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ABSTRACT

We develop algorithms for imitation learning from policy data that was corrupted
by unobserved confounders. Sources of such confounding include (a) persistent
perturbations to actions or (b) the expert responding to a part of the state that the
learner does not have access to. When a confounder affects multiple timesteps of
recorded data, it can manifest as spurious correlations between states and actions
that a learner might latch on to, leading to poor policy performance. To break up
these spurious correlations, we apply modern variants of the classical instrumental
variable regression (IVR) technique, enabling us to recover the causally correct
underlying policy without requiring access to an interactive expert. In particular,
we present two techniques, one of a generative-modeling flavor (DoubIL) that
can utilize access to a simulator and one of a game-theoretic flavor (ResiduIl)
that can be run entirely offline. We discuss, from the perspective of performance,
the types of confounding under which it is better to use an IVR-based technique
instead of behavioral cloning and vice versa. We find both of our algorithms
compare favorably to behavioral cloning on a simulated rocket landing task.

1 INTRODUCTION

Much of the theory of imitation learning (IL) indicates that with enough demonstrations, we should
be able to accurately recover the expert’s policy. When we apply IL algorithms in practice however,
we sometimes see them produce manifestly incorrect estimates of the expert’s policy (Muller et al.}
20006} |Codevilla et al., 2019; [de Haan et al.| |2019; [Bansal et al.l 2018; |[Kuefler et al., 2017)). One
possible reason for this phenomenon is that empirically, we only have access to noisy recordings of
what the expert did. This critical detail has been thus far neglected by most prior theoretical work in
imitation learning. We focus in this paper on how best to learn from two kinds of noisy data:

» Exogenous noise: When we observe expert actions corrupted by a persistent noise (e.g. a
faulty joystick that persistently perturbs actions before they are executed in the game).

* Endogenous noise: When we do not observe the full state an expert used to pick an action
(e.g. the learner not knowing there’s an enemy behind a door).

The net effect of either kind of persistent noise (more formally, an unobserved confounder) is to in-
troduce temporal correlations in the recorded actions that do not have their true cause in the recorded
state. For example, consider recordings of an expert driver slowing down at a stop sign. If all we
present the learner with as state input is whether the expert was slowing down at the last timestep,
they will likely learn to simply repeat the expert’s past action. Thus, once the car begins to slow
down, it continues to slow down, regardless of whether there is a stop sign present. At a more ab-
stract level, these sorts of inertia problems can result from temporal correlations between pairs of
actions (e.g. the effect of the stop sign) being reflected in the state (e.g. the past action variable),
leading to spurious correlations between state and action that the learner might unfortunately latch
onto (e.g. repeating the past action).

What should we hope to learn then in these confounded settings? Given we do not have access to
the unobserved confounder, a reasonable choice is to ensure that we match the behavior of an expert
that has access to the same information we do. That is, if we could query the expert for an action
with only the information we have available, we should strive to produce an action that matches
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Figure 1: We focus in imitation learning in the presence of temporally correlated perturbations
(exogenous noise, (a)) or not having access to the full state (endogenous noise, (b)). We formalize
both in a graphical model (¢) that allows us to leverage a technique known as instrumental variable
regression to find a policy that isn’t corrupted by spurious correlations introduced by the confounder.

this queried action. While applying an interactive imitation learning algorithm (Ross et al.| [2011)
would allow us to collect a dataset uncorrupted by confounding, a queryable expert is not a realistic
assumption for many domains. We therefore focus on approaches for the off-policy setting. We
base our algorithms on a technique from econometrics for dealing with confounding in recorded
data known an instrumental variable regression (IVR) (Angrist et al.,[1996). The high-level idea of
IVR is to leverage an instrument, a source of random variation independent of the confounder, to
deconfound inputs to a learning procedure via conditioning on the instrument. In dynamical systems,
history can act as this source of variation, as it is unaffected by future confounding (Hefny et al.,
2015). Our key insight is that we can leverage past states as instruments to break the spurious
correlation between states and actions caused by an unobserved confounder.

Our work provides the following contributions:

1. We formalize confounding in imitation learning. We provide a structural causal model that
captures inertia effects that result from temporally correlated exogenous or endogenous noise. We
also derive a test to detect whether this sort of confounding is present in a dataset.

2. We present a unified derivation of modern instrumental variable regression techniques. We
show how two recent extensions of the classical IVR technique share a common structure. We also
extend the theoretical analysis of previous work by deriving accuracy bounds.

3. We provide two novel algorithms to deal with confounding in imitation learning. We derive
two novel IVR-based algorithms:

* DoubIL is a generative modeling approach that and can utilize access to a simulator for
reduced sample complexity.
* Residull is a simulator-free, game-theoretic approach.

We derive performance bounds for policies produced by these algorithms under exogenous noise.
We empirically investigate the effect of the persistence of the confounder on this bound. We also
compare the performance of these approaches to behavioral cloning under endogenous noise.

2 RELATED WORK

Imitation Learning. Broadly speaking, imitation learning approaches can be grouped into three
classes: offline, online, and interactive. Our work is most similar to offline imitation learning al-
gorithms (e.g. Behavioral Cloning (Pomerleaul [1989), ValueDice (Kostrikov et al., 2019), AdVIL
(Swamy et al.| 2021)) that operate purely on collected data. Unlike previous work however, we
consider the effect of unobserved confounding. Our work shares the goal of interactive imitation
learning algorithms (e.g. DAgger (Ross et all [2011), AggreVaTe (Ross & Bagnell, 2014)), in that
we seek to match the output of a query to the expert. However, we focus on matching the output of
a query on recorded data, rather than on learner rollouts, as is standard for interactive approaches.
This is because the confounder decouples the actions recorded in the data and queried actions. [Zhang
et al.|(2020) consider imitation learning through the lens of causal inference but focus on the one-step
setting, while we consider multiple timesteps. Kumor et al.| (2021) contemporaneously consider the
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PROBLEM CORRELATED STATE ~ ACTION CONFOUNDER

Gridlock Distance to intersection ~ Crossing  Cars on other side of intersection (endog.)
Stationary Previously Braking Braking Traffic light (endog.)

Faulty Brakes Speed Braking Brakes not responding to presses (exog.)

Table 1: Concrete examples of confounding from the driving domain. The stationary problem was
observed empirically by |Codevilla et al.| (2019).

multi-step setting and come to similar conclusions as us about the challenges of endogenous noise.
They derive a necessary and sufficient structural condition for successful imitation learning, while
we focus on practical algorithms with performance guarantees for a particular graphical model un-
der exogenous noise. In contrast to imitation learning methods that seeks to match moments of the
expert’s behavior (Swamy et al.,|2021)), we focus only on matching average expert actions. We leave
matching arbitrary moments to future work.

Inertia Effects in Imitation Learning. Several authors have empirically observed a latching effect
in policies trained via imitation learning: (Muller et al.| [2006; |Codevilla et al., 2019} |de Haan et al.,
2019; Bansal et al., [2018}; Kuefler et al., [2017)), where learned policies tend to inappropriately repeat
the same action. We seek to provide a plausible explanation and correction for the phenomenon
reported in these works, and list several examples in Table [Tl We note that when attempting to
explain inertia effects, de Haan et al.| (2019) propose causal confounding as the root cause of the
error. However, as previously pointed out by Spencer et al.| (2021]), there is no actual confound in the
theoretical or empirical examples in the work of |de Haan et al.| (2019). This is because the learner
observes all of the variables the expert was using to make decisions.

Instrumental Variable Regression. The classical approach to instrumental variable regression
(Wright, |[1928)) is a two-stage least squares procedure (e.g. in|Angrist et al.| (1996))’s textbook). We
focus on the more general nonlinear setting and instead base our approaches on the more recent
DEEPIV (Hartford et al.l [2017) and AGMM (Dikkala et al.l [2020). We present extensions to the
work in these papers, including a unified derivation of both methods and error analysis for DEEPIV.

3 A BRIEF REVIEW OF INSTRUMENTS IN CAUSAL MODELING

We begin by discussing the concept of an instrument before de-

riving our algorithmic approaches in a simplified, non-sequential

setting. Let X, Y, and Z be random variables on (potentially infi- @_>@_>
nite) sample spaces &', ), and Z. Assume that X, Y, and Z have g h
the causal, rather than statistical, dependency structure in Fig. 2 \ /

Given a dataset of (x,y, z) tuples, we are interested in determin- Pl
ing the causal relationship between X and Y, E[Y |do(x)], where '\Y,'
do(-) is the interventional operator of |Pearl et al. (2016). Intuitively, -

E[Y|do(x)] is the expected value of Y when we intervene and set  Fioyre 2:  The structural
X = z, rather than observe such an X. In the SCM to the right, 41521 model (SCM) we con-
h(z) = E[Y|do(x)]. Because of the presence of an unobserved gjder We are interested in
confounder, U, that affects both X and Y’, standard regression (€.2. finding h, the causal rela-
Ordinary Least Squares or OLS) generically produces inconsistent tionship from X to Y, even
estimates. Coarsely, this occurs because OLS will over-estimate the  hoygh there is an unobserved
influence of the parts of X that are affected by the confounder. If we  onfounder, . To do so,
only have observational data and are unable to perform randomized ;e leverage the effect of Z,
control trials, a canonical technique to recover /i is IVR (Winship| which provides independent
& Morgan, 1999). Formally, an instrument Z must satisfy three randomness from U.
structural conditions:

1. Unconfounded Instrument: Z 11 U —i.e. independent randomization from confounder.
2. Exclusion: Z 1l Y|X,U - 1i.e. no extraneous paths.
3. Relevance: Z )L X —i.e. conditioning has an effect.
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Z satisfies these three conditions in the SCM of Fig. E]Without loss of generality, we assume that
E[U] = 0. This allows us to concisely derive a set of conditional moment restrictions (CMR):

0=E[U] =E[U|z] = E[Y — h(X)|Z] e9)

=Vz € Z, E[Y|z] = E[h(X)|z]. (2)

In words, these constraints are saying that a necessary condition for recovery of h(z) is that for all

values of the instrument, the actual and predicted expected values of Y |Z are equal. We further
assume that noise U enters additively to YE] and write out the following equations:

X=9(ZUYV), Y=hX)+U. 3)
We now derive an appropriate loss function for finding an T that approximately satisfies the CMR.

If we only have finite samples and can therefore only estimate conditional expectations up to some
tolerance, it is natural to relax the CMR to

minﬁe%é %Ez[ég]A
s.t. |E[Y —h(X)|z]| <6,, 6.>0, VzeZ,

where the §, are slack variables. Then, the Lagrangian (with the natural P(z)-weighted inner prod-
uct that captures how often each we expect each z to occur) is

4)

~ ~ 1
L(h,6,X) = | P(2)A(E[Y = h(X)|] - 8.) + P(2) 6%, 5)
z€Z

where X is the vector of Lagrange multipliers. By the stationarity component of the KKT conditions,
Vs.L(h,8,X) = —P(2)\. + P(2)d. = 0, 6)

implying that §, = A,. Plugging this back into the Lagrangian, we can simplify our function to

~ ~ 1
L(h,A) =Y P(2)A.E[Y — h(X)|z] — P(z)§>\§. (7)
z2€EZ

We refer to (7) as the Regularized Lagrangian or ReLa for short. Now, solving for the optimal
Lagrange multipliers via stationarity, we arrive at

V. L(h,A) = P(2)E[Y — h(X)|z] — P(2)A. =0, (8)

which implies the optimal ), is equal to E[Y — E(X )|2]. Plugging this back into (7)) recovers the
loss function,

L(h) = P(2)E[Y — h(X)|2]* = PRMSE®(h). 9)

z€EZ

This expression is the square of the Projected Root Mean Squared ErroI (PRMSE) of|Chen & Pouzo
(2012). To recap, by minimizing Eq. @ we are attempting to find an h that approximately satisfies
the CMR. Minimizing PRMSE is a necessary condition for recovering E[Y'|do(X)]. For it to be a
sufficient condition, one needs the natural identifiability assumptions — we refer interested readers
to|Chen & Pouzo|(2012)) for a more thorough discussion.

3.1 GENERATIVE MODELING APPROACH

How should we minimize the PRMSE then? One option is learning the distribution P(X|z) = g(z),

passing samples from it to a candidate h, and trying to match E[Y"|z]. This is a generalization of the
standard Two-Stage Least Squares (2SLS) (Angrist et al., [1996) procedure to nonlinear functions.
The nonlinearity of the second stage means that one cannot simply compute the first moment of the
P(X]|z) distribution, which is recovered by linearly regressing from X to Z in the 2SLS procedure.
This sort of approach was first proposed for the IVR setting by |[Hartford et al.| (2017)) and amounts
to first learning a g(z) (e.g. via maximum likelihood estimation) and then solving

minEy |(E[Y 2] - By, ()] (10)
heH

The work of Hartford et al.|(2017) did not have theoretical analysis regarding the effect of errors in
g(z) upon attempts to learn /(z). We prove the following in Appendix [A}

!The inclusion of V makes our model a generalization of the standard IVR model, so we confirm the validity
of the instrument in Appendix E}
2Without this assumption, one can only upper/lower bound h(z) (Balke & Pearl, 2013).
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~

Theorem 1. Assume we learn a g(2) s.t. maxg,y, Ez[(Epng)[h(2)] — IEINP(X‘Z)[E(x)])z] <.
Then, optimizing (@) to value € corresponds to recovering a ﬁ(m) s.t. PRMSE(E) < V6 + /e

3.2 GAME-THEORETIC APPROACH

One can also proceed by instead solving the two-player zero-sum game with the Rela as the
payoff. Denoting by f € F = {Z£ — R} the function that maps z’s to their Lagrange multipliers,
we can write this game as
min maxE[2(Y — (X)) f(Z) — f(Z)?]. (11)
heH FeF
This game is the core objective of the AGMM method of Dikkala et al.| (2020). Importantly, one
does not need to learn a generative model of P(X|z) for these sorts of game-theoretic approaches.
We prove the following theorem in Appendix

Theorem 2. Assume that H and F are bounded, closed under negation, convex, compact, and that
h € HandVh € H, f(2) = E[Y — h(X)|z] € F. Then, an e-approximate Nash equilibrium of
corresponds to recovering a h(z) s.t. PRMSE(h) < +/e.

One can find such an equilibrium via a standard reduction to no-regret online learning (Freund &
Schapire, |1997).

In summary, one can frame nonlinear IVR as a generative modeling or game-theoretic problem,
leading to different error characteristics. We now turn our attention to applying these methods to
imitation learning with unobserved confounders.

4 CAUSAL CONFOUNDING IN IMITATION LEARNING

We begin with a brief, intuitive sketch to illustrate the challenges
of confounding for IL: consider an expert trying to fly a quadcopter
straight but their actions being perturbed by wind (i.e. a form of ex- TE TBC
ogenous noise). Because it attempts to reproduce expert actions, be-
havioral cloning would reproduce these deviations, producing tra-
jectories that deviate even further from a straight path in a windy
environment. In contrast, by filtering out the effects of the con- __“_ | = [ _ 7
founder, a policy trained via IVR would only be affected by the g | Tt | st
wind present at test time and therefore produce trajectories similar

to those of the expert.

We now formalize this sort of confounding and how one can use Figure 3: Behavioral cloning
IVR to mitigate its effects. We use A(S) to mean the set of distri- amplifies the effect of exoge-
butions over S and focus on a Markov Decision Process (MDP) nous noise, unlike I'V.
parameterized by (S, A, T,r,T), where S is the state space, A

is the action space, 7 : S x A — A(S) is the transition operator, r : & x A — [—1,1] is
the reward function, and T is the horizon of the problem. Let J(7) = ]ETMF[E;‘F:1 r(st, at)],
II C {S — A(A)} be the policy class we optimize over and d, be the visitation distribution
of policy m. In the presence of unobserved confounding, the trajectories generated by the ex-
pert can be captured by the structural causal model (SCM) in Fig. @ E] Fig. || captures both
the exogenous and endogenous noise settings. In the exogenous noise setting, the confounder
u;—1 could be a persistent noise that affects pairs of actions, while in the endogenous noise set-
ting, u;—1 can be thought of as a response to a part of the state that the learner does not have
access to (see Table [I] for several example) In either setting, the confounding travels through
the dynamics to influence the next state, leading to spurious correlations between the recorded
states and actions. We can also see this correlative effect by writing out the structural equations:

X =5 =T (s¢—1,ai-1) = T (841, Te(s¢-1) + +up—2) (12)
Y =a;=mp(st) +u + . (13)

3One technically needs to add another input to g (i.e. 7E(s, R), where R is a random input) to allow for a
non-deterministic expert. In this work, we focus on techniques for minimizing the PRMSE, for which matching
average expert actions is sufficient. Thus, we suppress the dependence on the other input.
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Fig. E]also tells us that Z = s;_; satisfies the three con-
ditions to make it a valid instrument for countering the
effects of U = u;_;. Intuitively, this is because the past
state is independent of the current confounder, allowing
it to function as an independent source of randomness.
One can imagine longer time-scale correlations induced
between actions than just one step confounding — our ap-
proaches naturally extend to this setting by using a state
further back in the past as the instrument.

Unlike standard imitation learning approaches like behav-
ior cloning which attempt to recover E[a|s], an approach
based on IVR enables us to instead recover the interven-
tional effect of the policy E[rg(s)|s] = E[a|do(s)]. Con-
ceptually, E[a|do(s)] is asking what the expert would do
on average if they were placed in state s, i.e. the kind
of answer we would get from a queryable expert in DAg-
ger (Ross et al.,|201 1)) or DAeQulL (Swamy et al.,[2021]).
However, as we are only interested in the result of queries
on states from expert demonstrations, we are able to get a
similar effect via IVR to an interactive approach without
requiring access to a queryable expert. We now build upon this intuition to derive two algorithms.

Figure 4: The SCM for imitation learn-
ing with unobserved confounders. The
confounding is mediated via the dynam-
ics into the state, introducing spurious
correlations between states (X = s;)
and actions (Y = a;). To break the con-
founding, we can utilize the past state as
an instrument (Z = s;_1).

5 ALGORITHMS FOR CAUSAL IMITATION LEARNING

We now present two approaches for causal imitation learning that can be seen as applications of the
generative modeling and game-theoretic approaches of Sec. At their core, both algorithms are
attempting to minimize a PRMSE objective,

mmE(g o arymdy, [(Ela" — 7(s")|s])?], (14)

mell

instead of the usual IL objective,

. - 2
frnelll‘ll E(S,a)NdﬂE [(a —7(s))7]- (15)
In both the exogenous and endogenous settings, minimizing equation [14] corresponds to recovering
E[a|do(s)]. What differs is the performance implications of doing so, as we now discuss further.

5.1 EXOGENOUS NOISE

Exogenous noise is present both in the demonstrations as well as at test time. Our goal in this
setting is to eliminate the effect of the confounder so at test time we do not needlessly reproduce its
effects (e.g. the increased swerving in our quadcopter example). Notice that under exogenous noise,
minimizing (I5) to 0 would not recover the expert’s policy while minimizing Equation (I4) would.
First, let a distribution P(U) be c-Total Variation stable (Bassily et al.,[2021) if:

la—=0bll, <é6=drv(a+Ub+U) <cb. (16)

This property is satisfied by a wide variety of distributions. For example, for standard normal random
variables, ¢ = 1/2. Next, in our setting, the measure of ill-posedness (Dikkala et al., 2020; (Chen &
Pouzo, 2012)) is

\/ESNd,E (mE(s) — m(s))?] RMSE(r)
e B [l —n()]s]  nelt PRMSE(R) "

We prove the following bound on policy performance in Appendix B}

Theorem 3. Assume P(U) is ¢-TV Stable exog. noise, wg is deterministic, and let (I1) be the
measure of the ill-posedness of the problem. Then, PRMSE(7r) < ¢ = J(ng) — J(7) < cx(I1)eT?.
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Intuitively, x(II) measures the strength of the strength of the instrument. Consider the extreme case
where s’ = s. Then, x(IT) = 1. As the past state becomes a weaker instrument, «(IT) > 1. Thus,
if the confounding affects multiple timesteps, we would expect x(II) to grow as one needs to reach
further back in time to find a valid instrument, leading to a looser performance bound. We investigate
the effect of the length of confounding on the ill-posedness of the problem empirically in Sec. [6]

5.2 ENDOGENOUS NOISE

Endogenous noise is present only in the expert demonstrations and not applied during learner roll-
outs. Thus, in contrast to the exogenous setting, we do not need to eliminate the effect of the
confounder to perform as well as the expert. Instead, we hope to effectively reduce our uncertainty
over the confounder (e.g. the state of the traffic light). We begin by defining the following policies:

Vs € supp(dry),  mc(als) = drg(s,a)/dny(s),  miv(als) = plaldo(s)),  (18)
where supp denotes support. We prove the following results under endog. noise in Appendix [A}

Lemma 1. There exist MDPs for which 7, mpco, and 7y have different trajectory distributions.

Lemma 2. If reward r is a function of state and action only, J(rg) = J(wpc) always, while there
exist MDPs for which J(wg) > J(mv).

Lemma 3. [f reward r € {S x A xU — R} (i.e. the reward additionally depends on the con-
founder), then there exist MDPs for which J(rg) > J(m) Vr € {S — A(A)}.

One take-away from these lemmas is the fundamental difficulty of producing a value equivalent
policy to the expert’s under endogenous noise, a result that was concurrently derived via a graphical
condition by |Kumor et al.|(2021)) (Defn. 2.3). Consider, for example, an expert driver that stops at an
intersection when a traffic light is red. If the learner does not see this light, there is no way for them
to ensure they match the behavior of such an expert. However, in the special case where the reward
function does not directly depend on the confounder (i.e. eliminating the natural reward function that
penalizes the learner for not obeying the traffic light), mp¢ is value equivalent to the expert, while,
perhaps counter-intuitively, causally consistent 77y is not. The value difference is because 7y
marginalizes out u;_1 by sampling from P(u;_1) while 7 samples from P(u;_1|s;) (see proof
of Lemma([T]in Appendix[A). 7 g is therefore better able to estimate the value of the confounder by
utilizing the information in the current state, which is advantageous in the endogenous setting.

5.3 WITH A SIMULATOR: DoUuBIL

Algorithm 1 DoubIL

Input: Dataset D of expert trajectories, Policy class II, Simulator T
Output: Trained policy o

m = argmin_ . Eg oop,[—log7(als)]  {Train preliminary policy via moment-matching. }
Drv = {(T(s,m1(s)),a")|V(s,a’) € Dg} {Pass 7, ’s actions through simulator. }
7y = arg mingen Es oo,y [(@ — 7(s))?] {Train final policy on new dataset and output. }

Algorithm[T]can be seen as a variation of generative modeling

approach of Sec. [3|and [Hartford et al.|(2017) where one lever- 7

ages knowledge of one factor of the P(X|z) distribution and LT
just learns the other factor. Via the Markov assumption, we 4

can factorize P(X|z) = P(S'[s) = > ,c4 Plals)T(s,a).

Assuming access to a simulator 7 that closely

approximates the true transition dynamics, we can instead
focus on learning the P(a|s) component: the standard im-
itation learning task. Notably, this first-stage policy is bi-
ased as it includes the effect of the confounder: P(als) =
P(U + mg(s)|s). However, when we use it to simulate tran-  Figure 5: DoubIL deconfounds
sitions, the next states that are produced no longer have the jpputs to the second stage by re-

simulating state transitions.
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particular instantiation of the confounder present in the recorded dataset’s next actions. Using a
tilde to denote a fresh draw from a distribution, simulated states are drawn from

8~ T(se-1,mi(s:-1)) (19)
while the observed next actions are drawn from
ar ~ (T (st—1, TE(5t—1) + w1 + up—2)) + up—1 + Us. (20)

Notice that there are no shared noise terms. This allows us to apply standard imitation learning to
this new dataset of (S, a;) to learn a causally consistent policy. The two applications of imitation
learning lead us to term this algorithm DoubIL. We can translate the guarantee of Theorem|[I]to our
factored context:

Lemma 4. Assume we learn a w1 ($) s.t.

maxX B,y (B, 7,y my (o1 [T(50)] = EBaym Pl [7(s0)])?] <6

Then, optimizing the second-stage MSE to € corresponds to recovering a s S.t.

PRMSE(rs) = \/ESN% [E[ma(s') — m5(s))|s]2] < V3 + Ve

We prove this lemma in Appendix [A] Combining this lemma with Theorem [3] allows one to derive

a performance bound of J(7g) — J(7) < cx(I1)(V/6 + /€)T? under exogenous noise. We note
that one could simply learn the mapping P(s’|s) but this can be far less sample efficient than merely
learning a policy when |.A| < |S|, as is often true in practice.

5.4 WITHOUT STATE RE-SAMPLING: RESIDUIL

Algorithm 2 ResidulL

Input: Dataset D, of expert trajectories, Policy class II, Discriminator class F, Learning rate 7

Output: Trained policy 7

Setrell, fe F,g-=0,gy=0

while 7 not satisfactory do
L(m, f) = E(s,5,ay~pp [2(a” — 7 (")) f(s) — f(5)?] {Payoff of zero-sum game. }
Gx =VaL(m, f),9r = V¢L(7, f) {Perform Optimistic Mirror Descent. }
T T — 7](297r - Eﬂ')
f e f+n(295 —95)
gz < Gr> 9f < Gf

end while

Algorithm [2|is the direct application of the game-theoretic approach of Sec. [3| and Dikkala et al.
(2020) to imitation learning. We term it ResiduIL because the adversary attempts to predict the
residual between the learner and the expert’s actions while the learner attempts to minimize this
residual. Notably, this algorithm can be run completely offline (i.e. without access to a simulator).
We use the Optimistic Mirror Descent approach of [Syrgkanis et al.|(2015)) to find approximate Nash
equilibria in our experiments. Once again, we can extend our past results to the IL setting:

Lemma 5. An e-approximate equilibrium for the policy player corresponds to recovering a policy
7 5.t PRMSE(7) < y/e.

This lemma dovetails with Theoremto prove that J(7g) — J(m) < ck(I1)\/eT? under exogenous
noise (Appendix [A).

6 EXPERIMENTS

We test DoubIL and ResidulIl on a slightly modified version of the OpenAl Gym (Brock-
man et al.| |2016) LunarLander-v2 environment against a behavioral cloning baseline. We generate
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Confounded MDP Denoised MDP s |E[u|s]| on Expert Trajs.
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Figure 6: We train behavioral cloning, DoubIL, and ResiduIL on trajectories from a modified Lu-
narLander environment, computing standard errors across 5 runs. The left plot shows that DoubIL
and Residull are better able to match the desired E[a|do(s)] on states from expert rollouts, while
the middle plot shows they are able to generalize better to the state dist. of an expert w/o noise. The
right plot shows how we can compare the results of behavioral cloning and causal IL procedures to
identify areas of the state space where the effect of confounding is strong (the red dots).

demonstrations by simulating rollouts of an expert policy trained via PPO (Schulman et al.,|2017)),
adding fresh Gaussian noise to the expert’s action as well as cached noise from the last timestep.
The latter noise is the confounder. See Appendix [B|for full parameters. We judge policy quality by
computing the MSE between the output of a deconfounded expert query and a learner’s proposed
actions on states from expert rollouts. We see that both of our methods are able to more closely
match E[a|do(s)] than behavioral cloning, especially in the low-data regime (Fig. [6] left). We also
measure the MSE on states from deconfounded expert rollouts — while there are no clear guarantees
on this state distribution, we see that our methods generalize better than BC empirically (Fig. [6l
middle). One might wonder how, given a dataset of expert demonstrations, one detects whether
there is unobserved confounding in the data. We can answer this question by comparing the results
of behavioral cloning and either of our above algorithms. We prove the following in Appendix [A}

Lemma 6. Assume mpc(s) = Ela|s] and vy (s) = Ela|do(s)]. Then, Elu|s] = mpc(s) — mrv(s).

The implication of this lemma is that comparing the outputs of IVR-based procedures to behavioral
cloning can help us detect causal confounding — if they greatly differ with a sufficiently sized dataset,
there is likely an unobserved confounding effect in our data. Moreover, the states where they differ
represent the parts of the state space where the influence of the confounder is highest. Fig. [6|right
is an empirical example of how the test of Lemma6|can be used to identify areas of the state space
where the effect of the confounder is especially strong (e.g. the center).

For linear problems, we can bound x(IT) (the measure of ill-
posedness) via an eigenvalue ratio (Dikkala et al.|[2020). Extending
our previous model to include the effect of the last H confounders
(ar = mp(s) + Z;:tfH u;.), we arrive at the bound Ewo
T = 200
Amaz (E[st8¢ ) ——

k(1L H) < . 21 0 — \

(40 \/ N ELE[selse—s Elsulsi—a] ] I —

H (num. steps confounded)

600

We compute this quantity empirically for a linear-quadratic problem

with Gaussian confounding and plot results in Fig. [/} As expected,

we see that increasing the length of confounding leads to weaker Figure 7: We compute «(II)
instruments as one has to use states further back in time. Theorem for an LQG problem where
tells us that under exogenous noise, we should expect a weaker we vary the number of steps a
instrument to lead to a larger performance gap between the learner confounder sticks around for.
and expert. See Appendix [B|for full experimental setup details.

7 CONCLUSION

We present a model that captures confounding in imitation learning and derive two algorithms,
DoubIL and Residull, that are able to utilize history as an instrument to mitigate the effects of
unobserved confounders. We prove performance bounds and validate their empirical efficacy under
exogenous noise. We also discuss the challenges of learning with endogenous noise.
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A PROOFS

A.1 PROOF OF VALIDITY OF INSTRUMENT

Proof. We check the instrument conditions in order:

1. Unconfounded Instrument: Z Ll U: The Z - X < U,V - X < U,and X - Y «< U
triples are blocked by standard d-separation rules (Pearl et al., [2016). All paths from Z to
U must pass through one of these triples so Z 1L U.

2. Exclusion: Z 1 Y|X,U: The Z - X - Y, X+ U —=Y,andV — X — Y triples
are blocked by standard d-separation rules. All paths from Z to Y must pass through one
of these triples so Z 1l Y| X, U.

3. Relevance: Z ). X: There is a Z — X edge, which is assumed to be non-degenerate.

Thus, Z is a valid instrument for determining the causal relationship between X and Y. O

A.2 PROOF OF THEOREMIII

Proof. We simplify notation for clarity in our proof. Consider two vectors of the same dimension,
aand b. Assume that 3 a2 < e and 3. b2 < 4. This implies that ||a]|, < /€ and ||b]|, <
V6. Then, by the triangle inequality, [|a —b|, < |a, + [|bll, < /€ + V4. Setting a; =

P(2)(E[Y|2] = Egmg(e) [1(£)]) and b; = /P(2)(Ezm gy [1(£)] — E[(x)[2]) proves that

~

%?ﬁEZ[(EINQ(Z) [h(m)] IEnnNP(XIZ) [h( )])2} < 67 (22)

E.[(E[Y 2] — By [R(2)])?] < € (23)

= PRMSE(R) = \/E.[(E[Y |2] - Eprop(x) (h(@)))?] < Ve + V3 (24)
O

A.3 PROOF OF THEOREM[2|

Proof. The population version of (TT) is

min max B[2(Y — h(X))f(Z) - f*(2)] (25)

An e-approximate equilibrium is an (h, f ) pair such that:

~ €
maxE2(Y — h(X)/(2) - f42)] - 5 26)
<ER(Y ~ F(X)f(2) - P(2)] 27)
< minE[2(Y — h(X))f(2) - PA(2)] + 5 (28)

Taking the derivative w.r.t f(z) of the payoff and setting it equal to 0, we arrive at
2P(2)EY ~ h(X)|e] = 2P(2)[(2) = 0= f(2) = E[Y ~ h(X)]2]. (29)

Plugging this back into {#9) gives us the inequality

Ez[ElY ~ h(X)|1°) - 5 < minER(Y - h(X)J(2) - P(2)] + 5. (30)

Assuming we are in the realizable setting (e.g. h(z) = E[Y|do(z)] € H), minpey E[2(Y —
XN f(Z) - J?Z(Z)] < 0. Thus, we can write that'

EZ[E[Y — h(X)|z]?] — 5 << 5= PRMSE(h) < ve. 31)
O

‘We note that Theorem E] follows somewhat directly from the main theorems of Dikkala et al.|(2020)
but that it was not stated in this precise form in their work.

12
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A.4 PROOF OF LEMMA[]

Proof. We focus on the first two timesteps of the problem. By construction, p(sq) is the same for
all three policies. The following statements follow from standard conditional independence rules
(Russell & Norvig, [2002):

mec(aolso) = p(ao|so) = ZP (uo)P(ao|so,uo), (32)

v (aolso) = plap|do(so)) ZP (uo) a0|d0 50), Uo) ZP (uo)Pl(aglso,uo).  (33)

The last equality follows from the fact so has no parents. Thus, When combined with the fact that
the transition dynamics P(s1]sg, ag) are the same for all three policies, we arrive at the following
equality:

Prg (50,00, 51) = Prpe (50, G0, 51) = Drpy (S0, G0, 51) (34)
The first difference between the trajectory distributions starts at a;. By definition, the expert chooses
actions via

mg(ai|s1, o, ur) = plai|si, uo, ur). (35)
while the learners instead follow
mpo(arlst) = plaalsi) =Y > pluolsi)p(ur)plar|si, uo, ur), (36)
uo U1

mrv(ai]s1) = p(ai|do(s1)) ZZ}) uo)p(ur)plar|do(sy), ug, ur) (37)

ug w1l
_ZZP Uo U1 al|81,U0,U1) (38)

uo Ul

The first line follows from the fact u; 1L ug, s;. The last equality follows from Rule 2 of do-calculus
(Pearl et al.| |2016)). Thus, given the action distributions at the second step are not equal, so long as
a1 A ug and s1 I g, all three policies have different trajectory distributions.

O

A.5 PROOF OF LEMMA 2]

Proof. We prove J(ng) = J(npc) via an application of the Performance Difference Lemma (PDL)
(Kakade & Langford,[2002)). We note that this is equivalent to the graphical argument used by | Kumor
et al.[(2021) (Defn. 2.3 in their paper).

First, we note that p(sg, ag) is equal for both policies. Assuming that p(s;—1,a:—1) is equal, p(s¢)
must be equal by the fact the transition dynamics are the same. Then, via the fact that 7~ matches
the conditional distribution of a;|s;, p(st, a;) must also be equal. Thus, by induction, d, ., = dr.
This means that 7 is defined properly everywhere within it’s own state visitation distribution. We
then apply the PDL as follows:

J(rg) — J(7Bc) = TEs au~d, [QTP (5, a) — Eqrpar)s,n) [Q7F (s, a)]] (39
= TEq and, [Q7" (5, a) — Eu[Earmp(arjs, ) [Q77 (5, a)]]] (40)
= TE and, [Q7F(5,0) — Eyis[Earmp(ar) s, [QTF (5, a)]]] (41)
= TEs ana, [Q7F (5,0) = Earp(ar|s)[Q7F (5, 0")]] (42)
=0. 43)

The third equality follows from the fact the learner’s actions are independent of the confounder, so
under d ., P(u|s) = P(u). From the proof of the previous lemma, p(a1|s1) # p(a1|do(s1)) in
general, so 77y and 7 can have different state-action visitation distributions after the first timestep.
Therefore, for a two-step problem where a1 ) ug and s7 ) uy,

J(rg) = J(m1v) = T(Es andy, [1(8,0)] = Es o, [7(5,0)]) > 0 (44)
for reward function
7‘(87@) _ {LdﬂE(Sva) > dﬂ'IV(s CL) . (45)
0,0.w.
]
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A.6 PROOF OF LEMMA 3]

Proof. Let u; be a Rademacher random variable (1 w.p. % and —1 otherwise) V¢ € [T]. Let

ag|st, ug, ug—1 = uy and there be a single fixed state s that no action can leave. Set r(s, as, uy) =
1[a; = w¢]. Then, J(wg) = T. Notice that p(+1|s) = p(—1|s) = p(+1|do(s)) = p(—1|do(s)) =
0.5. Thus, J(7g) > J(mv) = J(7pc) = L, the expected number of correct answers of randomly
guessing the outcome of a fair coin 7" times. Furthermore, notice that % is the best any 7 € II can
do. One can see this by considering the problem with 7' = 1. If there was a policy 7 with J(7) > %,
one would be able to use such a policy to predict the outcome of a fair coin better than the Bayes-
optimal classifier for coin-betting (p(heads) = p(tails) = 1), violating the fact the Bayes-optimal
classifier minimizes Bayes error.

A.7 PROOF OF LEMMA @

Proof. Notice that

IT{IEE%Est,I (N (€] EsomP(selse_ ) [m(5)])%] < 6 (46)

can be re-written as
gleaﬁCEZ[(Ex~g(z) [7(2)] = Eonp(x)s [7(2)])?] < 6. (47)
Thus, the proof of Theorem@holds as written. O

A.8 PROOF OF LEMMA 3]

An e-approximate equilibrium for the policy player is a 7 such that

Ij{lea}{E[Z(at—W(St))f(St—l)—fQ(St—l)]—g < grneigE[Q(at—h(St))f(St—l)—J/&(St—l)]‘*‘%- (48)

With a change of notation, we can re-write this as:

2 € . n o~ €
_ _ < _ _ —.
maxE[R(Y —7(X))f(2) = f(2)] - § < mnER(Y —h(X)f(2) - (2] + 5. 49)
Thus, the proof of Theorem Q]holds as written.
A.9 PROOF OF THEOREM 3]
Proof. By definition,
PRMSE( \/ESNdWE @ — n(s)|s]]2 = e. (50)

Recall that the measure of ill-posedness of the problem (Dikkala et al.| 2020} |Chen & Pouzo, [2012)
can be defined as

Bond,, [(TE(s) = 7(s))?] T
= sup \/ ’ o = sup % (28

rell \/Ess wod. [Ela’ —m(s')|s]]2  men PRMSE(r)

Directly,
RMSE(7) < ex(II) (52)
We repeat the definition of total variation stability of a distribution P(U):
la—=0bll, <é6=drv(a+Ub+U)<cé. (53)
We proceed by noting that TV-stability implies that Vs € S,
dpy (n(s) + U, mp(s) + U) < clln(s) —mu(s)|| (54)
= dpy(r(s) + U, mg(s) + U)? < @ ||x(s) — mu(s)|? (55)
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= ESNdﬂE [dTv(W(S) + (]7 7TE(S) + U)2] § CzESNd"E [”71’(8) — WE(S)HQ] = CQMSE(’TF). (56)
By Jensen’s inequality,
Esvd,, [drv(m(s)+U, mp(s)+U)]? < Esd,, [drv(n(s)+U, 7(s)+U)? < *MSE(7). (57)

Taking the square root of both sides, we arrive at

Eswa,, [drv(7(s) + U,me(s) + U)] < ¢ RMSE(7) < cx(Il)e. (58)

Lastly, we apply the Performance Difference Lemma of |Kakade & Langford|(2002) as follows:
J(np) = J(7) = TEs and, , [Q7 (5, 0) — Earun() [Q (5, a)]] (59)
=TEs and,, Q" (s, me(s) +u+ur) —E[Q™(s,m(s) + u + u2)]] (60)
< T?Egn,  [drv (n(s) + U,mp(s) + U)] (61)
< cx(T)eT?. (62)

We use the fact that the same u would be added to both the learner and the expert’s actions and that
rewards are in the range [—1, 1] in the third step.

O

A.10 PROOF OF LEMMA [G]

Proof.
Ela¢|do(st)] = E[rr(st) + us + us—1|do(ss)] = mr(st) + E[ug] + Elus—1] = mr(st) (63)

Elat|s:] = E[rg(st) + ut + ur—1|st] = 7p(s:) + Elue] + Elus—1]s:] = 7r(s) + E[us—1|st] (64)
wpco(s) — me(s) = Elad|s] — Elai|do(st)] = Elug—1]s:] = E[uls] (65)
O]

B EXPERIMENT DETAILS

B.1 LUNARLANDER EXPERIMENTS

For ease of simulation, we remove the legs from the LunarLander vehicle (the joints connecting
them to the main body have a state that is not recorded in the observed state), remove the dispersion
noise, and generate trajectories with a fixed ground layout.

For all learned functions, we use two-layer ReLu MLPs with 64 hidden units. We use the Adam
optimizer (Kingma & Ba, |[2014) for behavioral cloning and DoubIL and use the optimistic variant
for ResiduIL. We apply a weight decay of le-3 to all. We train all methods for 50k steps.

PARAMETER VALUE

LEARNING RATE 3E-4
BATCH SIZE 128

Table 2: Parameters for behavioral cloning.

For computational ease, we only learn the mean of P(als) for DoubIL and add fresh standard
normal noise on-top of it to simulate drawing actions. For more complex noise models, one would
need to use a moment matching algorithm (Swamy et al.|[2021) in the first stage.

Importantly, DoubIL suffers from a “double-sample” issue (Baird, |1995) where multiple indepen-

dent samples of g(z) are required to compute gradients of h. To see this, note that the gradient with
respect to h of (I0) is

Ez |(E[Y]2] — Eongo)(h(@)]) (—Eana(o) -2 hi(2)]) (66)

=
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PARAMETER VALUE
LEARNING RATE 3E-4
BATCH SIZE 128

NUM. SAMPLES FOR E 8

Table 3: Parameters for DoubIL.

Notice that & appears under two separate expectations that are then multiplied together. To get an
unbiased estimate of this product, two samples of & are required, one for each expectation. There-
fore, it is most correct to use multiple samples from g(z) for each update.

Thus, for implementing the “double samples” for the gradient, we compute Eq[a’ — 7(s')|s] and
Es[a’ — w(s")|s] using independent samples. Then, we apply a stop-gradient operator to the former
expectation before taking a product between the expectations and averaging over s:

L(r) = E{[®(Eq[a’ — 7(s")|s])Eala’ — 7 (s")|s]]. (67)

This loss function has the correct gradient as it uses independent samples for computing the two
expectations.

PARAMETER VALUE
LEARNING RATE SE-5
BATCH SIZE 128
BC REGULARIZER WEIGHT 5E-2
f NORM PENALTY 1E-3
ADAM f3S 0, 1E-2

Table 4: Parameters for ResiduIl.

B.2 LQG EXPERIMENTS

We compute the optimal policy for the following canonical linear system via solving a Discrete-Time
Algebraic Ricatti Equation via the standard iterative method:

2y = Axi—1 + Bug_q (68)
T
J(E) =" 2! Qz; + (Kz,)" RK (69)
t
|1 AT _|0.5(AT)? oo B _
a=[b A7) m =[98 g1 9] r=toa a7 01

This is the dynamics of a “sliding brick on a frozen lake.” We then simulate rollouts of 200 timesteps
with u; being drawn i.i.d. from the standard normal distribution. We confound actions with the sum
of confounders going H steps back:

t
ar=K'si+ Y uj (70)
j=t—H

We simulate 1000 such rollouts to compute empirically. We calculate E[X |z] = E[s¢|s;—p]| =
(A + BK*)H s, _p analytically instead of via samples due to the small value of the quantity in
comparison to the variance of the noise.
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