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Abstract

Recently, large language models (LLMs), in-001
cluding notable models such as GPT-4 and bur-002
geoning community models, have showcased003
significant general language understanding abil-004
ities. However, there has been a scarcity of005
attempts to assess the logical reasoning capac-006
ities of these LLMs, an essential facet of nat-007
ural language understanding. To encourage008
further investigation in this area, we introduce009
GLoRE, a meticulously assembled General010
Logical Reasoning Evaluation benchmark com-011
prised of 12 datasets that span three different012
types of tasks. Our experimental results show013
that compared to the performance of human and014
supervised fine-tuning, the logical reasoning ca-015
pabilities of open LLM models necessitate addi-016
tional improvement; ChatGPT and GPT-4 show017
a strong capability of logical reasoning, with018
GPT-4 surpassing ChatGPT by a large margin.019
We propose a self-consistency probing method020
to enhance the accuracy of ChatGPT and a fine-021
tuned method to boost the performance of an022
open LLM. We release the datasets and evalua-023
tion programs to facilitate future research.024

1 Introduction025

Large Language Models (LLMs) (OpenAI, 2023;026

Touvron et al., 2023; Anil et al., 2023) are increas-027

ingly being aligned with real-world tasks (Bubeck028

et al., 2023; Ouyang et al., 2022; Qin et al., 2023;029

Chung et al., 2022), demonstrating advanced ca-030

pabilities in handling complex reasoning tasks031

and showing significant adaptability and versatil-032

ity across various applications, from simple every-033

day tasks to specialized domains such as coding,034

mathematics, law, medicine, and finance (Li et al.,035

2022; Frieder et al., 2023; Choi et al., 2023; Kung036

et al., 2023; Wu et al., 2023b). Previous work has037

shown pre-trained models’ proficiency in natural038

language understanding tasks (Goyal et al., 2023;039

Zhong et al., 2023a). However, studies also reveal040

areas of deficiency (Kocoń et al., 2023; Wang et al.,041

Figure 1: Instruction and question format for logical
reading comprehension tasks.

2023), calling into question the overall reasoning 042

capabilities of these models (Chalmers, 2023). 043

Logical reasoning is fundamental to human in- 044

telligence, and natural language-based logical rea- 045

soning has remained a vibrant research interest 046

since the inception of artificial intelligence (Cress- 047

well, 1973; Kowalski, 1979; Iwańska, 1993; Liu 048

et al., 2020b; Yu et al., 2020). Figure 1 represents 049

a showcase of testing logical reasoning in reading 050

comprehension. To successfully respond to such 051

logical reasoning questions, LLMs typically need 052

to engage in multi-step, algorithmic, symbolic, and 053

compositional reasoning (Liu et al., 2020b). Thus, 054

logical reasoning serves as a suitable testbed for 055

evaluating the abilities of LLMs to process com- 056

plex information in natural language accurately, 057

robustly, and logically. 058

To this end, we present a General Logical Rea- 059

soning Evaluation (GLoRE) benchmark, evaluating 060

instruction-tuned LLMs for LLM logical reasoning 061

tasks on several logical reasoning datasets, detail- 062

ing the strengths and limitations of LLMs in this 063

domain. Similar to GLUE (Wang et al., 2018) and 064

Super-GLUE (Wang et al., 2019) for natural lan- 065

guage understanding, GLoRE assembles a range of 066

different datasets that evaluates logical reasoning. 067

Specifically, we consider three types of logical rea- 068

soning tasks, including Multi-choice Reading Com- 069

prehension (Lai et al., 2017), Natural Language 070

Inference (NLI) (Dagan et al., 2005), and True-or- 071
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False (Yes-or-No) Questions (Clark et al., 2019).072

The three task formats cover a broad spectrum of073

logical reasoning phenomena, where high-quality074

logical reasoning datasets were released and remain075

challenging for pre-trained language models before076

LLM (Huang and Chang, 2023; Clark et al., 2019;077

Koreeda and Manning, 2021). Overall, GLoRE078

covers 12 datasets with 72,848 instances in total.079

Using GLoRE, we evaluate the logical reasoning080

ability of both powerful commercial models like081

GPT-4, and popular open-sourced models like the082

ones based on LLaMA (Touvron et al., 2023), Fal-083

con (Almazrouei et al., 2023) and Mistral (Jiang084

et al., 2024), testing their instruction-following085

and problem-solving abilities for logical reasoning086

tasks. Results show that commercial LLMs outper-087

form open-source LLMs and pre-trained LMs by088

a large margin on zero-shot settings, with GPT-4089

drawing close to human performances on specific090

datasets. However, the performance of GPT 4 and091

other models does not remain stable across the092

board, with significant variations between differ-093

ent datasets, which can indicate their sensitivity to094

data distributions. The susceptibility of models to095

variations in data distribution is further confirmed096

by observations that both in-context learning and097

supervised fine-tuning predominantly enhance the098

performance of Large Language Models (LLMs)099

across specific test distributions. This demonstrates100

their robust learning ability. Interestingly, Chain-101

of-Thought reasoning can be helpful to logical rea-102

soning, as indicated by prior work (Kojima et al.,103

2023; Chen et al., 2023; Saparov and He, 2022;104

Yang et al., 2022), but only to a very limited extent,105

which suggests that it might take effect mostly by106

offering relatively superficial patterns. Our results107

show both promises and challenges – on the one108

hand, LLMs show the potential to give solid perfor-109

mances and learn effectively on logical reasoning110

datasets; on the other hand, they show much sen-111

sitivity to the data distribution, and therefore, the112

robustness needs further enhancement.113

To our knowledge, GLoRE is the first instruction-114

prompt evaluation suite for logical reasoning, and115

we are the first to evaluate LLMs’ complex logical116

reasoning abilities comprehensively. We release117

our benchmark at https://anonymous.com.118

2 Related Work119

Logical Reasoning with Natural Language. Tap-120

ping into logical reasoning capabilities represents a121

holistic endeavour in natural language understand- 122

ing (NLU). A variety of methods have been ex- 123

plored to realize this objective, including symbolic 124

systems (Mccarthy, 2002; Poole et al., 1987; Mac- 125

Cartney and Manning, 2007a), fine-tuning of lan- 126

guage models (Wang et al., 2018; Huang et al., 127

2021; Xu et al., 2022; Liu et al., 2023b), and hy- 128

brid approaches combining neural and symbolic 129

elements (Li and Srikumar, 2019; Saha et al., 2020; 130

Sanyal et al., 2022). 131

The recent introduction of evaluation datasets, 132

notably LogiQA (Liu et al., 2020b) and Reclor (Yu 133

et al., 2020), has reinvigorated the focus on log- 134

ical reasoning in NLP research. Logical reason- 135

ing is now leveraged in numerous probing tasks 136

over large Pre-trained Language Models (PLMs) 137

and applied to downstream tasks such as question- 138

answering and dialogue systems (Shi et al., 2021; 139

Beygi et al., 2022). Despite these advancements, 140

the aspiration to emulate human-like logical rea- 141

soning capabilities within NLU systems remains 142

a significant challenge for traditional models (Liu 143

et al., 2020b; Huang and Chang, 2023). In this 144

study, our goal is not only to quantitatively evaluate 145

the capability of Large Language Models (LLMs) 146

in addressing the previously mentioned challenge 147

but also to underscore the significance of our work 148

in providing a validated platform for enhancing 149

various reasoning methods with our data. 150

LLM Reasoning Evaluation. Despite progress 151

in evaluating LLMs for specific reasoning tasks 152

like arithmetic (Qin et al., 2023) and commonsense 153

(Bang et al., 2023), a yawning gap exists in compre- 154

hensively assessing their logical reasoning. While 155

LLMs excel at specific tasks like arithmetic rea- 156

soning (Qin et al., 2023), they face challenges in 157

complex areas like multi-step reasoning (Fu et al., 158

2023) and abstract scenarios (Gendron et al., 2023). 159

ChatGPT exhibits strengths in chat-specific rea- 160

soning and some commonsense domains (Bang 161

et al., 2023; Ott et al., 2023), but struggles with 162

tasks requiring longer chains of inference (Bang 163

et al., 2023). Other LLMs like FLAN-T5 (Chung 164

et al., 2022), LLaMA (Touvron et al., 2023), and 165

PaLM (Anil et al., 2023) show potential in general 166

deductive reasoning (Saparov et al., 2023), while 167

InstructGPT and Codex excel in specialized do- 168

mains like medical reasoning (Liévin et al., 2022). 169

Despite these advances, limitations in data bias 170

(Orrù et al., 2023), and complex reasoning tasks ne- 171

cessitate further research and optimization to fully 172

unlock the reasoning potential of LLMs (Wu et al., 173
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2023c).174

The Massive Multitask Language Understand-175

ing (MMLU) benchmark (Hendrycks et al., 2021)176

evaluates the capabilities of large language mod-177

els in various domains, ranging from the founda-178

tional areas of knowledge like mathematics and179

history to highly specialized fields such as law and180

ethics. However, compared to the GLoRE bench-181

mark, MMLU does not introduce logical reasoning182

data into the scope, making it incapable of testing183

complex logical reasoning tasks.184

Big-Bench Hard (BBH) (Suzgun et al., 2022)185

isolates 23 most challenging tasks from BIG-186

Bench (bench authors, 2023). These tasks com-187

prise general language understanding, arithmetic188

and algorithmic reasoning, and logical deduction.189

However, in comparison to our benchmark, the190

data size of the logical reasoning section in BBH is191

very small. HumanEval (Chen et al., 2021) serves192

as a hand-written evaluation set for coding. The193

programming problems included are designed to194

assess language comprehension, reasoning, algo-195

rithms, and simple mathematics. While similar to196

logical reasoning in that code generation necessi-197

tates complex reasoning skills, GLoRE differs in198

presenting logical reasoning problems via natural199

language prompts.200

ARB (Sawada et al., 2023) is a benchmark for201

advanced reasoning over multiple fields like mathe-202

matics, physics, biology, chemistry, and law. Simi-203

lar to GLoRE, it introduces a challenging subset of204

math and physics problems that require advanced205

symbolic reasoning. However, the benchmark con-206

straints its problem on the above subjects with207

domain knowledge, not general logical reasoning208

questions, which is the focus of GLoRE.209

3 The GLoRE Dataset210

Dataset Size Target

LogiQA 2.0 test 1,572 4-way multi-choice
LogiQA 2.0 zh test 1,594 4-way multi-choice
ReClor dev 500 4-way multi-choice
AR-LSAT test 230 5-way multi-choice
LogiQA22 1,354 4-way multi-choice

ConTRoL 805 E, C, N
HELP 35,891 E, C, N
TaxiNLI test 10,071 E, C, N
NaN-NLI 259 E, C, N

FraCas 346 Yes, No, Neutral
RuleTaker dev 10,068 Yes, No
ProofWriter dev 10,158 Yes, No

Table 1: Data statistics. (“E” refers to “entailment”; “C”
refers to “contradiction”; “N” refers to “neutral”.)

As mentioned in the introduction, GLoRE con- 211

tains three NLU tasks: Multi-choice Reading Com- 212

prehension, NLI, and Yes-or-No. First, Multi- 213

choice reading comprehension (Lai et al., 2017) 214

is essential in verbal reasoning tests, which cover 215

abundant high-quality logical reasoning problems 216

in the wild. Second, Unlike multi-choice reading 217

comprehension, NLI (Dagan et al., 2005) is more 218

general and centric on entailment relations in a sim- 219

pler task format, which is a fundamental task for 220

evaluating reasoning abilities (Poliak et al., 2018; 221

Demszky et al., 2018). Third, the Yes-or-No rea- 222

soning task (Clark et al., 2019) is a combination of 223

question-answering and textual entailment, which 224

can serve as a playground for testing models’ rea- 225

soning abilities (Clark et al., 2020; Tafjord et al., 226

2021). The data statistics are shown in Table 1. 227

3.1 Multi-choice Reading Comprehension 228

(MRC) 229

Within the standard multi-choice reading compre- 230

hension (MRC) task setting, a system is presented 231

with a passage and a question, and the objective is 232

to choose the most suitable answer from a set of 233

candidate responses. An example of logical MRC 234

can be seen in Figure 1. Particularly, GLoRE con- 235

tains five such datasets: 236

LogiQA (Liu et al., 2020b) is a logical MRC 237

dataset derived from the Chinese Civil Service Ex- 238

amination, translated into English, and made avail- 239

able in both Chinese and English versions. Figure 3 240

in Appendix A illustrates an example. We adopt the 241

second version of LogiQA (Liu et al., 2023a) and 242

use both the English (LogiQA 2.0) and Chinese 243

(LogiQA 2.0 zh) test sets for our evaluation. 244

ReClor (Yu et al., 2020) comprises question- 245

answering examples from the LSAT exams de- 246

signed to assess human logical reasoning abilities. 247

We use the development set for our testing as the 248

test set does not provide gold labels. 249

AR-LSAT (Wang et al., 2022) is a dataset of an- 250

alytical reasoning questions from the Law School 251

Admission Test. Each question contains five op- 252

tions rather than four. An example from the AR- 253

LSAT test set can be found in Figure 4 in Ap- 254

pendix A. 255

LogiQA22 is collected and processed accord- 256

ing to the LogiQA 2.0 format after ChatGPT was 257

released. It incorporates the newly released Chi- 258

nese Civil Servant Exams from 2022, which are 259

not included in the original LogiQA dataset. 260
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3.2 Natural Language Inference (NLI)261

NLI is the task of determining the logical relation-262

ship between a hypothesis and a premise. The typi-263

cal scheme involves text classification, where the264

model selects one of three labels: entailment, con-265

tradiction, and neutral. An logical NLI example is266

shown in Figure 5.267

ConTRoL (Liu et al., 2020a) is an NLI dataset268

that offers an in-depth examination of contextual269

reasoning within the NLI framework. Figure 5270

in Appendix A displays an example of ConTRoL.271

Approximately 36.2% of premise-hypothesis pairs272

fall under the category of logical reasoning in this273

dataset. We choose the logical reasoning portion274

for our evaluation.275

HELP (Yanaka et al., 2019) is an NLI dataset276

emphasizing monotonicity reasoning, a crucial con-277

cept in Natural Logic (MacCartney and Manning,278

2007b). An example from the HELP dataset can279

be seen in Figure 6 in Appendix A. We use the280

training set for our evaluation.281

TaxiNLI (Joshi et al., 2020) is an NLI282

dataset that has been re-annotated based on283

MNLI (Williams et al., 2018), with categories in-284

clude logical categories such as connectives, math-285

ematical reasoning, and deduction. An example286

from the TaxiNLI dataset can be found in Figure 7287

in Appendix A.288

NaN-NLI (Truong et al., 2022) is a test suite289

designed to probe the capabilities of NLP models290

in capturing sub-clausal negation. An example291

from the NaN-NLI dataset is depicted in Figure 8292

in Appendix A. The successful handling of sub-293

clausal negation can be seen as a strong indicator294

of a model’s logical reasoning capacity.295

3.3 True-or-False (Yes-or-No) Questions (TF)296

The FraCaS test suite (Pulman, 1996), converted297

to RTE style by MacCartney and Manning (2007a),298

presents complex entailment problems involving299

multi-premised contexts. The original FraCas300

dataset is a three-way classification (“Yes”, “No”,301

“Don’t know”) task. The ability to determine entail-302

ment relationships in this context is closely tied to303

logical reasoning. Figure 9 in Appendix A illus-304

trates an example. We convert the “Don’t know”305

label into a single “Neutral” token.306

The RuleTaker (Clark et al., 2020) dataset is a307

synthetic creation designed to examine the reason-308

ing ability of transformer models (Vaswani et al.,309

2017) over natural language rules. This task ex-310

plicitly targets logical reasoning by asking models 311

to reason over a set of rules and facts to gener- 312

ate true-or-false responses as output. An example 313

from the RuleTaker dataset is shown in Figure 10 314

in Appendix A. 315

The ProofWriter (Tafjord et al., 2021) dataset 316

generates sets of facts and rules, each followed by 317

questions, which can be proven true or false using 318

proofs of various depths. Figure 11 in Appendix A 319

presents an example from the ProofWriter dataset. 320

4 Evaluation Methodology 321

We consider seven logic reasoning evaluation sce- 322

narios for open-sourced LLMs and closed API- 323

based or UI-based models such as ChatGPT and 324

GPT-4, which include zero-shot evaluation, few- 325

shot and Chain-of-Thought evaluation, instruction 326

tuning evaluation. 327

Zero-shot Evaluation In this setup, the task in- 328

put is transposed into a prompt via templates, and 329

the gold label is verbalized (Liu et al., 2021b). The 330

LLMs need to generate the verbalized gold answer. 331

Prior research indicated that ChatGPT could under- 332

perform in question-answering scenarios if the in- 333

structions were not appropriately optimized (Zhong 334

et al., 2023b). Consequently, we investigated dif- 335

ferent zero-shot prompting methods to enhance the 336

performance of the tested models. The instructions 337

differ slightly for different datasets, according to 338

their target outputs. The finalized instructions for 339

the three types of tasks are integrated into GLoRE. 340

Few-shot Evaluation LLMs are capable of 341

achieving efficient in-context learning (Dong et al., 342

2023), where different numbers of context exam- 343

ples and in-context demonstration methods (Liu 344

et al., 2021a) can be used. In this study, we ran- 345

domly sampled a few instances (1 for 1-shot, 2 for 346

2-shot, and 5 for 5-shot) from each dataset to con- 347

duct few-shot experiments respectively. For each 348

sampled instance, we append it to the beginning of 349

the existing prompt. For the experiment, we use 350

the same model configuration as in the zero-shot 351

scenario. 352

Instruction Tuning An appealing benefit of 353

open-sourced LLMs, such as LLaMA, lies in their 354

amenability to task-specific fine-tuning (Wu et al., 355

2023a). This feature allows us to optimize their per- 356

formance more precisely, offering a distinct edge 357

over their closed counterparts. We consider an 358

evaluation method by fine-tuning the open-sourced 359

LLM model using instruction-tuning, providing 360
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specific instructions to address distinct tasks.361

We converted a specific logic reasoning training362

set into the instruction-prompting framework as363

shown in Appendix B. This process entailed reform-364

ing the dataset such that each instance was paired365

with a clear, directive instruction, an input, and a366

target output. We then fine-tuned an open-sourced367

LLM with this transformed training dataset and368

the fine-tuning process. After instruction-tuning,369

we evaluate the model performance on the spe-370

cific test set for the training task and the zero-shot371

performance on the other logic reasoning tasks to372

examine its cross-task generalization ability.373

Chain-of-Thought Evaluation It has been374

shown that Chain-of-Thought (CoT) can improve375

the math (Imani et al., 2023; Chen et al., 2022) and376

logic (Ling et al., 2023) capabilities of LLMs. We377

explore zero-shot CoT prompting (Kojima et al.,378

2023) on logical reasoning datasets.379

5 Results380

5.1 Evaluated Models381

We adopted RoBERTa-base (Liu et al., 2019)382

as a baseline, fine-tuning it on the training set383

over five epochs for each dataset. The com-384

munity models selected for comparison include385

FALCON-40B-INSTRUCT (Almazrouei et al., 2023)386

LLAMA-30B-SUPERCOT (Touvron et al., 2023)387

and MIXTRAL-8X7B, both of which are highly-388

regarded open language model representations389

(LLMs) available on the HuggingFace Hub.1390

Both ChatGPT and GPT-4 are evaluated with391

the OpenAI Evaluation framework2, a comprehen-392

sive tool designed for the evaluation of OpenAI393

models. The specific versions of the models as-394

sessed are labeled as "gpt-3.5-turbo-0301" for Chat-395

GPT and "gpt-4-0314" for GPT-4, respectively.396

Moreover, we engage the GPT-4 Chat UI to con-397

duct a series of case studies on GPT-4. These exam-398

inations probe into the model’s in-context learning399

abilities and chain-of-thought reasoning capabili-400

ties, by using two OpenAI Plus accounts.401

All experiments were executed on 40G VRAM402

A100 GPUs based on the HuggingFace transform-403

ers library. Our evaluation metrics consisted of404

classification accuracy scores. Additionally, we405

utilized reported accuracies for datasets where hu-406

man performance data was available and recorded407

1https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

2https://github.com/openai/evals

both the average and peak performance of human 408

participants to establish a human baseline. For the 409

LogiQA22 dataset, we engaged five co-authors as 410

test subjects and computed their accuracy based on 411

150 test examples. 412

5.2 Main Results 413

Zero-shot Results Table 2 outlines the primary 414

zero-shot evaluation results. The first block 415

presents both the average and maximum human 416

performance. Notably, with the exception of the 417

ReClor and AR-LSAT tasks, humans achieve an av- 418

erage accuracy exceeding 80%. On ReClor and AR- 419

LSAT, the averaged human performance is 63.00% 420

and 56.00%, respectively, showing the challenge of 421

these LSAT tasks. The human ceiling performance 422

is close to 100%, showcasing human proficiency in 423

logical reasoning tasks. 424

The second block details the supervised fine- 425

tuning results of RoBERTa-base, a model con- 426

taining only 125M parameters. RoBERTa-base 427

achieves accuracy rates of 48.76% and 33.22% on 428

LogiQA 2.0 and LogiQA22, respectively. The over- 429

all performance of RoBERTa-base lags behind av- 430

erage human performance, suggesting that super- 431

vised models may struggle to learn logical reason- 432

ing. Moreover, the model’s performance on MRC 433

tasks is lower than on NLI and TF tasks, which 434

can be because of more output ambiguities (multi- 435

choice vs. three-way or Yes/No). On the NaN-NLI 436

dataset, RoBERTa yields 90.02% accuracy, the best 437

performance reaching the human level. This might 438

be because NaN-NLI is a negation data converted 439

from sentence-level NLI datasets by rules. Fine- 440

tuned RoBERTa is able to learn superficial artifacts 441

from the data. While ProofWriter requires complex 442

reasoning skills, RoBERTa-base’s superior perfor- 443

mance (55.92%) on this task suggests its potential 444

to tackle specific types of logical reasoning tasks. 445

The third block presents the zero-shot results 446

for LLaMA, Falcon, and Mixtral. The average 447

performance across all tasks is strikingly similar 448

for LLaMA and Falcon (32.34% for LLaMA and 449

32.28% for Falcon), suggesting that LLaMA-30B’s 450

logical reasoning capabilities are comparable to 451

those of Falcon 40B. However, both LLaMA and 452

Falcon fall short of RoBERTa-base’s performance 453

on nearly all task types, with the notable exception 454

of RT for Falcon. Specifically, the accuracy results 455

on the MRC tasks for LLaMA and Falcon are ap- 456

proximately 20%, a figure which is even lower than 457

expected from a random guess in a 4-way classi- 458
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Task MRC NLI TF Average
Dataset LQ LQ zh RC AL LQ22 CT HL TN NN FC RT PW

Human avg. 86.00 88.00 63.00 56.00 83.00 87.00 81.00 97.00 94.00 92.00 84.00 82.00 82.75
Human Ceiling 95.00 96.00 100.00 91.00 99.00 94.00 95.00 100.00 100.00 97.00 95.00 93.00 96.25

RoBERTa 48.76 35.64 55.01 30.90 33.22 48.76 39.47 49.91 90.02 32.01 53.50 55.92 47.76

LLaMA 19.31 26.35 17.81 17.98 18.41 24.10 32.26 41.91 47.29 40.00 48.89 53.78 32.34
Falcon 23.21 19.77 26.77 12.70 17.33 16.13 28.49 44.66 53.31 35.57 56.11 53.33 32.28
Mixtral-8x7B 45.29 36.81 48.92 41.40 38.97 50.84 33.27 40.86 50.13 32.08 46.84 44.80 42.52
ChatGPT 52.37 53.18 57.38 51.49 38.44 58.45 42.13 57.30 56.59 49.13 54.74 53.95 52.10
GPT-4 72.25 70.56 87.20 73.12 58.49 56.40 46.01 60.08 76.74 75.35 60.19 59.66 66.34

Table 2: LLMs’ performance on the GLoRE benchmark. LQ: LogiQA 2.0, RC: ReClor, AL: AR-LSAT, CT:
ConTRoL, HL: HELP, TN: TaxiNLI, NN: NaN-NLI, FC: FraCas, RT: RuleTaker, PW: ProofWriter. All results are
in %, the best ones are in bold, and the second best ones are in underline.

Types ChatGPT GPT-4 LLaMA Falcon

Categorical reasoning 83.83% (389/464) 95.04% (441/464) 22.84% (106/464) 20.91% (97/464)
Sufficient condition reasoning 44.99% (175/389) 63.75% (248/389) 20.82% (81/389) 20.56% (80/389)
Necessary condition reasoning 37.46% (124/331) 60.73% (201/331) 19.64% (65/331) 25.38% (84/331)
Conjunctive reasoning 26.79% (75/280) 35.00% (98/280) 7.86% (22/280) 12.86% (36/280)
Disjunctive reasoning 15.75% (60/381) 27.03% (103/381) 7.87% (30/381) 17.85% (68/381)

Table 3: LLMs’ performance across reasoning types (accuracy %).

fication. These findings indicate that instruction-459

tuned LLMs face challenges with logical reason-460

ing tasks without incorporating specific in-context461

demonstrations. Furthermore, we observe a smaller462

performance gap between LogiQA and LogiQA22463

for these models compared to RoBERTa, imply-464

ing that without specific in-domain tuning, their465

performance remains relatively stable and is not466

significantly impacted by the presence of test data467

distribution. MIXTRAL-8X7B, on the other hand,468

shows a significant performance increase compared469

to the other two open models, indicating the effi-470

ciency of a mixture-of-expert model.471

The fourth block provides the zero-shot results472

of ChatGPT and GPT-4. Both models, partic-473

ularly GPT-4, exceed RoBERTa-base in several474

MRC benchmarks. However, we observed a sig-475

nificant performance drop on LogiQA22. For in-476

stance, GPT-4’s accuracy on LogiQA22 dropped477

to 58.49% compared to a solid 72.25% on LogiQA478

2.0, indicating that these models are sensitive to479

data distribution, while struggle with unfamiliar480

data distributions. In NLI tasks and true-or-false481

questions, ChatGPT and GPT-4 showed notable482

improvements over the fine-tuned RoBERTa across483

most datasets. Specifically, ChatGPT exhibited484

the best performance with 58.45% accuracy on485

the ConTRoL dataset, surpassing GPT-4. Again,486

GPT4’s performance varies across datasets for NLI,487

showing sensitivity to data distribution.488

The results of TF questions are similar. Intu-489

Model 0-shot 1-shot 2-shot 5-shot

LLaMA 32.34 32.89 35.03 39.62
Falcon 32.28 33.14 33.76 35.72
ChatGPT 52.10 55.85 57.43 60.32
GPT-4 66.34 70.31 71.44 75.83

Table 4: Average accuracies on GLoRE few-shot evalu-
ation.

itively, the underlying logical rules are consistent 490

across different datasets, but the data distributions 491

are different. If a model makes use of correct ra- 492

tionales, it should give consistent levels of perfor- 493

mance across distributions. Our observations in 494

Table 2 contradict the above, which shows that the 495

model rationale is not the same as the human ratio- 496

nale. 497

Results Across Tasks and Reasoning Types 498

In our experiments, we evaluated the performance 499

of the LLMs on three types of tasks. We found 500

that the performance of models varied significantly 501

across tasks and reasoning types. Table 2 lists out 502

the detailed scores. 503

In zero-shot scenarios, the open-source models 504

falcon-40b-instruct and LLAMA-30B-SUPERCOT 505

performed significantly below RoBERTa and hu- 506

man baselines on machine reading comprehension 507

and natural language inference tasks, with the ex- 508

ception of binary classification problems, where 509

the performance gap is not salient. Specifically, 510

ChatGPT exemplifies similar performance to the 511

two open-source models, indicating their incapa- 512
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bility on TF questions. However, ChatGPT and513

GPT-4 showed improved performance compared to514

RoBERTa, even in zero-shot conditions. In partic-515

ular, GPT-4 performed close to or even surpassed516

the human level on datasets such as ReClor.517

Overall, GPT-4 and ChatGPT models show re-518

markable capability in tackling some logical MRC519

datasets. The performance is not as competitive520

when facing the NLI and TF tasks (NLI and TF are521

three-way or two-way classification tasks; however,522

most of the accuracies are even lower). Apart from523

that, we observed a significant performance drop524

in newly cultivated data for these commercial mod-525

els, a trend not mirrored by the open-source models.526

The shift in data distribution might contribute to the527

performance drop of the intensive instruction-tuned528

models.529

5.3 The Effect of In-Domain Training530

The above experiments show that the performances531

of LLMs are sensitive to the data distribution. Even532

though the underlying reasoning principles are the533

same, LLM performance varies significantly across534

datasets. This suggests that LLMs might not reason535

using the correct rationale, but rely on superficial536

features. To further investigate the influence of data537

distribution, we consider training on datasets where538

LLMs perform weakly – using in-context learning539

for commercial LLMs and supervised fine-tuning540

for open-source LLMs.541

Few-shot Results for GPT-4 Few-shot learning542

aims to educate models on the data distribution543

with as few instances as possible. The few-shot544

evaluation tests the efficiency of models to solve545

similar problems. Evaluation results are shown in546

Table 4. With the increase of in-context examples,547

the accuracy of each tested model on the GLoRE548

benchmark increases. The models we tested all549

show in-context learning abilities on the logic rea-550

soning benchmark. Among them, GPT-4 witnesses551

the highest performance gain with over 9 percent552

accuracy boost on the 5-shot scenario compared to553

zero-shot.554

Instruction-tuned LLaMA We conducted in-555

struction tuning (Section 4) with the LogiQA 2.0556

training set using LLaMA-7b. The fine-tuning pro-557

cess, spanning 2 epochs, leveraged the computa-558

tional capabilities of 2 A100 GPUs. The results559

of this experiment are illustrated in Table 5. First,560

post fine-tuning with Alpaca’s instructions, a sub-561

stantial improvement in performance was observed562

across all tasks, underscoring the effectiveness of563

Dataset 7b-base Alpaca 7b-tuned

LogiQA 2.0 test 18.04 22.99 52.74
LogiQA 2.0 zh test 19.06 22.54 31.18
ReClor dev 15.83 22.38 55.20
AR-LSAT test 13.91 13.16 21.43
LogiQA22 20.25 21.16 35.16

Table 5: Fine-tune LLaMA on the LogiQA dataset (ac-
curacy %). “7b-base” is the base model of LLaMA-7b;
“Alpaca” is an instruction-tuned LLaMA-7b with GPT-4
Alpaca data; “7b-tuned” is our fine-tuned LLaMA-7b
on the LogiQA 2.0 training set. All results are in %.

Model w/o CoT w/ CoT

LLaMA 32.34 35.05
Falcon 32.28 34.98
ChatGPT 52.10 55.75
GPT-4 66.34 68,47

Table 6: Chain-of-Thought evaluation on GLoRE. All
results are in %.

instruction-tuning. As Alpaca’s instructions were 564

not task-specific for logical reasoning tasks, the im- 565

provements can be largely attributed to the model’s 566

enhanced general instruction comprehension ca- 567

pabilities. Second, our tuned LLaMA-7B model 568

markedly outperformed the baseline LLaMA-7B 569

model and Alpaca. On LogiQA 2.0, the accuracy 570

is improved from 18.04% to 52.74%, achieving a 571

performance higher than the fine-tuned RoBERTa- 572

base result (48.76%). Although the instruction- 573

tuning only uses the LogiQA 2.0 training dataset, 574

the tuned model can generalize the logic reason- 575

ing ability to the other datasets. For instance, on 576

LogiQA 2.0 zh, the performance is boosted from 577

19.06% to 31.18%, while on ReClor, the fine-tuned 578

model achieved 55.20% accuracy, outperforming 579

Alpaca by 32.82 points. These results demonstrate 580

that instruction-finetuning can improve the zero- 581

shot logic reasoning performance via transfer learn- 582

ing. Moreover, the instruction-tuned model’s per- 583

formance on LogiQA22 (35.16%) even surpassed 584

that of the RoBERTa-based classification model 585

(33.22%), demonstrating the potential benefits of 586

generalization using instruction-tuning. 587

CoT correct CoT wrong

w/o CoT correct 65.00 1.33
w/o CoT wrong 3.50 30.21

Table 7: The confusion matrix for GPT-4 results on the
LogiQA22 data with/without CoT. All results are in %.
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Model Coherence Completeness Correctness Relevance

LLaMA 3.38 3.53 3.00 4.50
Falcon 3.21 3.44 3.15 4.50
ChatGPT 4.00 4.81 3.76 4.72
GPT-4 4.52 4.81 4.51 4.89

Table 8: Human evaluation of CoT generations.

5.4 Chain-of-Thought Prompting588

It has been shown that Chain-of-Thought prompt-589

ing can give stronger performances for reasoning590

(Wei et al., 2023; Kojima et al., 2023). One ad-591

vantage of Chain-of-Thoguht reasoning is that it592

increases the interpretability, where we an gain un-593

derstanding of the reasoning steps. Table 6 shows594

the results on GLoRE with/without CoT. Apart595

from that, we calculate the confusion matrix of596

GPT-4 results in Table 7. All models experience a597

performance gain with the CoT prompting, ranging598

from 2 to 3 percent. The confusion matrix further599

illustrates the significance of performance elevation600

with CoT prompting.601

Manual Evaluation and Case Study We further602

evaluate the reasoning processes by LLMs, and the603

results are shown in Table 8. The human evalua-604

tion is conducted on 100 data instances randomly605

selected from the benchmark. The objective is to606

assess the model’s capability to produce logically607

coherent reasoning pathways leading up to the final608

answer, rather than solely the correctness of the609

outcome.610

The four dimensions we include in our evalua-611

tion metrics are detailed as follows:612

a. Coherence: Measure the logical consistency613

in the reasoning process. Are there any jumps in614

logic or contradictory statements?615

b. Completeness: Does the model cover all as-616

pects of the question? Is every step in the reasoning617

process explained?618

c. Correctness: Beyond the final answer, are the619

intermediate conclusions accurate?620

d. Relevance: Is the content of the reasoning621

pertinent to the question at hand? Are there any622

unrelated digressions?623

We adopt a 5-point Likert scale for each metric:624

1 = Poor, 2 = Below Average, 3 = Average, 4 =625

Above Average, 5 = Excellent.626

It can be seen that the models give relatively low627

scores on the coherence and correctness of the rea-628

soning chains. Surprisingly, some 11% of incorrect629

reasoning chains can lead to correct outputs, as an630

example shown in Figure 2. This further shows631

that LLM might not rely on exact reasoning chains632

Figure 2: GPT-4 responses with correct answer yet
wrong inference.

for deriving the conclusion, but might make use of 633

superficial features in the chain instead. The results 634

indicate the need for further enhancing the causal 635

nature of LLM reasoning. 636

We further elaborated on two specific case stud- 637

ies in Appendix C. These case studies provide de- 638

tailed examples of how the models responded to 639

specific prompts and where GPT-4 made the right 640

and wrong predictions and rationales. 641

6 Conclusion 642

We assembled GLoRE, a comprehensible dataset 643

for evaluating the logical reasoning ability of Chat- 644

GPT, GPT-4, and other strong open-source LLMs 645

on multiple logical reasoning tasks. Our results 646

show that ChatGPT and GPT-4 outperform the tra- 647

ditional fine-tuning method on most logical reason- 648

ing benchmarks. In contrast, community models 649

are weak on GLoRE, while instruction-tuning on 650

similar data increases the models’ performance. Fi- 651

nally, supervised fine-tuning, in-context learning, 652

and voting techniques all lead to stronger results. 653

Both quantitative and qualitative evaluation suggest 654

that existing LLMs may rely on relatively super- 655

ficial patterns in solving logical reasoning tasks, 656

and research on enhancing the underlying infer- 657

ence mechanism can be useful for addressing such 658

issues. 659
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Limitatins660

While the GLoRE benchmark provides valuable661

insights into the logical reasoning capabilities of662

large language models (LLMs), there are several663

limitations to consider:664

Dataset Bias The effectiveness of evaluating log-665

ical reasoning in LLMs heavily relies on the quality666

and diversity of the datasets used. Biases present667

in the training data may impact the generalizabil-668

ity of the results and the model’s performance on669

real-world scenarios.670

Task Specificity The logical reasoning tasks in-671

cluded in the GLoRE benchmark may not cover672

the full spectrum of reasoning abilities required673

for comprehensive natural language understanding.674

Certain types of reasoning, such as causal reason-675

ing or temporal reasoning, may not be adequately676

addressed in the current evaluation framework.677

Scalability As LLMs continue to grow in size678

and complexity, scalability issues may arise in eval-679

uating their logical reasoning abilities. The compu-680

tational resources required for training and testing681

these models on increasingly complex tasks could682

be a limiting factor.683

Addressing these limitations and exploring av-684

enues for further research will be essential to en-685

hance the robustness and applicability of logical686

reasoning evaluations in large language models.687
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A Datasets Examples1116

We illustrate data examples mentioned in Section 31117

here.1118

Figure 3 is an example from the LogiQA 2.0 test1119

set. In this example, investigators want to certify1120

the connection between astrological signs and per-1121

sonality. However, the volunteers who attended the1122

program were biased because introverted people1123

are less likely to attend such investigations. This1124

fact flaws the conclusion of the investigation.1125

B Instructions and Prompts for the Three1126

Tasks1127

The instructions differ slightly for different1128

datasets, according to their target outputs. Instruc-1129

tion and Prompt for the Multi-Choice Read-1130

ing Comprehension Task Instructions: You1131

will be presented with a passage and a1132

question about that passage. There are1133

four options to be chosen from, you need1134

to choose the only correct option to1135

answer that question. If the first option1136

is right, you generate the answer ‘A’, if1137

the second option is right, you generate1138

the answer ‘B’, if the third option is1139

right, you generate the answer ‘C’, if1140

the fourth option is right, you generate1141

the answer ‘D’, if the fifth option1142

is right, you generate the answer ‘E’.1143

Read the question and options thoroughly1144

Figure 3: A multi-choice reading comprehension exam-
ple from the LogiQA 2.0 dataset.

Figure 4: An example from the AR-LSAT dataset.

Figure 5: An NLI example from the ConTRoL dataset.

Figure 6: An NLI example from the HELP dataset.
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Figure 7: An NLI example from the TaxiNLI dataset.

Figure 8: An NLI example from the NAN-NLI dataset.

Figure 9: An example from the FraCaS dataset.

Figure 10: An example from the RuleTaker dataset.

Figure 11: An example from the ProofWriter dataset.

and select the correct answer from the 1145

four answer labels. Read the passage 1146

thoroughly to ensure you know what the 1147

passage entails. 1148

Instruction and Prompt for the True-or-False 1149

Question Answering Task 1150

Instructions: You will be presented 1151

with a premise and a hypothesis about 1152

that premise. You need to decide 1153

whether the hypothesis is entailed by the 1154

premise by choosing one of the following 1155

answers: ‘E’: The hypothesis follows 1156

logically from the information contained 1157

in the premise. ‘C’: The hypothesis 1158

is logically false from the information 1159

contained in the premise. ‘N’: It is 1160

not possible to determine whether the 1161

hypothesis is true or false without 1162

further information. Read the passage 1163

of information thoroughly and select the 1164

correct answer from the three answer 1165

labels. Read the premise thoroughly to 1166

ensure you know what the premise entails. 1167

Instruction and Prompt for the Natural Lan- 1168

guage Inference Task 1169

Instructions: You will be presented 1170

with a set of facts and rules as premises, 1171

and a hypothesis about it. You need to 1172

decide whether the hypothesis is entailed 1173

by the premise by choosing one of the 1174

following answers: ’Yes’: The hypothesis 1175

follows logically from the information 1176

contained in the premise. ’No’: The 1177

hypothesis is logically false from the 1178

information contained in the premise. 1179

’Neutral’: It is not possible to determine 1180

whether the hypothesis is true or false 1181

without further information. Read the 1182

passage of information thoroughly and 1183

select the correct answer from the 1184

three answer labels. Read the premise 1185

thoroughly to ensure you know what the 1186

premise entails. 1187

C Case Study 1188

Figure 12 gives an example of GPT-4’s answer and 1189

reasoning, which GPT-4 answered correctly. Ac- 1190

cording to the passage, experts believe that a strict 1191

inspection of drunk driving can reduce traffic ac- 1192

cidents, despite the fact that the incidence rate is 1193

similar for cities with and without strict checks. To 1194
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resolve this inconsistency of experts’ belief and1195

prove the claim that strict checks lower the inci-1196

dence of traffic accidents, GPT-4 chooses the new1197

evidence that the drunk driving rate used to be high1198

before strict checks, which can solve this contra-1199

diction. Figure 13 gives an example where GPT-1200

4 answered incorrectly. The passage talks about1201

whether humans originated from Africa. The con-1202

clusion would be challenged if we find older fossils1203

in other parts of the world. GPT-4 does not have1204

a thorough understanding of the problem. It only1205

focuses on establishing the chronological order of1206

events. The failure to attend to the location of the1207

fossils leads to the wrong answer.1208

Figure 12: An GPT-4 generation example where the
model answers the question correctly. Figure 13: An GPT-4 generation example where the

model answers the question incorrectly.
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