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Abstract

Recently, large language models (LLMs), in-
cluding notable models such as GPT-4 and bur-
geoning community models, have showcased
significant general language understanding abil-
ities. However, there has been a scarcity of
attempts to assess the logical reasoning capac-
ities of these LLMs, an essential facet of nat-
ural language understanding. To encourage
further investigation in this area, we introduce
GLoRE, a meticulously assembled General
Logical Reasoning Evaluation benchmark com-
prised of 12 datasets that span three different
types of tasks. Our experimental results show
that compared to the performance of human and
supervised fine-tuning, the logical reasoning ca-
pabilities of open LLM models necessitate addi-
tional improvement; ChatGPT and GPT-4 show
a strong capability of logical reasoning, with
GPT-4 surpassing ChatGPT by a large margin.
We propose a self-consistency probing method
to enhance the accuracy of ChatGPT and a fine-
tuned method to boost the performance of an
open LLM. We release the datasets and evalua-
tion programs to facilitate future research.

1 Introduction

Large Language Models (LLMs) (OpenAl, 2023;
Touvron et al., 2023; Anil et al., 2023) are increas-
ingly being aligned with real-world tasks (Bubeck
et al., 2023; Ouyang et al., 2022; Qin et al., 2023;
Chung et al., 2022), demonstrating advanced ca-
pabilities in handling complex reasoning tasks
and showing significant adaptability and versatil-
ity across various applications, from simple every-
day tasks to specialized domains such as coding,
mathematics, law, medicine, and finance (Li et al.,
2022; Frieder et al., 2023; Choi et al., 2023; Kung
et al., 2023; Wu et al., 2023b). Previous work has
shown pre-trained models’ proficiency in natural
language understanding tasks (Goyal et al., 2023;
Zhong et al., 2023a). However, studies also reveal
areas of deficiency (Kocon et al., 2023; Wang et al.,
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Instructions: You will be presented with a passage and a question about that
passage. -

Passage: One seminar had 18 participants. It is known that: (1) Atleast 5
young teachers are female; (2) At least 6 female teachers are over middle age;
(3) At least seven young women are teachers;

Question: According to the above information, which of the following can be
concluded about the participants?
Options:

A. Some young teachers are not women
B. Some young women are not teachers
C.There are at least 11 young teachers
D. There are at least 13 female teachers

Reading Comprehension Task

Answer: D

Figure 1: Instruction and question format for logical
reading comprehension tasks.

2023), calling into question the overall reasoning
capabilities of these models (Chalmers, 2023).

Logical reasoning is fundamental to human in-
telligence, and natural language-based logical rea-
soning has remained a vibrant research interest
since the inception of artificial intelligence (Cress-
well, 1973; Kowalski, 1979; Iwafiska, 1993; Liu
et al., 2020b; Yu et al., 2020). Figure 1 represents
a showcase of testing logical reasoning in reading
comprehension. To successfully respond to such
logical reasoning questions, LLMs typically need
to engage in multi-step, algorithmic, symbolic, and
compositional reasoning (Liu et al., 2020b). Thus,
logical reasoning serves as a suitable testbed for
evaluating the abilities of LLLMs to process com-
plex information in natural language accurately,
robustly, and logically.

To this end, we present a General Logical Rea-
soning Evaluation (GLoRE) benchmark, evaluating
instruction-tuned LLMs for LLM logical reasoning
tasks on several logical reasoning datasets, detail-
ing the strengths and limitations of LLMs in this
domain. Similar to GLUE (Wang et al., 2018) and
Super-GLUE (Wang et al., 2019) for natural lan-
guage understanding, GLoRE assembles a range of
different datasets that evaluates logical reasoning.
Specifically, we consider three types of logical rea-
soning tasks, including Multi-choice Reading Com-
prehension (Lai et al., 2017), Natural Language
Inference (NLI) (Dagan et al., 2005), and True-or-



False (Yes-or-No) Questions (Clark et al., 2019).
The three task formats cover a broad spectrum of
logical reasoning phenomena, where high-quality
logical reasoning datasets were released and remain
challenging for pre-trained language models before
LLM (Huang and Chang, 2023; Clark et al., 2019;
Koreeda and Manning, 2021). Overall, GLoRE
covers 12 datasets with 72,848 instances in total.

Using GLoRE, we evaluate the logical reasoning
ability of both powerful commercial models like
GPT-4, and popular open-sourced models like the
ones based on LLaMA (Touvron et al., 2023), Fal-
con (Almazrouei et al., 2023) and Mistral (Jiang
et al., 2024), testing their instruction-following
and problem-solving abilities for logical reasoning
tasks. Results show that commercial LLMs outper-
form open-source LLLMs and pre-trained LMs by
a large margin on zero-shot settings, with GPT-4
drawing close to human performances on specific
datasets. However, the performance of GPT 4 and
other models does not remain stable across the
board, with significant variations between differ-
ent datasets, which can indicate their sensitivity to
data distributions. The susceptibility of models to
variations in data distribution is further confirmed
by observations that both in-context learning and
supervised fine-tuning predominantly enhance the
performance of Large Language Models (LLMs)
across specific test distributions. This demonstrates
their robust learning ability. Interestingly, Chain-
of-Thought reasoning can be helpful to logical rea-
soning, as indicated by prior work (Kojima et al.,
2023; Chen et al., 2023; Saparov and He, 2022;
Yang et al., 2022), but only to a very limited extent,
which suggests that it might take effect mostly by
offering relatively superficial patterns. Our results
show both promises and challenges — on the one
hand, LLMs show the potential to give solid perfor-
mances and learn effectively on logical reasoning
datasets; on the other hand, they show much sen-
sitivity to the data distribution, and therefore, the
robustness needs further enhancement.

To our knowledge, GLoRE is the first instruction-
prompt evaluation suite for logical reasoning, and
we are the first to evaluate LLMs’ complex logical
reasoning abilities comprehensively. We release
our benchmark at https://anonymous.com.

2 Related Work

Logical Reasoning with Natural Language. Tap-
ping into logical reasoning capabilities represents a

holistic endeavour in natural language understand-
ing (NLU). A variety of methods have been ex-
plored to realize this objective, including symbolic
systems (Mccarthy, 2002; Poole et al., 1987; Mac-
Cartney and Manning, 2007a), fine-tuning of lan-
guage models (Wang et al., 2018; Huang et al.,
2021; Xu et al., 2022; Liu et al., 2023b), and hy-
brid approaches combining neural and symbolic
elements (Li and Srikumar, 2019; Saha et al., 2020;
Sanyal et al., 2022).

The recent introduction of evaluation datasets,
notably LogiQA (Liu et al., 2020b) and Reclor (Yu
et al., 2020), has reinvigorated the focus on log-
ical reasoning in NLP research. Logical reason-
ing is now leveraged in numerous probing tasks
over large Pre-trained Language Models (PLMs)
and applied to downstream tasks such as question-
answering and dialogue systems (Shi et al., 2021;
Beygi et al., 2022). Despite these advancements,
the aspiration to emulate human-like logical rea-
soning capabilities within NLU systems remains
a significant challenge for traditional models (Liu
et al., 2020b; Huang and Chang, 2023). In this
study, our goal is not only to quantitatively evaluate
the capability of Large Language Models (LLMs)
in addressing the previously mentioned challenge
but also to underscore the significance of our work
in providing a validated platform for enhancing
various reasoning methods with our data.

LLM Reasoning Evaluation. Despite progress
in evaluating LLMs for specific reasoning tasks
like arithmetic (Qin et al., 2023) and commonsense
(Bang et al., 2023), a yawning gap exists in compre-
hensively assessing their logical reasoning. While
LLMs excel at specific tasks like arithmetic rea-
soning (Qin et al., 2023), they face challenges in
complex areas like multi-step reasoning (Fu et al.,
2023) and abstract scenarios (Gendron et al., 2023).
ChatGPT exhibits strengths in chat-specific rea-
soning and some commonsense domains (Bang
et al., 2023; Ott et al., 2023), but struggles with
tasks requiring longer chains of inference (Bang
et al., 2023). Other LLMs like FLAN-TS5 (Chung
et al., 2022), LLaMA (Touvron et al., 2023), and
PalLM (Anil et al., 2023) show potential in general
deductive reasoning (Saparov et al., 2023), while
InstructGPT and Codex excel in specialized do-
mains like medical reasoning (Liévin et al., 2022).
Despite these advances, limitations in data bias
(Orru et al., 2023), and complex reasoning tasks ne-
cessitate further research and optimization to fully
unlock the reasoning potential of LLMs (Wu et al.,
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2023c).

The Massive Multitask Language Understand-
ing (MMLU) benchmark (Hendrycks et al., 2021)
evaluates the capabilities of large language mod-
els in various domains, ranging from the founda-
tional areas of knowledge like mathematics and
history to highly specialized fields such as law and
ethics. However, compared to the GLoRE bench-
mark, MMLU does not introduce logical reasoning
data into the scope, making it incapable of testing
complex logical reasoning tasks.

Big-Bench Hard (BBH) (Suzgun et al., 2022)
isolates 23 most challenging tasks from BIG-
Bench (bench authors, 2023). These tasks com-
prise general language understanding, arithmetic
and algorithmic reasoning, and logical deduction.
However, in comparison to our benchmark, the
data size of the logical reasoning section in BBH is
very small. HumanEval (Chen et al., 2021) serves
as a hand-written evaluation set for coding. The
programming problems included are designed to
assess language comprehension, reasoning, algo-
rithms, and simple mathematics. While similar to
logical reasoning in that code generation necessi-
tates complex reasoning skills, GLoRE differs in
presenting logical reasoning problems via natural
language prompts.

ARB (Sawada et al., 2023) is a benchmark for
advanced reasoning over multiple fields like mathe-
matics, physics, biology, chemistry, and law. Simi-
lar to GLoRE, it introduces a challenging subset of
math and physics problems that require advanced
symbolic reasoning. However, the benchmark con-
straints its problem on the above subjects with
domain knowledge, not general logical reasoning
questions, which is the focus of GLoRE.

3 The GLoRE Dataset

Dataset | Size | Target
LogiQA 2.0 test 1,572 | 4-way multi-choice
LogiQA 2.0 zh test | 1,594 | 4-way multi-choice
ReClor dev 500 4-way multi-choice
AR-LSAT test 230 5-way multi-choice
LogiQA22 1,354 | 4-way multi-choice
ConTRoL 805 E,C,N
HELP 35,891 E,C,N
TaxiNLI test 10,071 E,C,N
NaN-NLI 259 E,C,N
FraCas 346 Yes, No, Neutral
RuleTaker dev 10,068 Yes, No
ProofWriter dev 10,158 Yes, No

Table 1: Data statistics. (“E” refers to “entailment”; “C”
refers to “contradiction’; “N” refers to “neutral”.)

As mentioned in the introduction, GLoRE con-
tains three NLU tasks: Multi-choice Reading Com-
prehension, NLI, and Yes-or-No. First, Multi-
choice reading comprehension (Lai et al., 2017)
is essential in verbal reasoning tests, which cover
abundant high-quality logical reasoning problems
in the wild. Second, Unlike multi-choice reading
comprehension, NLI (Dagan et al., 2005) is more
general and centric on entailment relations in a sim-
pler task format, which is a fundamental task for
evaluating reasoning abilities (Poliak et al., 2018;
Demszky et al., 2018). Third, the Yes-or-No rea-
soning task (Clark et al., 2019) is a combination of
question-answering and textual entailment, which
can serve as a playground for testing models’ rea-
soning abilities (Clark et al., 2020; Tafjord et al.,
2021). The data statistics are shown in Table 1.

3.1 Multi-choice Reading Comprehension
(MRC)

Within the standard multi-choice reading compre-
hension (MRC) task setting, a system is presented
with a passage and a question, and the objective is
to choose the most suitable answer from a set of
candidate responses. An example of logical MRC
can be seen in Figure 1. Particularly, GLoRE con-
tains five such datasets:

LogiQA (Liu et al., 2020b) is a logical MRC
dataset derived from the Chinese Civil Service Ex-
amination, translated into English, and made avail-
able in both Chinese and English versions. Figure 3
in Appendix A illustrates an example. We adopt the
second version of LogiQA (Liu et al., 2023a) and
use both the English (LogiQA 2.0) and Chinese
(LogiQA 2.0 zh) test sets for our evaluation.

ReClor (Yu et al., 2020) comprises question-
answering examples from the LSAT exams de-
signed to assess human logical reasoning abilities.
We use the development set for our testing as the
test set does not provide gold labels.

AR-LSAT (Wang et al., 2022) is a dataset of an-
alytical reasoning questions from the Law School
Admission Test. Each question contains five op-
tions rather than four. An example from the AR-
LSAT test set can be found in Figure 4 in Ap-
pendix A.

LogiQAZ22 is collected and processed accord-
ing to the LogiQA 2.0 format after ChatGPT was
released. It incorporates the newly released Chi-
nese Civil Servant Exams from 2022, which are
not included in the original LogiQA dataset.



3.2 Natural Language Inference (NLI)

NLI is the task of determining the logical relation-
ship between a hypothesis and a premise. The typi-
cal scheme involves text classification, where the
model selects one of three labels: entailment, con-
tradiction, and neutral. An logical NLI example is
shown in Figure 5.

ConTRoL (Liu et al., 2020a) is an NLI dataset
that offers an in-depth examination of contextual
reasoning within the NLI framework. Figure 5
in Appendix A displays an example of ConTRoL.
Approximately 36.2% of premise-hypothesis pairs
fall under the category of logical reasoning in this
dataset. We choose the logical reasoning portion
for our evaluation.

HELP (Yanaka et al., 2019) is an NLI dataset
emphasizing monotonicity reasoning, a crucial con-
cept in Natural Logic (MacCartney and Manning,
2007b). An example from the HELP dataset can
be seen in Figure 6 in Appendix A. We use the
training set for our evaluation.

TaxiNLI (Joshi et al, 2020) is an NLI
dataset that has been re-annotated based on
MNLI (Williams et al., 2018), with categories in-
clude logical categories such as connectives, math-
ematical reasoning, and deduction. An example
from the TaxiNLI dataset can be found in Figure 7
in Appendix A.

NaN-NLI (Truong et al., 2022) is a test suite
designed to probe the capabilities of NLP models
in capturing sub-clausal negation. An example
from the NaN-NLI dataset is depicted in Figure 8
in Appendix A. The successful handling of sub-
clausal negation can be seen as a strong indicator
of a model’s logical reasoning capacity.

3.3 True-or-False (Yes-or-No) Questions (TF)

The FraCas test suite (Pulman, 1996), converted
to RTE style by MacCartney and Manning (2007a),
presents complex entailment problems involving
multi-premised contexts. The original FraCas
dataset is a three-way classification (“Yes”, “No”,
“Don’t know”) task. The ability to determine entail-
ment relationships in this context is closely tied to
logical reasoning. Figure 9 in Appendix A illus-
trates an example. We convert the “Don’t know”
label into a single “Neutral” token.

The RuleTaker (Clark et al., 2020) dataset is a
synthetic creation designed to examine the reason-
ing ability of transformer models (Vaswani et al.,
2017) over natural language rules. This task ex-

plicitly targets logical reasoning by asking models
to reason over a set of rules and facts to gener-
ate true-or-false responses as output. An example
from the RuleTaker dataset is shown in Figure 10
in Appendix A.

The ProofWriter (Tafjord et al., 2021) dataset
generates sets of facts and rules, each followed by
questions, which can be proven true or false using
proofs of various depths. Figure 11 in Appendix A
presents an example from the ProofWriter dataset.

4 Evaluation Methodology

We consider seven logic reasoning evaluation sce-
narios for open-sourced LLMs and closed API-
based or Ul-based models such as ChatGPT and
GPT-4, which include zero-shot evaluation, few-
shot and Chain-of-Thought evaluation, instruction
tuning evaluation.

Zero-shot Evaluation In this setup, the task in-
put is transposed into a prompt via templates, and
the gold label is verbalized (Liu et al., 2021b). The
LLMs need to generate the verbalized gold answer.
Prior research indicated that ChatGPT could under-
perform in question-answering scenarios if the in-
structions were not appropriately optimized (Zhong
et al., 2023b). Consequently, we investigated dif-
ferent zero-shot prompting methods to enhance the
performance of the tested models. The instructions
differ slightly for different datasets, according to
their target outputs. The finalized instructions for
the three types of tasks are integrated into GLoRE.

Few-shot Evaluation LLMs are capable of
achieving efficient in-context learning (Dong et al.,
2023), where different numbers of context exam-
ples and in-context demonstration methods (Liu
et al., 2021a) can be used. In this study, we ran-
domly sampled a few instances (1 for 1-shot, 2 for
2-shot, and 5 for 5-shot) from each dataset to con-
duct few-shot experiments respectively. For each
sampled instance, we append it to the beginning of
the existing prompt. For the experiment, we use
the same model configuration as in the zero-shot
scenario.

Instruction Tuning An appealing benefit of
open-sourced LLMs, such as LLaMA, lies in their
amenability to task-specific fine-tuning (Wu et al.,
2023a). This feature allows us to optimize their per-
formance more precisely, offering a distinct edge
over their closed counterparts. We consider an
evaluation method by fine-tuning the open-sourced
LLM model using instruction-tuning, providing



specific instructions to address distinct tasks.

We converted a specific logic reasoning training
set into the instruction-prompting framework as
shown in Appendix B. This process entailed reform-
ing the dataset such that each instance was paired
with a clear, directive instruction, an input, and a
target output. We then fine-tuned an open-sourced
LLM with this transformed training dataset and
the fine-tuning process. After instruction-tuning,
we evaluate the model performance on the spe-
cific test set for the training task and the zero-shot
performance on the other logic reasoning tasks to
examine its cross-task generalization ability.

Chain-of-Thought Evaluation It has been
shown that Chain-of-Thought (CoT) can improve
the math (Imani et al., 2023; Chen et al., 2022) and
logic (Ling et al., 2023) capabilities of LLMs. We
explore zero-shot CoT prompting (Kojima et al.,
2023) on logical reasoning datasets.

5 Results

5.1 Evaluated Models

We adopted RoBERTa-base (Liu et al., 2019)
as a baseline, fine-tuning it on the training set
over five epochs for each dataset. The com-
munity models selected for comparison include
FALCON-40B-INSTRUCT (Almazrouei et al., 2023)
LLAMA-30B-SUPERCOT (Touvron et al., 2023)
and MIXTRAL-8X7B, both of which are highly-
regarded open language model representations
(LLMs) available on the HuggingFace Hub.!

Both ChatGPT and GPT-4 are evaluated with
the OpenAl Evaluation framework?, a comprehen-
sive tool designed for the evaluation of OpenAl
models. The specific versions of the models as-
sessed are labeled as "gpt-3.5-turbo-0301" for Chat-
GPT and "gpt-4-0314" for GPT-4, respectively.
Moreover, we engage the GPT-4 Chat Ul to con-
duct a series of case studies on GPT-4. These exam-
inations probe into the model’s in-context learning
abilities and chain-of-thought reasoning capabili-
ties, by using two OpenAl Plus accounts.

All experiments were executed on 40G VRAM
A100 GPUs based on the HuggingFace transform-
ers library. Our evaluation metrics consisted of
classification accuracy scores. Additionally, we
utilized reported accuracies for datasets where hu-
man performance data was available and recorded

"https://huggingface.co/spaces/HuggingFaceH4/
open_l1lm_leaderboard
Zhttps://github.com/openai/evals

both the average and peak performance of human
participants to establish a human baseline. For the
LogiQA22 dataset, we engaged five co-authors as
test subjects and computed their accuracy based on
150 test examples.

5.2 Main Results

Zero-shot Results Table 2 outlines the primary
zero-shot evaluation results. The first block
presents both the average and maximum human
performance. Notably, with the exception of the
ReClor and AR-LSAT tasks, humans achieve an av-
erage accuracy exceeding 80%. On ReClor and AR-
LSAT, the averaged human performance is 63.00%
and 56.00%, respectively, showing the challenge of
these LSAT tasks. The human ceiling performance
is close to 100%, showcasing human proficiency in
logical reasoning tasks.

The second block details the supervised fine-
tuning results of RoBERTa-base, a model con-
taining only 125M parameters. RoBERTa-base
achieves accuracy rates of 48.76% and 33.22% on
LogiQA 2.0 and LogiQA22, respectively. The over-
all performance of RoOBERTa-base lags behind av-
erage human performance, suggesting that super-
vised models may struggle to learn logical reason-
ing. Moreover, the model’s performance on MRC
tasks is lower than on NLI and TF tasks, which
can be because of more output ambiguities (multi-
choice vs. three-way or Yes/No). On the NaN-NLI
dataset, RoOBERTa yields 90.02% accuracy, the best
performance reaching the human level. This might
be because NaN-NLI is a negation data converted
from sentence-level NLI datasets by rules. Fine-
tuned RoBERTa is able to learn superficial artifacts
from the data. While ProofWriter requires complex
reasoning skills, RoBERTa-base’s superior perfor-
mance (55.92%) on this task suggests its potential
to tackle specific types of logical reasoning tasks.

The third block presents the zero-shot results
for LLaMA, Falcon, and Mixtral. The average
performance across all tasks is strikingly similar
for LLaMA and Falcon (32.34% for LLaMA and
32.28% for Falcon), suggesting that LLaMA-30B’s
logical reasoning capabilities are comparable to
those of Falcon 40B. However, both LLaMA and
Falcon fall short of ROBERTa-base’s performance
on nearly all task types, with the notable exception
of RT for Falcon. Specifically, the accuracy results
on the MRC tasks for LLaMA and Falcon are ap-
proximately 20%, a figure which is even lower than
expected from a random guess in a 4-way classi-
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Task | MRC |

NLI | TF

‘ Average

Dataset | LQ LQzh RC AL LQ22| CT HL TN NN | FC RT PW |

Humanavg. [86.00 88.00 63.00 56.00 83.00|87.00 81.00 97.00 94.00 |92.00 84.00 82.00| 82.75
Human Ceiling | 95.00 96.00 100.00 91.00 99.00 |94.00 95.00 100.00 100.00 |97.00 95.00 93.00| 96.25
RoBERTa  [48.76 35.64 5501 3090 33.22|48.76 39.47 49.91 90.02 |32.01 53.50 55.92| 47.76
LLaMA 1931 2635 17.81 17.98 18.41[24.10 3226 41.91 47.29 [40.00 48.89 53.78| 3234
Falcon 2321 1977 2677 1270 17.33 [16.13 2849 44.66 5331 (3557 56.11 53.33| 32.28
Mixtral-8x7B 4529 36.81 48.92 41.40 3897 |50.84 33.27 40.86 50.13 |32.08 46.84 44.80| 42.52
ChatGPT 5237 5318 5738 5149 3844 5845 4213 5730 56.59 |49.13 5474 53.95| 52.10
GPT-4 7225 7056 $7.20 7312 58.49 |56.40 46.01 60.08 76.74 |75.35 60.19 59.66| 66.34

Table 2: LLMs’ performance on the GLoRE benchmark.

LQ: LogiQA 2.0, RC: ReClor, AL: AR-LSAT, CT:

ConTRoL, HL: HELP, TN: TaxiNLI, NN: NaN-NLI, FC: FraCas, RT: RuleTaker, PW: ProofWriter. All results are
in %, the best ones are in bold, and the second best ones are in underline.

Types \ ChatGPT GPT-4 LLaMA Falcon
Categorical reasoning 83.83% (389/464)  95.04% (441/464) 22.84% (106/464) 20.91% (97/464)
Sufficient condition reasoning | 44.99% (175/389)  63.75% (248/389)  20.82% (81/389)  20.56% (80/389)

Necessary condition reasoning
Conjunctive reasoning
Disjunctive reasoning

37.46% (124/331)
26.79% (75/280)
15.75% (60/381)

60.73% (201/331)
35.00% (98/280)
27.03% (103/381)

19.64% (65/331)
7.86% (22/280)
7.87% (30/381)

25.38% (84/331)
12.86% (36/280)
17.85% (68/381)

Table 3: LLMs’ performance across reasoning types (accuracy %).

fication. These findings indicate that instruction-
tuned LLMs face challenges with logical reason-
ing tasks without incorporating specific in-context
demonstrations. Furthermore, we observe a smaller
performance gap between LogiQA and LogiQA22
for these models compared to RoOBERTa, imply-
ing that without specific in-domain tuning, their
performance remains relatively stable and is not
significantly impacted by the presence of test data
distribution. MIXTRAL-8X7B, on the other hand,
shows a significant performance increase compared
to the other two open models, indicating the effi-
ciency of a mixture-of-expert model.

The fourth block provides the zero-shot results
of ChatGPT and GPT-4. Both models, partic-
ularly GPT-4, exceed RoBERTa-base in several
MRC benchmarks. However, we observed a sig-
nificant performance drop on LogiQA22. For in-
stance, GPT-4’s accuracy on LogiQA?22 dropped
to 58.49% compared to a solid 72.25% on LogiQA
2.0, indicating that these models are sensitive to
data distribution, while struggle with unfamiliar
data distributions. In NLI tasks and true-or-false
questions, ChatGPT and GPT-4 showed notable
improvements over the fine-tuned RoBERTa across
most datasets. Specifically, ChatGPT exhibited
the best performance with 58.45% accuracy on
the ConTRoL dataset, surpassing GPT-4. Again,
GPT4’s performance varies across datasets for NLI,
showing sensitivity to data distribution.

The results of TF questions are similar. Intu-

Model | 0-shot 1-shot 2-shot 5-shot
LLaMA 32.34 32.89 35.03 39.62
Falcon 32.28 33.14 33.76 35.72
ChatGPT | 52.10 55.85 57.43 60.32
GPT-4 66.34 70.31 71.44 75.83

Table 4: Average accuracies on GLoRE few-shot evalu-
ation.

itively, the underlying logical rules are consistent
across different datasets, but the data distributions
are different. If a model makes use of correct ra-
tionales, it should give consistent levels of perfor-
mance across distributions. Our observations in
Table 2 contradict the above, which shows that the
model rationale is not the same as the human ratio-
nale.

Results Across Tasks and Reasoning Types
In our experiments, we evaluated the performance
of the LLMs on three types of tasks. We found
that the performance of models varied significantly
across tasks and reasoning types. Table 2 lists out
the detailed scores.

In zero-shot scenarios, the open-source models
falcon-40b-instruct and LLAMA-30B-SUPERCOT
performed significantly below RoBERTa and hu-
man baselines on machine reading comprehension
and natural language inference tasks, with the ex-
ception of binary classification problems, where
the performance gap is not salient. Specifically,
ChatGPT exemplifies similar performance to the
two open-source models, indicating their incapa-



bility on TF questions. However, ChatGPT and
GPT-4 showed improved performance compared to
RoBERTa, even in zero-shot conditions. In partic-
ular, GPT-4 performed close to or even surpassed
the human level on datasets such as ReClor.

Overall, GPT-4 and ChatGPT models show re-
markable capability in tackling some logical MRC
datasets. The performance is not as competitive
when facing the NLI and TF tasks (NLI and TF are
three-way or two-way classification tasks; however,
most of the accuracies are even lower). Apart from
that, we observed a significant performance drop
in newly cultivated data for these commercial mod-
els, a trend not mirrored by the open-source models.
The shift in data distribution might contribute to the
performance drop of the intensive instruction-tuned
models.

5.3 The Effect of In-Domain Training

The above experiments show that the performances
of LLMs are sensitive to the data distribution. Even
though the underlying reasoning principles are the
same, LLM performance varies significantly across
datasets. This suggests that LLMs might not reason
using the correct rationale, but rely on superficial
features. To further investigate the influence of data
distribution, we consider training on datasets where
LLMs perform weakly — using in-context learning
for commercial LLMs and supervised fine-tuning
for open-source LLMs.

Few-shot Results for GPT-4 Few-shot learning
aims to educate models on the data distribution
with as few instances as possible. The few-shot
evaluation tests the efficiency of models to solve
similar problems. Evaluation results are shown in
Table 4. With the increase of in-context examples,
the accuracy of each tested model on the GLoRE
benchmark increases. The models we tested all
show in-context learning abilities on the logic rea-
soning benchmark. Among them, GPT-4 witnesses
the highest performance gain with over 9 percent
accuracy boost on the 5-shot scenario compared to
zero-shot.

Instruction-tuned LLaMA We conducted in-
struction tuning (Section 4) with the LogiQA 2.0
training set using LLaMA-7b. The fine-tuning pro-
cess, spanning 2 epochs, leveraged the computa-
tional capabilities of 2 A100 GPUs. The results
of this experiment are illustrated in Table 5. First,
post fine-tuning with Alpaca’s instructions, a sub-
stantial improvement in performance was observed
across all tasks, underscoring the effectiveness of

Dataset \ 7b-base Alpaca 7b-tuned
LogiQA 2.0 test 18.04 22.99 52.74
LogiQA 2.0 zh test 19.06 22.54 31.18
ReClor dev 15.83 22.38 55.20
AR-LSAT test 13.91 13.16 21.43
LogiQA22 20.25 21.16 35.16

Table 5: Fine-tune LLaMA on the LogiQA dataset (ac-
curacy %). “7b-base” is the base model of LLaMA-7b;
“Alpaca” is an instruction-tuned LLaMA-7b with GPT-4
Alpaca data; “7b-tuned” is our fine-tuned LLaMA-7b
on the LogiQA 2.0 training set. All results are in %.

Model | w/o CoT w/ CoT
LLaMA 32.34 35.05
Falcon 32.28 34.98
ChatGPT 52.10 55.75
GPT-4 66.34 68,47

Table 6: Chain-of-Thought evaluation on GLoRE. All
results are in %.

instruction-tuning. As Alpaca’s instructions were
not task-specific for logical reasoning tasks, the im-
provements can be largely attributed to the model’s
enhanced general instruction comprehension ca-
pabilities. Second, our tuned LLaMA-7B model
markedly outperformed the baseline LLaMA-7B
model and Alpaca. On LogiQA 2.0, the accuracy
is improved from 18.04% to 52.74%, achieving a
performance higher than the fine-tuned RoBERTa-
base result (48.76%). Although the instruction-
tuning only uses the LogiQA 2.0 training dataset,
the tuned model can generalize the logic reason-
ing ability to the other datasets. For instance, on
LogiQA 2.0 zh, the performance is boosted from
19.06% to 31.18%, while on ReClor, the fine-tuned
model achieved 55.20% accuracy, outperforming
Alpaca by 32.82 points. These results demonstrate
that instruction-finetuning can improve the zero-
shot logic reasoning performance via transfer learn-
ing. Moreover, the instruction-tuned model’s per-
formance on LogiQA22 (35.16%) even surpassed
that of the RoBERTa-based classification model
(33.22%), demonstrating the potential benefits of
generalization using instruction-tuning.

‘ CoT correct CoT wrong

65.00 1.33
3.50 30.21

w/o CoT correct
w/o CoT wrong

Table 7: The confusion matrix for GPT-4 results on the
LogiQA22 data with/without CoT. All results are in %.



Model \ Coherence Completeness Correctness Relevance
LLaMA 3.38 3.53 3.00 4.50
Falcon 3.21 3.44 3.15 4.50
ChatGPT 4.00 4.81 3.76 472
GPT4 4.52 4.81 4.51 4.89

Table 8: Human evaluation of CoT generations.

5.4 Chain-of-Thought Prompting

It has been shown that Chain-of-Thought prompt-
ing can give stronger performances for reasoning
(Wei et al., 2023; Kojima et al., 2023). One ad-
vantage of Chain-of-Thoguht reasoning is that it
increases the interpretability, where we an gain un-
derstanding of the reasoning steps. Table 6 shows
the results on GLoRE with/without CoT. Apart
from that, we calculate the confusion matrix of
GPT-4 results in Table 7. All models experience a
performance gain with the CoT prompting, ranging
from 2 to 3 percent. The confusion matrix further
illustrates the significance of performance elevation
with CoT prompting.

Manual Evaluation and Case Study We further
evaluate the reasoning processes by LLMs, and the
results are shown in Table 8. The human evalua-
tion is conducted on 100 data instances randomly
selected from the benchmark. The objective is to
assess the model’s capability to produce logically
coherent reasoning pathways leading up to the final
answer, rather than solely the correctness of the
outcome.

The four dimensions we include in our evalua-
tion metrics are detailed as follows:

a. Coherence: Measure the logical consistency
in the reasoning process. Are there any jumps in
logic or contradictory statements?

b. Completeness: Does the model cover all as-
pects of the question? Is every step in the reasoning
process explained?

c. Correctness: Beyond the final answer, are the
intermediate conclusions accurate?

d. Relevance: Is the content of the reasoning
pertinent to the question at hand? Are there any
unrelated digressions?

We adopt a 5-point Likert scale for each metric:

1 =Poor, 2 = Below Average, 3 = Average, 4 =
Above Average, 5 = Excellent.

It can be seen that the models give relatively low
scores on the coherence and correctness of the rea-
soning chains. Surprisingly, some 11% of incorrect
reasoning chains can lead to correct outputs, as an
example shown in Figure 2. This further shows
that LLM might not rely on exact reasoning chains

MRC: Correct Answer, Wrong Inference

— D

Passage: At a job fair of the company, the administration department, human
resources department and office of the company each plan to recruit a staff
member. Three graduates from the Chinese Department, the History
Department and the philosophy Department came to apply for these three
different positions. The recruitment information shows that the graduates of
the history department are older than the graduates of the office, the
graduates of the philosophy department and the graduates of the human
resources department wear similar colors, and the graduates of the human
resources department are younger than those of the Chinese department.
Question: If the above argument is true, which of the following options can be
inferred?

Options:

A.Graduates of philosophy Department are older than graduates of the
History Department.

B.Graduates of the Chinese department are older than those of the philosophy
department.

C.Graduates from the History Department apply for the administration
department.

D.Graduates of the Chinese Department apply for office.

Answer: B

Reason: The passage states that the graduates of the human resources
department are younger than those of the Chinese department. It also
mentions that the graduates of the philosophy department and the graduates
of the human resources department wear similar colors. Since the graduates
of the human resources department are younger than those of the Chinese
department, we can infer that the graduates of the Chinese department are
older than those of the philosophy department. The other options are not
directly supported by the information provided in the passage.

/
Figure 2: GPT-4 responses with correct answer yet
wrong inference.

for deriving the conclusion, but might make use of
superficial features in the chain instead. The results
indicate the need for further enhancing the causal
nature of LLM reasoning.

We further elaborated on two specific case stud-
ies in Appendix C. These case studies provide de-
tailed examples of how the models responded to
specific prompts and where GPT-4 made the right
and wrong predictions and rationales.

6 Conclusion

We assembled GLoRE, a comprehensible dataset
for evaluating the logical reasoning ability of Chat-
GPT, GPT-4, and other strong open-source LLMs
on multiple logical reasoning tasks. Our results
show that ChatGPT and GPT-4 outperform the tra-
ditional fine-tuning method on most logical reason-
ing benchmarks. In contrast, community models
are weak on GLoRE, while instruction-tuning on
similar data increases the models’ performance. Fi-
nally, supervised fine-tuning, in-context learning,
and voting techniques all lead to stronger results.
Both quantitative and qualitative evaluation suggest
that existing LLMs may rely on relatively super-
ficial patterns in solving logical reasoning tasks,
and research on enhancing the underlying infer-
ence mechanism can be useful for addressing such
issues.



Limitatins

While the GLoRE benchmark provides valuable
insights into the logical reasoning capabilities of
large language models (LLMs), there are several
limitations to consider:

Dataset Bias The effectiveness of evaluating log-
ical reasoning in LLMs heavily relies on the quality
and diversity of the datasets used. Biases present
in the training data may impact the generalizabil-
ity of the results and the model’s performance on
real-world scenarios.

Task Specificity The logical reasoning tasks in-
cluded in the GLoRE benchmark may not cover
the full spectrum of reasoning abilities required
for comprehensive natural language understanding.
Certain types of reasoning, such as causal reason-
ing or temporal reasoning, may not be adequately
addressed in the current evaluation framework.

Scalability As LLMs continue to grow in size
and complexity, scalability issues may arise in eval-
uating their logical reasoning abilities. The compu-
tational resources required for training and testing
these models on increasingly complex tasks could
be a limiting factor.

Addressing these limitations and exploring av-
enues for further research will be essential to en-
hance the robustness and applicability of logical
reasoning evaluations in large language models.
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A Datasets Examples

We illustrate data examples mentioned in Section 3
here.

Figure 3 is an example from the LogiQA 2.0 test
set. In this example, investigators want to certify
the connection between astrological signs and per-
sonality. However, the volunteers who attended the
program were biased because introverted people
are less likely to attend such investigations. This
fact flaws the conclusion of the investigation.

B Instructions and Prompts for the Three
Tasks

The instructions differ slightly for different
datasets, according to their target outputs. Instruc-
tion and Prompt for the Multi-Choice Read-
ing Comprehension Task Instructions: You
will be presented with a passage and a
question about that passage. There are
four options to be chosen from, you need
to choose the only correct option to
answer that question. If the first option
is right, you generate the answer ‘A’, if
the second option is right, you generate
the answer ‘B’, if the third option is
right, you generate the answer ‘C’, if
the fourth option is right, you generate
the answer ‘D’, if the fifth option
is right, you generate the answer
Read the question and options thoroughly

‘E’.
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Passage: For a television program about astrology, investigators went
into the street and found twenty volunteers born under the sign of
Gemini who were willing to be interviewed on the program and to
take a personality test. The test confirmed the investigators’ personal
impressions that each of the volunteers was more sociable and
extroverted than people are on average. This modest investigation
thus supports the claim that one’s astrological birth sign influences
one’s personality.

Question: Which one of the following, if true, indicates the most
serious flaw in the method used by the investigators?

A. People born under astrological signs other than Gemini have been
judged by astrologers to be much less sociable than those born under
Gemini.

B. There is not likely to be a greater proportion of people born under
the sign of Gemini on the street than in the population as a whole.

C. People who are not sociable and extroverted are not likely to agree
to participate in such an investigation.

D. The personal impressions the investigators first formed of other
people have tended to be confirmed by the investigators’ later
experience of those people.

Figure 3: A multi-choice reading comprehension exam-
ple from the LogiQA 2.0 dataset.

Context: A loading dock consists of exactly six bays numbered 1
through 6 consecutively from one side of the dock to the other. Each
bay is holding a different one of exactly six types of cargo fuel, grain,
livestock, machinery, produce, or textiles. The following apply: The
bay holding grain has a higher number than the bay holding livestock.
The bay holding livestock has a higher number than the bay holding
textiles. The bay holding produce has a higher number than the bay
holding fuel. The bay holding textiles is next to the bay holding
produce.

Question: Which one of the following CANNOT be the type of cargo
held in bay 47

A."grain"

B. "livestock"

C. "machinery"

D. "produce"

E. "textiles"

Answer: A

Figure 4: An example from the AR-LSAT dataset.

Premise: Ten new television shows appeared during the month of
September. Five of the shows were sitcoms, three were hourlong
dramas, and two were news-magazine shows. By January, only seven
of these new shows were still on the air. Five of the shows that
remained were sitcoms.

Hypothesis: At least one of the shows that were cancelled was an
hourlong drama.

Label: Entailment

Figure 5: An NLI example from the ConTRoL dataset.

Premise: Tom said that neither parents had ever been to Boston.
Hypothesis: Tom said that neither one of his parents had ever been to
Boston.

Label: Entailment

Figure 6: An NLI example from the HELP dataset.
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Premise: Even if auditors do not follow such other standards and
methodologies, they may still serve as a useful source of guidance to
auditors in planning their work under GAGAS.

Hypothesis: Auditors should ignore them when they follow other
standards and methodologies.

Label: Contradiction

Figure 7: An NLI example from the TaxiNLI dataset.

Premise: Not all people have had the opportunities you have had.
Hypothesis: Some people have not had the opportunities you have had.
Label: Entailment

Figure 8: An NLI example from the NAN-NLI dataset.

P1: All Italian men want to be a great tenor.

P2: Some Italian men are great tenors.

Q: Are there Italian men who want to be a great tenor?
Answer: yes

Figure 9: An example from the FraCaS dataset.

P1: Metals conduct electricity. Insulators do not conduct electricity.
P2: If something is made of iron then it is metal.

P3: Nails are made of iron.

Q: Nails conduct electricity?

Answer: true

Figure 10: An example from the RuleTaker dataset.

Fact1:The cow is big.

Fact2: The cow needs the dog.

Fact3: The dog sees the rabbit.

Fact4: The rabbit chases the cow.

Fact5: The rabbit chases the dog.

Fact6: The rabbit is big.

Fact7: The rabbit sees the dog.

Rule1: If the cow is blue and the cow needs the rabbit then the cow
needs the dog.

Rule2: If the cow chases the dog then the cow sees the rabbit.
Rule3: If something is big then it chases the dog.

Q: The cow sees the rabbit?

Answer: true

Figure 11: An example from the ProofWriter dataset.
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and select the correct answer from the
four answer labels. Read the passage
thoroughly to ensure you know what the
passage entails.

Instruction and Prompt for the True-or-False
Question Answering Task

Instructions: You will be presented
with a premise and a hypothesis about
that premise. You need to decide
whether the hypothesis is entailed by the
premise by choosing one of the following
answers: ‘E’: The hypothesis follows
logically from the information contained
in the premise. ‘C’: The hypothesis
is logically false from the information
contained in the premise. ‘N’: It is
not possible to determine whether the
hypothesis is true or false without
further information. Read the passage
of information thoroughly and select the
correct answer from the three answer
labels. Read the premise thoroughly to
ensure you know what the premise entails.

Instruction and Prompt for the Natural Lan-
guage Inference Task

Instructions: You will be presented
with a set of facts and rules as premises,
and a hypothesis about it. You need to
decide whether the hypothesis is entailed
by the premise by choosing one of the
following answers: ’Yes’: The hypothesis
follows logically from the information
contained in the premise. "No’: The
hypothesis is logically false from the
information contained in the premise.
"Neutral’: It is not possible to determine
whether the hypothesis is true or false
without further information. Read the
passage of information thoroughly and
select the correct answer from the
three answer labels. Read the premise
thoroughly to ensure you know what the
premise entails.

C Case Study

Figure 12 gives an example of GPT-4’s answer and
reasoning, which GPT-4 answered correctly. Ac-
cording to the passage, experts believe that a strict
inspection of drunk driving can reduce traffic ac-
cidents, despite the fact that the incidence rate is
similar for cities with and without strict checks. To



resolve this inconsistency of experts’ belief and
prove the claim that strict checks lower the inci-
dence of traffic accidents, GPT-4 chooses the new
evidence that the drunk driving rate used to be high
before strict checks, which can solve this contra-
diction. Figure 13 gives an example where GPT-
4 answered incorrectly. The passage talks about
whether humans originated from Africa. The con-
clusion would be challenged if we find older fossils
in other parts of the world. GPT-4 does not have
a thorough understanding of the problem. It only
focuses on establishing the chronological order of
events. The failure to attend to the location of the
fossils leads to the wrong answer.

—C )

Passage: The investigation of traffic accidents found that the incidence of

Reading Comprehension Task: Correct Answer

~

traffic accidents in cities with strict inspection of drunk driving is actually
similar to that of cities without strict inspection of drunk driving. However,
most experts still believe that a strict crackdown on drunk driving can indeed
reduce the incidence of traffic accidents.

Question: Which of the followings is most helpful in eliminating this
inconsistency?

Options:

A. Strictly check that the incidence of traffic accidents in cities with drunk
driving used to be very high.

B. Cities that crack down on drunk driving have not eliminated drunk driving.
C. Improving drivers’ awareness of traffic safety is more important than strict
management.

D. In addition to strictly investigating drunk driving, other traffic violations
should also be stopped.

Answer: A. Strictly check that the incidence of traffic accidents in cities with
drunk driving used to be very high.

Reason: If the incidence of traffic accidents in cities with strict inspection of
drunk driving used to be very high, it would indicate that the implementation
of strict inspections has had an impact on reducing the number of accidents.
This information would help to eliminate the inconsistency between the
initial finding and the expert opinions, as it suggests that the strict
crackdown on drunk driving has indeed contributed to a reduction in traffic
accidents, despite the current similarity in accident rates between cities with

and without strict inspections.

J

Figure 12: An GPT-4 generation example where the
model answers the question correctly.
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Passage: By now, the oldest Homo sapiens remains have appeared in Africa,

Reading Comprehension Task: Wrong Answer

about 200000 years ago. Based on this, many scientists believe that humans
originated in Africa, and that Homo sapiens, the direct ancestor of modern
humans, evolved in Africa about 200000 years ago, and then slowly migrated
northward across the Middle East to Europe and Asia about 150000 to
200000 years ago, gradually migrate to other parts of the world.

Question: Which of the followings, if true, can best refutes the above
scientist’s argument?

Options:

A. Modern Homo sapiens lived in the late Paleolithic Age, about 40,000 to
10,000 years ago. In China, late Homo sapiens fossils or cultural sites have
been found in many places, and there are hundreds of sites.

B. Fossilized Homo sapiens skulls living about 170000 years ago have been
found in an archaeological excavation in South America.

C. Homo sapiens has the extraordinary ability to communicate with each
other, to make plans and to solve all kinds of difficult problems.

D. Eight 400000-year-old Homo sapiens teeth have been found in the Qesem
Cave 12 km east of Tel Aviv. Israel. These are the oldest Homo sapiens
remains that scientists have ever found in the world.

Answer: B. Fossilized Homo sapiens skulls living about 170000 years ago
have been found in an archaeological excavation in South America.
Reason: The current argument states that Homo sapiens originated in
Africa around 200,000 years ago and then migrated to other parts of the
world. If fossilized Homo sapiens skulls from about 170,000 years ago were
found in South America, it would challenge the timeline and geographical
origin proposed in the argument. This finding would suggest that Homo
sapiens may have migrated to other continents earlier than previously
believed or that they may have evolved independently in multiple regions.
The other options do not directly contradict the current argument about
Kthe origins of Homo sapiens.

J

Figure 13: An GPT-4 generation example where the
model answers the question incorrectly.
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