using metrics that measure the discrepancies
between the spectral properties of the initially generated network output and those of the corrupted
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Figure 1: (a) Fourier spectrum of ”snail” and ”baboon”. ”Baboon” is a finer-grained image that
contains more high frequency components. (b) Overview of the proposed training-free architectural
design strategy for image-specific Deep Image Prior (DIP) based on the complexity of the image
texture.

image. Although they prevent the large-scale model search, due to the imperfect metric, they still
need to train 15 models from the candidates pool for each image to determine the top-1 architecture,
which substantially prolongs the restoration time.

To improve the efficiency of DIP, Can we identify and train an (under-parameterized) architecture
suitable for each image directly? This is particularly challenging as there is a large number of
different architectures and no ground truth can be used as an explicit supervision. Towards this
problem, we study and rethink the architectural design for network priors. We start by noting that
(1) there are not that many components in a CNN responsible for the denoising effect: the fixed
(unlearnt) upsampling plays a primary role; (2) a good architecture should adapt to the texture of
the image to balance denoising and preservation of fine details, and surprisingly such balance can
be achieved by simply scaling the depth (essentially the number of upsampling layers) and width.
Specifically, a finer-grained image tends to require a wider and shallower network, and vice versa.
Based on these observations, we restrict the design space to only dozens of subnetworks within a
given network, and develop strategies to estimate the optimal width and depth of a subnetwork for
each image according to its texture, which can be done as pre-processings without costly evaluations.

We demonstrate that the subnetwork estimated by our simple strategy can better preserve the details
while denoising especially on the very fine-grained images, where current methods typically fall
short. Moreover, it does not require early-stopping even under a higher noise level, thanks to the
under-parameterized nature. To our knowledge, we are the first to report the correlations between
the architecture and image texture in the context of DIP and translate these findings into architectural
design practices specialized for every image in an efficient manner.

This work makes the following contributions:

• Fast, zero-cost and image-dependent architectural design We associate the architectural
design for DIP with the complexity (texture, spatial structures) of the images and focus only
on the depth and width for a quick and effective design. We show that with proper setups,
a highly under-parameterized subnetwork could surpass the original large network.

• Lightweight, less reliance on early-stopping The optimal iteration number has been a
bottleneck for DIP as it typically varies with images, noise levels and architectures. By
contrast, the subnetworks estimated by our strategy require only a fixed iteration number
across datasets under both modest and higher noise levels.

• Base network agnostic Our empirical strategy is amenable not only to the encoder-decoder
architecture as the original DIP, but also to the decoder-only architectures, i.e., Deep De-
coder (Heckel & Hand, 2018) and ConvDecoder (Darestani & Heckel, 2021) and improve
their performance significantly.
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2 RELATED WORK

Deep Image Prior and its Extensions. Under the setting of DIP (Ulyanov et al., 2018), a convolu-
tional neural network (CNN) is randomly-initialized and then optimized to fit a degraded image from
a fixed random input vector. Despite not learning from external datasets, the CNN is able to out-
put a recovered image within a certain number of iterations, after which the performance gradually
degrades, necessitating early-stopping.

The follow-up works therefore mostly focused on either developing better architectures or studying
how to avoid early stopping. Our work pursues both of these two goals by estimating a suitable
subnetwork whose capacity aligns with the complexity of the image such that it does not easily
over-fit and thus early stopping is not critically required.

– Architectural choice. Different from the work by Heckel & Hand (2018) which defined the capac-
ity of an architecture simply by its size (i.e., number of parameters) and used a fixed architecture
for all images, we explicitly manipulate the components that are most relevant to the denoising ca-
pability of the CNN and customize the architecture for every image. Also, in contrast to the neural
architecture search (NAS) based methods (Chen et al., 2020; Ho et al., 2021; Arican et al., 2022),
our strategy prevents the exhaustive search by exploiting the observed relationship between the ar-
chitecture and the image, providing a more interpretable and efficient alternative.

– Early-stopping. In order to prevent performance decay due to the learning of too much high-
frequency noise, Shi et al. (2022) seeks to constrain the Fourier spectrum of the network by upper
bounding the Lipschitz constant of the convolutional layers, and replacing the bilinear up-sampling
layers with bandwidth-adjustable Gaussian up-sampling. However, tuning the parameters such as
the Lipschitz constant and the sigma of the Gaussian filter is non-trivial for each individual image,
especially when the noise level varies. For a comparison, we show that our method attains better
results across noise levels without heuristic parameter tuning (see A.0.1).

Other extensions include augmenting DIP with explicit reguarlizers such as total variation (Liu et al.,
2019) and the Regularization by Denoising (RED) framework (Mataev et al., 2019).

3 PRELIMINARIES AND APPROACH

3.1 BACKGROUND

We resort to Fourier transform for analyzing the up-sampling operations and the characteristics of
images of different texture and spatial structures manifested in the frequency domain. For a 2D
image f(x, y) of size M ×N , the discrete Fourier transform (FT) is defined as:

F (k, l) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)e−j2π( xk
M + yl

N ), (1)

with the spectral coordinates k = 0, 1, 2, ...,M − 1 and l = 0, 1, 2, ..., N − 1. As images are
signals discretized in space, the highest spatial frequency is constrained by the spatial resolution of
the image, given by fnyq =

√
k2 + l2. Based on FT, we further compute the power spectral density

(PSD), which is the squared magnitudes of the Fourier components: S (k, l) = log|F (k, l)|2. The
spectral power of natural images generally follows an exponential decay with increasing spatial
frequencies (Simoncelli & Olshausen, 2001). Coarse and fine textures tend to exhibit different
magnitude decay behaviors, as further described in Sec. 3.3.2.

3.2 OBSERVATIONS

When performing denoising on images of different textures under DIP settings, we empirically ob-
served that a deeper model (without skip connections) results in increasingly blurry outputs for
finer-grained images, while the more homogeneous image is much less affected (Fig. 2 (b)). This
seems to be contrary to our prior belief that the more complicated images require deeper models.
On the other hand, when the width is increased, the opposite occurs, where more information unnec-
essary to the images such as noises are learnt and the simpler image overfits relatively more easily
than the more complicated one (Fig. 2 (c)).
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(a) (b) (c)

Figure 2: (a) Influences of upsampling evaluated on Deep Decoder (Heckel & Hand, 2018). (b)
Increased depth (with 2×bilinear upsampling layers) over-smooths the image of higher complexity
(Baboon), while (c) increased width more easily leads to over-fitting to noise for the image of lower
complexity (Lena).

By investigating the decoder of the model which corresponds to the reconstruction of the final image,
we identify that the fixed upsampling operations inserted in-between the decoder layers is the main
driving force behind the denoising effects and we suspect that over-smoothing is caused by the
excessive upsampling operations. The results in Fig. 2 (a) suggest the following: both transposed
convolutions and fixed (i.e., bilinear) upsampling favor the learning of the low-frequency spatial
structures of the image instead of the high frequency noises, which enables denoising, but transposed
convolutions introduce high frequencies faster than fixed upsampling, leading to performance drop
sooner. Removing the upsampling layers results in loss of most of the denoising effects which cannot
be compensated by simply reducing the size of the network (i.e., under-parameterization).

From a frequency perspective, the above findings make sense as bilinear or nearest neighbor in-
terpolation is equivalent to multiplication of the spectrum with a sinc function by the convolution
theorem, which suppresses high frequencies. The network therefore acts as a low-pass filter at the
early stage of the training, separating the high-frequency noise from natural signals, known as the
spectral bias of CNNs (Rahaman et al., 2019; Xu et al., 2019; Chakrabarty & Maji, 2019). Intu-
itively, the image that is dominated by low frequencies tends to yield good denoising results with
the low-pass filtering as most of the energy is concentrated on the center of the spectrum, while the
image with a wider bandwidth is more susceptible to losses of high-frequency details. As the num-
ber of fixed upsampling layers increases typically along with the depth, the network is more biased
towards generating smoother images and thus may not be suitable for fine-grained images. Hence,
we argue that fixing the architecture for all images is inherently not optimal and that image tex-
ture should be taken into account for cutomized architectural design. Notably, previous theoretical
(Heckel & Soltanolkotabi, 2019) have also attributed the denoising effects to the fixed upsampling,
but we are the first to associate this effect with the texture of the individual image for more effective
denoising.

3.3 TRAINING-FREE ARCHITECTURAL DESIGN

Inspired by the observations that depth and width influence images of various texture differently, we
localize our focus on these two components and present efficient strategies combined with empirical
evidence for estimating them without training. Without loss of generality, we assume that the base
network that we estimate the subnetworks from is the same 5-level hourglass architecture with 2×
bilinear upsampling inserted in-between each decoder layer as in (Ulyanov et al., 2018), except that
skip connections are not included.

3.3.1 DEPTH ESTIMATION

From Fig. 2(b), we observed that a proper depth is more crucial to fine-grained images than to
the coarser ones for avoiding over-smoothing. As we have attributed the smoothing effects to the
fixed upsampling operations in the decoder as discussed above, we essentially need to determine
the number of upsampling layers to keep. An intuition is that the network with a proper depth and
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d = 1 d = 2 d = 3 d = 4 d = 5

Figure 3: We approximate the influences of the varying depth (with bilinear upsampling layers)
on the power spectrum of an image by passing the target image into the subnetworks of DIP at
initialization. d = n implies that the subnetwork contains n down- and up-sampling layers. More
visualizations in A.0.3.

the fine-grained image to be restored should have similar wide bandwidths, which corresponds to a
lower number of down-/upsampling layers. To illustrate this effect, we pass the target image into
five independent subnetworks of the DIP with various depths at initialization and compare the PSDs
of the generated outputs by computing the bandwidth that contains the 99% of the total energy in
the 2D PSD (Fig. 3). As the bilinear interpolation kernels are not learnt, we expect that the spectrum
changes can be approximated in this way despite the untrained network weights. The estimation via
this way for fine-grained images often leads to 1 ≤ dest ≤ 2. In practice, we have found that d = 2
almost always achieve the best results while d = 1 can lead to under-fitting. Therefore, we keep
d = 2 throughout the experiments.

3.3.2 WIDTH ESTIMATION

A general rule we follow is that a finer-grained image requires wider channels. Each image corre-
sponds to three width choices: {32, 64, 128}. To more robustly classifying the texture of the images
especially when contaminated by noises, we extract features from both the frequency and spatial
domains and fuse them to form a single score for each image.

Figure 4: The magnitudes of fine-
grained and coarse-grained images
(with noises) decay differently.

PSD fall-off rate. Coarse texture dominated by large ho-
mogeneous spatial structures has its PSD concentrated on
low frequencies, which drops off rapidly towards higher
frequencies, while finer texture exhibits a more moderate
decay. To characterize the decay trend, a straightforward
way is to use the ratio of the magnitudes at lower frequen-
cies and the magnitudes at higher frequencies. To do so,
we first convert the 2D power spectrum of the image from
its Cartesian coordinates to polar coordinates, and compute
its 1D representation via azimuthally averaging over θ, de-
fined as Ŝ (r) = 1

2π

∫ 2π

0
S (r, θ)dθ with r =

√
k2 + l2 and

θ = atan2(k, l), which represents the mean magnitude of
the frequencies with respect to the radial distance r. The
averaging of the frequency components along circles also
smooths the noise components. For the obtained spectral
vector, we drop the DC power and normalize it to [0, 1]. For computing the ratio, we avoid the very
high frequencies as they are dominated by noises. Specifically, we take the ratio of the low frequency
components that comprise 25% − 50% of the total energy and the high frequency components that
comprise 50%− 75% of the total energy.

GLCM features. Texture coarseness can also be characterized by the number of neighboring
pixel pairs having the same grey values, which is the basis of the Grey Level Co-occurrence Ma-
trix (GLCM) (Haralick et al., 1973), a classic tool for texture analysis. We derive four kinds
of statistics from the GLCM of each image, i.e., dissimilarity (

∑
i

∑
j cij |i − j|), correlation

(−
∑

i

∑
j

(i−ui)(j−uj)cij
σiσj

), homogeneity (
∑

i

∑
j

cij
1+|i−j| ) and contrast (

∑
i

∑
j(i− j)2cij), where

cij denotes the entry of the GLCM representing the co-occurrences of the pixel values i and j. The
co-occurrences are measured by each metric from four angles {0, π

4 ,
π
2 ,

3π
4 }, leading to a total of 16

features for each image.
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Figure 5: Distribution of the fine- and coarse-grained noisy images scored by our metric. The colors
denote the ground truth widths. Our metric enables distinct clusters to form among images.

Image dimensions. Heuristically, we find that the image size itself serves as a simple indicator for
narrowing down the width choices. Specifically, the ideal width for smaller-sized (e.g., 256 × 256)
images tends to fall between 32 and 64, and for larger ones (e.g., 512 × 512) between 64 and 128.
This observation turns a multiclass classification problem, which can be more prone to errors in an
unsupervised setting as ours, into a simpler binary classification problem. In practice, we simply
assign each image with an additional feature Ssize ∈ {0, 1} indicating its relative size.

Scoring. To score each image by its texture, we first perform PCA on the extracted 1 frequency and
16 spatial features to combine them into a single score Spca normalized to [0, 1], which sufficiently
characterizes the most variances among the images. The final score is defined as S = Spca + Ssize.

4 EXPERIMENTS AND RESULTS

Datasets. We conducted the denoising experiments on three standard and publicly-available
datasets, 1) CBM3D by Dabov et al. (2007) consisting of 9 colored images, 2) Set12 by Zhang
et al. (2017a) consisting of 12 grey-scaled images, and 3) CBSD68 by Roth & Black (2009) consist-
ing of 68 colored images. Additive Gaussian white noise is applied to each image with two noise
levels: 25 and 50. The goal is to recover the latent clean image.

CBM3D Set12 BSD68

σ25 0.745 0.728 0.527
σ50 0.745 0.715 0.468

Table 1: Kendall’s tau correlation
between the complexity of the
image texture and the required
width.

Implementation details. We consider three representative archi-
tectures commonly-used in DIP settings: 1) DIP (Ulyanov et al.,
2018), a 5-level encoder-decoder architecture with strided convolu-
tional layers, 2× bilinear upsampling layers and skip connections.
2) DeepDecoder (Heckel & Hand, 2018), an under-parameterized
5-layer decoder-only architecture with only 1× 1 convolutions and
bilinear upsampling layers. 3) ConvDecoder (Darestani & Heckel,
2021) a convolutional variant of Deep Decoder with 1 × 1 con-
volutions replaced by 3 × 3 counterparts. All three architectures
contain 128 channels per layer. We also compare with two recently-
proposed NAS approaches: 4) NAS-DIP (Chen et al., 2020) and 5)
ISNAS-DIP (Arican et al., 2022). All compared architectures are trained to minimize ∥y − ynoisy∥22,
where y is the network output and ynoisy is the noisy image (full formulation in A.0.5). We use
Adam as the optimizer with a constant learning rate of 0.01 for all methods. All other methods are
trained for 1200 iterations as in their original settings, and early stopping is applied when required.
For our method we use a fixed iteration number 3000 throughout the experiments. Following DIP
(Ulyanov et al., 2018), we apply an exponential sliding window to the output image with weight
γ = 0.99 for all compared methods. Peak signal-to-noise-ratio (PSNR) and structural similarity
index (SSIM) are used for quantitative evaluation.

Accuracy of width estimation. We compare the estimated widths against the ground truth widths
which we obained by pre-training all subnetworks with all candidate widths. Fig. 5 shows that for
CBM3D dataset and Set12 dataset, our metric well distinguishes the images of various texture with
correct widths assigned to all images. For BSD68 dataset, some ambiguities occur on the border
between the medium- and the finest-grained images. Tab. 1 shows that the required widths are
positively correlated with the texture scores, though a higher noise level induces a slight drop.
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Datasets DIP Deep Decoder ConvDecoder NAS-DIP ISNAS-DIP Ours

σ = 25

CBM3D PSNR 29.15 28.45 28.51 29.07† 29.11† 30.26
Dabov et al. (2007) SSIM 0.864 0.848 0.854 0.865† 0.862† 0.900
Set12 PSNR 27.90 27.06† 26.28† 27.04† 26.99† 28.14
Zhang et al. (2017a) SSIM 0.872 0.853† 0.840† 0.832† 0.885† 0.884
BSD68 PSNR 26.52 25.50 25.19 28.12† 27.61† 28.57
Roth & Black (2009) SSIM 0.846 0.809 0.793 0.875† 0.875† 0.888

σ = 50

CBM3D PSNR 26.90† 25.38† 25.01 26.10† 25.93† 26.13
Dabov et al. (2007) SSIM 0.826† 0.771† 0.769 0.791† 0.799† 0.833
Set12 PSNR 25.11† 23.10† 22.72 25.08† 24.19† 24.59
Zhang et al. (2017a) SSIM 0.805† 0.746† 0.706 0.810† 0.767† 0.805
BSD68 PSNR 24.80† 23.66† 24.36 24.62† 22.97† 24.17
Roth & Black (2009) SSIM 0.780† 0.731† 0.767 0.782† 0.763† 0.774

# Params (Millions) 2.3M 0.1M 0.89M 4.4M Varied 0.05M∼0.92M

Table 2: Quantitative results on denoising experiments. σ denotes the noise level. † denotes that
early-stopping is required and applied (where we have access to the ground truth for determining
the stopping iteration). Our method adopts a fixed iteration number throughout the experiments. A
comparison with another line of work focused on automatic stopping criterion (Shi et al., 2022) is
provided in A.0.1 The highest score is in bold, and the second highest is underlined.

! = 25

! = 50

Figure 6: Metric curves of all compared methods across noise levels for an image from Set12. All
previous methods suffer from over-fitting especially when the noise level is higher, including the
under-parameterized ones (i.e., ConvDecoder, Deep Decoder). The optimal iteration number varies
with the architectures, noise levels and images, which can be hard to determine in practice without
accessing to the ground truth.

Method comparisons. We compare the subnetworks estimated from DIP with our architectural
design strategy to the original DIP architecture and also to other handcrafted and automated methods.
Tab. 2 shows that under a moderate noise level, our method performs best on all three datasets. This
is largely because the hard cases in the datasets such as those with abundant fine details (Fig. 7
Baboon), where current methods tend to over-smooth, are handled well with our properly setup
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depth and width, indicating the importance of the texture-based and image-specific architectural
design (see A.0.2 Fig. 10 for another example). ISNAS-DIP is also developed for image-specific
architecture search, but it does not explicitly take the texture into account and over-smooths the

Ground Truth Noisy image DIP
PSNR: 24.7  SSIM:0.819 

NAS-DIP ISNAS-DIP Ours
PSNR: 21.9  SSIM:0.680 PSNR: 21.0  SSIM:0.600 PSNR: 25.2  SSIM:0.841 

Figure 7: Qualitative examples of image denoising under the noise level 25 (top row) and 50 (bottom
row) respectively. The architectures used in our approach for Baboon and House are two different
subnetworks of DIP. Other methods tend to over-smooth the image. Our method well preserves the
fine details while denoising and does not require early stopping even under a higher noise level. For
space considerations, visualizations for Deep Decoder and ConvDecoder are provided in A.0.2.

image most on the very fine-grained images. NAS-DIP heavily relies on early-stopping and does
not show significant advantages over DIP considering its resource-intensive searching. Our method
outperforms DIP especially on BSD68, where images with various degrees of texture are present,
suggesting that a more flexibly-designed architecture for each image is desired. Moreover, our
estimated subnetworks contain only 2% ∼ 40% of the total parameters of the original DIP. Such
under-parameterized nature makes them robust even under a higher noise level (Fig. 6), which is
a more challenging setting as the noise can now be more dominant at lower frequencies and thus
separating them from the useful low frequencies becomes more difficult. Our method thus does not
require much parameter tuning as other methods do. Note that DIP and Deep Decoder necessitate
early stopping in this case. ConvDecoder relies less on early-stopping at the expense of performance.

On the influences of under-parameterization. Deep Decoder is a highly under-parameterized
architectures with the number of parameters much less than the dimensions of the image it represents
and ConvDecoder is its convolutional variant, while they either fail to remove the noises completely
or over-smooth the image (A.0.2 Fig. 11). Fig. 6 also shows that Deep Decoder does not exhibit
stronger resistance to overfitting than ConvDecoder despite being lighter. This is consistent with
our observations in Fig. 2 (a) that the spatial convolutional layers (e.g., transposed convolutions)
have certain smoothing effects that slow down the learning of the high frequencies while the 1 × 1
convolutions do not, regardless of heavy- or under-parameterization. In this context, Deep Decoder
contains only the bilinear upsampling layers for effective denoising while ConvDecoder contains
both, which makes it a stronger denoiser and even over-smooth the images. On the other hand, the
subnetworks estimated by our method can effectively preserve the details while being lightweight.
These findings suggest that without proper model setups, under-parameterization itself can neither
ensure good denoising performance, nor remove the need for early-stopping.

On improving decoder-only architectures. To evaluate the generalizability of our strategy, we
integrate it into Deep Decoder and ConvDecoder. Quantitative results are summarized in Tab. 3. We
have observed that Deep Decoder tends to overfit to noises more easily on simpler images (Fig. 11)
while ConvDecoder constantly over-smooths the images (Fig. 8,Fig. 11). Fig. 8 and Fig. 12 show
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Ground Truth Noisy image ConvDecoder Improved (Ours)

Figure 8: Qualitative example of the improvement on ConvDecoder(Darestani & Heckel, 2021) with
our approach. In this case, three upsampling layers were removed from the original ConvDecoder
architecture with the width down-scaled, leading to a lighter subnetwork with better performance.

Datasets Deep Decoder ConvDecoder

Before After Before After

σ = 25

CBM3D PSNR 28.45 28.71↑ 28.51 28.74↑
SSIM 0.848 0.860↑ 0.854 0.873↑

Set12 PSNR 26.00 26.41↑ 25.79 26.98↑
SSIM 0.789 0.825↑ 0.786 0.854↑

BSD68 PSNR 25.50 25.56↑ 25.19 28.29↑
SSIM 0.809 0.802 0.793 0.877↑

σ = 50

CBM3D PSNR 25.22 25.62↑ 25.01 24.15
SSIM 0.764 0.790↑ 0.769 0.784↑

Set12 PSNR 22.45 23.01↑ 22.72 23.01↑
SSIM 0.649 0.687↑ 0.706 0.742↑

BSD68 PSNR 23.52 23.60↑ 24.36 24.12
SSIM 0.725 0.740↑ 0.767 0.755

# Params (Millions) 0.1M 0.006M∼0.1M 0.89M 0.06M∼ 0.89M

Table 3: Integrated our strategy into decoder-only architectures.
Performance of all methods at the 3000th iteration is reported.

that our strategy ameliorates these is-
sues. Note that we only apply width
scaling on Deep Decoder as it heav-
ily relies on upsampling for denois-
ing as discussed above. For ConvDe-
coder, we reduce the upsampling op-
erations while preserve the convolu-
tional layers as it is already under-
parameterized. The results show that
our strategy significantly improves
ConvDecoder on all datasets espe-
cially under the noise level of 25.
While at the noise level of 50, the im-
provement becomes moderate. This
is consistent with the results in Tab.2.
We speculate that the down-scaled
width impairs the ability to preserve
fine details under a higher noise level,
though it effectively avoids noise-fitting, an inherent trade-off in denoising through spectral bias.
Moreover, the improvement due to the removal of the excessive upsampling layers without chang-
ing the network depth supports our hypothesis that the upsampling operation plays a major role in
controlling the extent of smoothing. For Deep Decoder, the improvement is also appreciable even
with only the width scaling, further demonstrating the strong correlations between the complexity
of the image texture and the proper width.

5 CONCLUSIONS

In this paper, we present a surprisingly efficient solution to the two open challenges of DIP regarding
architectural choice and early-stopping. By observing that increasing the network depth tends to
over-smooth the fine-grained images, we hypothesize that the excessive fixed upsampling operation
is the main cause and propose to choose the number of required upsampling layers along with the
network width based on the complexity of the image texture. With simple architectural changes, a
high-performing under-parameterized architecture could surpass the much larger ones in denoising
while well-preserves the details with reduced risks of over-fitting and thus can endure a higher noise
level without requiring early-stopping. This greatly alleviates the burdens of parameter tuning in
practice when ground true images are not available. In contrast to most existing resource-intensive
architecture search methods for DIP, the proposed method only manipulates the width and depth of
the network for each image, which is zero-cost and training free. Complementing previous studies
(Heckel & Hand, 2018; Heckel & Soltanolkotabi, 2019), the presented findings provide insights into
design of more effective under-parameterized architectures. We hope that this study could encourage
efficient architectural design for DIP and image synthesis in general.
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A APPENDIX

A.0.1 ADDITIONAL COMPARISONS

While we focus on architectural design in the main text, our method is also advantageous in avoiding
the early-stopping oracle. Here we compare our method with the recently proposed method (Shi
et al., 2022) that explicitly removes the need for early-stopping by controlling the spectral bias of the
network. Qualitative and quantitative results on CBM3D dataset (Dabov et al., 2007) under modest
to larger noise levels are provided below. For parameter choices, we followed Shi et al. (2022)
and chose the value of lambda in Lipschitz normalization to be 1.8, and the sigma of the Gaussian
upsampling varied with the layer, i.e., {0.1, 0.1, 0.1, 0.5, 0.5}. The optimization stops automatically
when the criterion is met (∼ 4500 iterations). For our method, we used a fixed iteration number
of 3000 for both noise levels. From the results, it can be seem that the method by Shi et al. (2022)
prevents early-stopping at the expense of performance, especially when the noise level is higher.

Method σ = 25 σ = 50

PSNR SSIM PSNR SSIM

Shi et al. (2022) 28.45 0.851 24.28 0.706
Ours 30.10 0.903 25.91 0.839

Table 4: Quantitative results on CBM3D dataset with varying noise levels.
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Noisy image Shi et al. (2022) Ours Ground truth

Noisy image Shi et al. (2022) Ours Ground truth

(a) ! = 25

(b) ! = 50

Figure 9: Qualitative comparison across modest to larger noise levels.

Ground Truth NAS-DIP ISNAS-DIP Ours

PSNR: 26.7  SSIM:0.836 PSNR: 25.4  SSIM:0.779 PSNR: 27.9  SSIM:0.874 

Figure 10: Another hard case in CBM3D dataset. Over-smoothing can be observed with NAS-DIP
(Chen et al., 2020) and ISNAS-DIP (Arican et al., 2022). Our method well preserves the details.
Evaluated under the noise level 25.

A.0.2 MORE QUALITATIVE EXAMPLES

A.0.3 MORE VISUALIZATIONS ON THE INFLUENCES OF UP-SAMPLING

To supplement Fig. 3, we investigate whether the change in the power spectcrum is mainly caused by
the fixed upsampling layers. To do so, we removed the upsampling layers from all the subnetworks.
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Noisy imageGround Truth Deep Decoder ConvDecoder

PSNR: 22.0  SSIM:0.709 PSNR: 22.1  SSIM:0.703 

PSNR: 23.1  SSIM:0.633 PSNR: 24.1  SSIM:0.725 

Figure 11: Qualitative example of Deep decoder and ConvDecoder under noise level 25 (top row)
and 50 (bottom row) respectively. In both cases, Deep Decoder tends to over-fit more easily to
noises, despite its underparameterized nature, while ConvDecoder tends to over-smooth the image.

Noisy imageGround Truth Deep Decoder Improved (Ours)

PSNR: 27.3  SSIM:0.794 PSNR: 29.4  SSIM:0.879 

Figure 12: Qualitative example of the improvement on DeepDecoder (Heckel & Hand, 2018) with
our approach. Evaluated under the noise level 25.

As this would not be feasible with the encoder-decoder architecture that contains downsampling, we
conducted the experiments on a decoder-only architecture, i.e., ConvDecoder (Darestani & Heckel,
2021). Fig. 13(a) shows that the convolutional layers with randomly-initialized weights do not
induce much change. We further show an example of passing a coarser-grained image or noise
instead as compared to the one in the main text (in Fig. 3), shown in Fig. 14 and Fig. 15 respectively,
where change can be seen.
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d = 1 d = 2 d = 3 d = 4 d = 5

(a)  w/o. Up-sampling layers 

(b)  w. Up-sampling layers 

d = 1 d = 2 d = 3 d = 4 d = 5

Figure 13: Examples of how the depth influences the power spectrum of the generated image with
and without the fixed up-sampling layers, evaluated on a 5-layer decoder-only network by passing
the target image into the subnetworks of different depths at initialization.

d = 1 d = 2 d = 3 d = 4 d = 5

Figure 14: Here we passed a coarser-grained image into the subnetworks at initialization, as a direct
comparison with Fig. 3. Evaluated on DIP.

d = 1 d = 2 d = 3 d = 4 d = 5

Figure 15: To quantify the spectrum change of each subnetwork which is independent of the image
to be restored, we passed the noise instead of the noisy image into the subnetworks at initialization,
evaluated on DIP as a direct comparison with Fig. 3.
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A.0.4 FOURIER ANALYSIS FOR UPSAMPLING

For simplicity, we consider the case of a 1D signal x(n) and its discrete Fourier Transform X(k) =∑N−1
n=0 x(n) exp (−i2π

N kn). When increasing its spatial resolution by factor 2, we have:

Xup(k̂) =

2N−1∑
n=0

xup(n) exp
−i2π

2N
k̂n

=

N−1∑
n=0

x′(2n) exp
−i2π

2N
(2n)k̂ +

N−1∑
n=0

x′(2n+ 1) exp
−i2π

2N
2(n+ 1)k̂

for k̂ = 0, ..., 2N − 1.

In the case of transposed convolution where zeros are inserted in the upsampled sequence, x′(2n) =

x(n) and x′(2n+ 1) = 0 for n = 0, ..., N − 1. Hence, for k̂ < N , Xup(k̂) = X(k).

For k̂ ≥ N , let k′ = k̂ −N, k′ = 0, ..., N − 1:

Xup(k̂) =

N−1∑
n=0

x(n) exp(
−i2π

2N
(k′ +N)2n)

=
∑
N−1

n=0(x(n) exp(
−i2π

N
nk′ − i2nπ)) = X(k′),

due to the fact that the exponential function is periodic with an imaginary period. Therefore,
zero-insertion will create high frequency replica of the original low-frequency contents X(k) at
[N, 2N − 1], in addition to the original copy at [0, N ]. When nearest neighbor or bilinear upsam-
pling is used, x′(2n+ 1) will be the average of the adjacent values of x(n), and this is equivalent to
multiplication of Xup(k̂) with a sinc function by convolution theorem that corresponds to low-pass
filtering (Gonzalez, 2009; Durall et al., 2020).

A.0.5 TRAINING OBJECTIVE

Consider a general linear inverse problem y = Ax + ϵ, where A is any known degradation matrix
and in the case of denoising A = I, and ϵ is assumed to be Additive White Gaussian Noise (AWGN)
of variance σ2. The recovered image x can be obtained from the degraded image y by solving

min
x

L(y;Ax) + λR(x), (2)

where R(·) denotes the prior for regularization. DIP, on the other hand, removes the explicit regu-
larizer and parameterizes the image x via a neural network Gθ(z) given a fixed noise vector z:

θ∗ = argmin
θ

L(y;AGθ(z)), x∗ = Gθ∗(z). (3)

This parameterization allows novel priors to be designed based on the implicit regularization im-
posed by the architecture of the network Gθ(·), instead of in the image space as captured by R(·).
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