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Abstract

Vanilla autoencoders often produce manifolds that overfit to noisy training data,
or have the wrong local connectivity and geometry. Autoencoder regularization
techniques, e.g., the denoising autoencoder, have had some success in reducing
overfitting, whereas recent graph-based methods that exploit local connectivity
information provided by neighborhood graphs have had some success in mitigating
local connectivity errors. Neither of these two approaches satisfactorily reduce
both overfitting and connectivity errors; moreover, graph-based methods typically
involve considerable preprocessing and tuning. To simultaneously address the
two issues of overfitting and local connectivity, we propose a new graph-based
autoencoder, the Neighborhood Reconstructing Autoencoder (NRAE). Unlike
existing graph-based methods that attempt to encode the training data to some
prescribed latent space distribution – one consequence being that only the encoder
is the object of the regularization – NRAE merges local connectivity information
contained in the neighborhood graphs with local quadratic approximations of the
decoder function to formulate a new neighborhood reconstruction loss. Com-
pared to existing graph-based methods, our new loss function is simple and easy to
implement, and the resulting algorithm is scalable and computationally efficient;
the only required preprocessing step is the construction of the neighborhood graph.
Extensive experiments with standard datasets demonstrate that, compared to exist-
ing methods, NRAE improves both overfitting and local connectivity in the learned
manifold, in some cases by significant margins. Code for NRAE is available at
https://github.com/Gabe-YHLee/NRAE-public.

1 Introduction

Autoencoders are widely used to identify, and to generate samples from, the underlying low-
dimensional manifold structure of a given data distribution [14, 1]. It has been widely observed
that vanilla autoencoders quite often produce manifolds that (i) are highly sensitive to noisy training
data (see Figure 1(a)), or (ii) have the wrong local connectivity and geometry (see Figure 1(b)),
significantly impairing their performance. Regularization techniques have had some success in
mitigating the former, e.g., the Denoising Autoencoder [21], which uses deliberately corrupted inputs
to train the autoencoder, typically learns manifolds that are robust to noise, but not always with the
correct local geometry.

Recently, autoencoder regularization methods that use neighborhood graphs have had some success
in addressing the incorrect connectivity issue [16, 18, 10, 7]. Notwithstanding the additional computa-
tional overhead of constructing local neighborhood graphs, the local geometric information obtained
from these graphs can significantly reduce errors in the local geometry of the learned manifold, and
make learning more well-behaved and robust.

The underlying premise behind these methods is that since the local geometry and topology of the data
is captured in the latent space distribution, which is determined entirely by the encoder, regularizing
only the encoder should be sufficient; little if any consideration needs to be given to the decoder.
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Figure 1: Learned manifolds that (a) overfit the data or (b) have the wrong local geometry.

The flaw with this premise is that although the encoder learns the correct latent space representation
of the manifold data, the decoder is still susceptible to overfitting of the type shown in Figure 1(a).
These existing methods moreover rely on computation-intensive preprocessing steps like manifold
learning [10], linear coefficients computation [7], or computing topological features using persistent
homology at each training iteration [16, 2], each of whose computational requirements can grow
significantly with problem dimension and scale.

The main contribution of this paper is a new graph-based autoencoder training method that addresses
both the overfitting and connectivity issues illustrated in Figure 1(a)-(b). Like current methods, our
method also employs local graphs that capture the local geometry of the data distribution. The key
idea behind our method, which we call the Neighborhood Reconstructing Autoencoder (NRAE),
is to employ a local quadratic (and in some cases linear) approximation of the decoder function to
formulate a new neighborhood reconstruction loss in lieu of the point reconstruction loss typically
used for autoencoder training. This idea leads to learning the correct geometry and reducing noise
sensitivity, significantly improving the robustness of autoencoder training.

To make things more explicit, let gφ : Rn → Rm be the encoder (parametrized by φ) and fθ : Rm →
Rn be the decoder (parametrized by θ). Whereas vanilla autoencoders are trained to minimize the
sum of the point reconstruction errors

∑
i ‖xi − fθ(gφ(xi))‖2, NRAE minimizes a reconstruction

error of the form ∑
i

∑
x∈N (xi)

∥∥∥x− f̃θ(gφ(x); gφ(xi))∥∥∥2 , (1)

where N (xi) is the set of neighborhood points of xi (including xi) and f̃θ(·; gφ(xi)) is a local
quadratic (or linear) approximation of fθ about gφ(xi). The vanilla autoencoder is obtained by setting
N (xi) = {xi} for all i. The key idea here is to locally approximate the decoder only, and to exploit
the local geometric information extracted from the decoded manifold represented by the image of fθ.

Like other neighborhood graph-based methods, NRAE also learns the correct local geometry of the
decoded manifold. At the same time, the local quadratic (or linear) approximation of fθ considerably
reduces any overfitting to noisy training data or sensitivity to outliers, while maintaining computational
efficiency – rather than the entire Jacobian or Hessian of fθ, only the more easily computed Jacobian-
vector and Hessian-vector products are needed for the approximation.

Compared to existing graph-based autoencoder regularization methods, NRAE is easy to implement,
computationally efficient, and scalable, requiring only a single prior construction of the graph without
additional pre-processing steps. Experiments with both synthetic and image data (MNIST, Fashion-
MNIST, KMNIST, Omniglot, SVHN, CIFAR10, CIFAR100, CelebA) confirm that overall our method
better learns the correct geometry of manifolds, showing improved generalization performance
vis-á-vis existing graph-based and other autoencoder regularization methods.

2 Neighborhood Reconstructing Autoencoder

In this section, we first provide a high-level mathematical description of the Neighborhood Recon-
structing Autoencoder (NRAE), followed by algorithmic details and a discussion of the NRAE’s
properties and behavior. Throughout we consider a deterministic autoencoder with an encoder
function gφ : Rn → Rm and decoder function fθ : Rm → Rn (m ≤ n), with their composition
denoted by Fθ,φ := fθ ◦ gφ. We use the notation D := {xi ∈ Rn}Mi=1 to denote the set of observed
data points.
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2.1 Mathematical Description

In what follows we use the notation N (x) to denote the set of neighborhood points of x, with x
included in N (x). We begin with the following definition:

Definition 1 Let F̃θ,φ(·;x) := f̃θ(gφ(·); gφ(x)), where f̃θ(·; z) is a local quadratic (or in some cases
linear) approximation of fθ at z = (z1, z2, ...zm):

f̃θ(z
′; z) := fθ(z) +

m∑
i=1

∂fθ
∂zi

(z)dzi +

m∑
i,j=1

1

2

∂2fθ
∂zi∂zj

(z)dzidzj , (2)

where dz = z′ − z. F̃θ,φ(N (x);x) is said to be a neighborhood reconstruction of N (x).

If instead of a quadratic approximation we use the linear approximation of fθ, the image of F̃θ,φ(·;x)
is the tangent space of the decoded manifold at Fθ,φ(x), and the neighborhood reconstruction of
N (x) is a subset of the tangent space; the neighborhood reconstruction in this case contains first-order
local geometric information about the decoded manifold.

The key idea behind Definition 1 is that we locally approximate the decoder, and not the encoder,
to extract and exploit local geometric information on the decoded manifold, which is captured in
the image of F̃θ,φ(·;x) (i.e., the local approximation of the decoded manifold). Figure 2 illustrates
an example where the autoencoder reconstructs the points almost perfectly, but the neighborhood
reconstruction ofN (x), whose elements lie in the tangent space (here we use the linear approximation
of fθ) is considerably different from N (x).

Figure 2: The training data points (blue), the decoded manifold (orange), the neighborhood of x
denoted by N (x), and the neighborhood reconstruction (red). The black dotted lines represent the
correspondences between x′ ∈ N (x) and F̃θ,φ(x′;x).

Given that the neighborhood reconstruction of N (x) reflects the local geometry of the decoded
manifold, minimizing a loss function that measures the difference between N (x) and its image
F̃θ,φ(N (x);x) is one means of training an autoencoder to preserve the local geometry of the original
data distribution. With that goal in mind, we formulate a neighborhood reconstruction loss L as
follows:

L(θ, φ;D) = 1

|D|
∑
x∈D

1

|N (x)|
∑

x′∈N (x)

K(x′, x) · ‖x′ − F̃θ,φ(x′;x)‖2, (3)

whereK(x′, x) is a positive symmetric kernel function that determines the weight for each x′ ∈ N (x).
Figure 3 illustrates how the neighborhood reconstruction loss can differentiate among the quality of
the learned manifolds whose point reconstruction losses are all the same (close to zero): Case 3 has
the smallest neighborhood reconstruction loss compared to Case 1 (wrong local geometry) and Case
2 (overfitting). NRAE converges to the vanilla AE – that is, the neighborhood reconstruction loss
recovers the point reconstruction loss – if one of the following conditions is met: (i) N (x) = {x},
(ii) K(x′, x) = δ(x′, x), or (iii) fθ is linear.

It is reasonable to ask whether there are any advantages to using an approximation for both the
encoder and decoder, i.e., to use a local quadratic (or linear) approximation for the composition map
Fθ,φ rather than just the decoder. As verified below in Section 4.3, using a quadratic approximation
for both the encoder and decoder results in minimal to no performance improvement (the results
for this Extended NRAE (E-NRAE) case are nearly identical to those obtained for NRAE), but
the computational requirements increase substantially. As intuition suggests, applying a quadratic
approximation for the decoder is sufficient in evaluating the neighborhood reconstruction loss.
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Figure 3: The orange curves represent the learned manifolds, the red points represent the neighborhood
reconstruction, and the lengths of the black dotted lines represent the neighborhood reconstruction
loss.

2.2 Algorithmic Details

Graph construction. The problem of inferring the geometric structure of a data distribution is
typically posed as a graph construction problem [4]. We use one of the simplest graph construction
methods, the k-NN graph with the Euclidean distance metric. The robustness of our algorithm with
respect to the choice of k is tested in the Supplementary Material.

Kernel design. We choose the following simple kernel

K(x′, x) = λ+ (1− λ) δ(x′, x), (4)

where 0 ≤ λ < 1 and δ(x′, x) = 1 if x′ = x and zero otherwise. This assigns the weight 1 for the
center x ∈ N (x) and the weight λ for the remaining neighborhood points.

Batch sampling. To estimate the gradient of the proposed loss function, we use batch sampling for
both summations over D and N (x). Given a batch B ⊂ D, we again sample a batch Bx from N (x).
We empirically find that forcing each batch Bx to include x improves convergence. In this paper, we
set Bx = {x, xn} where xn is uniformly sampled from N (x)− {x}.

3 Related Work: Regularization of Autoencoders

In this section, we review some standard autoencoder regularization techniques and their relation to
NRAE: i) regularizing latent space distributions, ii) Jacobian regularization, and iii) regularization
using neighborhood graphs.

Regularizing latent space distributions. One popular regularization strategy is to enforce the
latent space distribution (an approximate posterior) to be close to some user-specified prior distri-
bution; some examples include the Variational Autoencoder (VAE) [12], Adversarial Autoencoder
(AAE) [15], and Wasserstein Autoencoder (WAE) [19]. The Gaussian distribution is a popular choice
for the prior, but this choice often leads to over-regularization. Several works improve the VAE by
learning more complex priors, or an optimal prior in terms of maximizing the training objective
function of the VAE [8, 6, 20, 13]. These techniques are developed to make latent space distributions
close to some easy-to-sample prior distribution, but are not designed to resolve the two main issues
(local geometry and overfitting) addressed in this paper.

Jacobian regularization. The Contractive Autoencoder (CAE) attempts to enhance robustness of
representation by penalizing the Jacobian norm of the encoder function [17]. However, like other
encoder-only regularization methods, it often learns a manifold that overfits the data. More recently
[5] regularizes the Jacobian of the decoder function to learn a flat manifold. The trained decoder
function may produce a smooth manifold but with the wrong local geometry. The main difference
between these methods and NRAE is the use of a neighborhood graph containing local connectivity
information.

Regularization using neighborhood graphs. Several recent works have developed graph-based
autoencoder regularization methods that, at least implicitly, try to learn manifolds with the right
local geometry: Generalized Autoencoder (GAE) [22], Topological Autoencoder (TopoAE) [16],

4



Witness Autoencoder (W-AE) [18], Geometry Regularized Autoencoder (GRAE) [10], and Structure-
Preserving Variational Autoencoder (Sp-VAE) [7]. These works focus almost entirely on the encoder
when regularizing the latent space distribution (with the exception of GAE [22]); using the regular-
ization term that does not depend on the decoder lead to noise sensitivity and overfitting issues as
described in detail above. These methods are also computationally intensive, especially for large
scale high-dimensional problems, as a result of expensive pre-processing [10, 7] or computation in
training [16, 18].

In contrast, by focusing more on the geometry of the decoded manifold, NRAE is able to learn smooth
manifolds with the correct local geometry, simpler to implement, and more scalable since it requires
only a single prior construction of the graph without other additional pre-processing steps. Indeed,
with the exception of Sp-VAE [7], all other approaches test their algorithms with two-dimensional
latent spaces, while we test NRAE for latent spaces with up to 128 dimensions.

For general regularization methods that focus on latent space distributions, we surmise that using
our neighborhood reconstruction loss in lieu of the point reconstruction loss may lead to several
performance improvements; this is verified in Section 4.3, where we combine our neighborhood
reconstruction loss with some existing encoder regularization methods and compare their performance
against the original methods.

4 Experiments

In this section, through extensive experiments with both synthetic and real-world image data, we
compare NRAE with a range of existing regularization methods: the Variational Autoencoder
(VAE) [12], Wasserstein Autoencoder (WAE) [19], Denoising Autoencoder (DAE) [21], Contractive
Autoencoder (CAE) [17], Geometry Regularized Autoencoder (GRAE) [10], and Structure-Preserving
Variational Autoencoder (Sp-VAE) [7]. For comparison with Sp-VAE, we augment the regularization
term introduced in [7] to a vanilla autoencoder rather than the variational autoencoder – we refer
to this autoencoder as the Structure-Preserving Autoencoder (SPAE) – since a direct comparison
with the variational autoencoder is already made, and our intent is to examine the effects of the
structure-preserving regularization term.

For NRAE, we use both the local quadratic and linear approximations, respectively denoted NRAE-Q
and NRAE-L. Our focus is on comparing the manifold smoothing property, geometry preserving
property, and generalization ability of NRAE against baseline methods. We refer the reader to
the Supplementary Material for a description of the network architectures used in the experiments,
together with implementation details including the hyperparameter tuning strategy.

4.1 Manifold Smoothing Property

Smoothness of learned manifolds. We first consider a one-dimensional manifold embedded in
R2, {x, sin(x)|x ∈ [−π, π]}. Given 50 randomly sampled data points, we add isotropic Gaussian
noise with a standard deviation of 0.2. We train the NRAE and baseline AEs with one-dimensional
latent spaces. Figure 4 and Table 1 show that NRAE-L and NRAE-Q successfully re-produce smooth
manifolds compared to other baseline methods.

Figure 4: The noisy samples (blue) and learned manifolds (orange).

Table 1: The mean-squared reconstruction errors of 10,000 clean test data. The averages and standard
deviations are computed over ten times run with different noises, and multiplied by 100 (the highest
and lowest scores are ignored). The best and second-best results are colored red and blue, respectively.

AE VAE WAE DAE CAE GRAE SPAE NRAE-L NRAE-Q

1.90 ± 0.23 1.45 ± 0.39 2.02 ± 0.76 1.09 ± 0.21 1.33 ± 0.30 1.56 ± 0.43 1.28 ± 0.30 0.29 ± 0.06 0.30 ± 0.07
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Second, we rotate 100 MNIST images of the digit eight 100 times by 3.6 degrees, obtaining a set
of 10,000 training data. We train the NRAE and baseline AEs with two-dimensional latent spaces,
normalize each latent space, and generate rotating images by sampling regular grids of the latent
spaces. NRAE-L and NRAE-Q generate smoothly varying images compared to other baselines
(Figure 5). The DAE does not generate smoothly varying samples because the noise statistics
(Gaussian noise) used in training is different from the statistical noise in the rotating image data.

Figure 5: Generated samples of rotating digit 8 from regular grids of the latent spaces.

Finally, to confirm the denoising effect of NRAE on common image data, we train the NRAE and
baseline AEs on MNIST and CIFAR10 data corrupted with various levels of Gaussian noise (we use
sufficiently large epochs for convergence). We then compare denoising performance measured by the
Peak Signal-to-Noise Ratio (PSNR). As shown in Table 2, NRAE-L and NRAE-Q outperform other
baselines including DAE which performed the third best (the noise statistics used in training is the
same as the added noise statistics).

Table 2: Comparison of PSNR (higher-the-better). The latent space dimensions are 16 for MNIST
and 128 for CIFAR10. The best and second-best results are colored red and blue, respectively.

Dataset Noise AE VAE WAE DAE CAE GRAE SPAE NRAE-L NRAE-Q

MNIST 0.1 20.19 19.61 19.83 20.69 20.08 20.06 20.01 21.07 21.27
0.2 17.15 16.36 16.96 18.37 17.24 17.34 17.34 18.55 18.90

CIFAR10 0.1 18.22 19.87 19.54 20.42 20.73 19.79 19.43 22.21 22.27
0.2 17.84 18.25 17.38 19.30 18.86 16.98 16.90 21.04 20.94

Curvature of learned manifolds. We train the NRAE and baseline AEs on MNIST images with
two-dimensional latent spaces, normalize each latent space, then visualize the scalar curvature field
(i.e., twice the Gaussian curvature [9]) (Figure 6). As shown in Figure 6, NRAE-L and NRAE-Q
both learn flatter manifolds compared to our baseline AEs.

Figure 6: The scalar curvature field (brighter-the-larger).

4.2 Geometry Preserving Property.

Swiss roll. Consider a one-dimensional Swiss roll r(θ) = 0.1+ 0.9 · θ/(2π) for θ ∈ [0, 2π]. Given
30 randomly sampled data points, we add isotropic Gaussian noise with a standard deviation of
0.01. We then train the NRAE and baseline AEs with one-dimensional latent spaces. Figure 7 shows
the reconstruction results for 1000 test data points. Only GRAE, SPAE, and NRAE-Q successfully
learn manifolds with the right local geometry. However, unlike NRAE-Q, the regularization terms in
GRAE and SPAE have the effect of increasing reconstruction errors (observe the red rectangles in
Figure 7). NRAE-L fails to reconstruct points around the point xr circled in red: the nearest neighbor
to xr in the training set, marked by the blue circle, lies close to the tangent space of the decoded
manifold at xr, i.e., the neighborhood reconstruction loss is small.
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Figure 7: Swiss roll data trained with one-dimensional latent spaces. The dots below the figures
represent the one-dimensional latent space encoding of the training set.

Rotated/Shifted MNIST. First, as shown in the first row of the two figures in Figure 8, we generate
two sets of 20 training data: the rotated MNIST images of the digit 3 and shifted MNIST images
of the digit 7. We train NRAE and baseline AEs with one-dimensional latent spaces, encode the
training data to the latent spaces, sort the encoded values in ascending order, and decode them to
generate the images (Figure 8). Only SPAE, NRAE-L, and NRAE-Q successfully learn manifolds of
the rotated/shifted images with the correct geometry.

Figure 8: Generated rotated/shifted MNIST images. Discontinuities are marked by orange boxes.

Second, we rotate an MNIST image of the digit six 300 times by 1.2 degrees and obtain 300 training
data; 40 of these are visualized in the first row of Figure 9. We further generate 1000 test data in a
similar manner. We then train the AE, DAE, CAE, and NRAE with one-dimensional circular latent
spaces by adding one layer to the end of the encoder corresponding to z → z/‖z‖, and visualize
which data are encoded to which point in the latent spaces via the cyclic color map. Only NRAE-Q is
able to learn a manifold with the correct local geometry.

Figure 9: Circular latent space encoding of the rotated MNIST images of digit 6.

4.3 Generalization

Test data reconstruction. With various large-scale standard benchmark image data, we show that
NRAE generalizes better to the test data compared to other baseline methods. We use the test
reconstruction Mean Square Error (MSE) for quantitative comparison.

First, we train fully-connected neural networks with the MNIST, FMNIST, and KMNIST data by
varying the number of training data from 1000, 2000 . . . , 10, 000, and compare the test reconstruction
MSEs. The numbers for the validation and test data are fixed at 10, 000 and 50, 000, respectively.
Figure 10 shows the MSEs as a function of the number of training data. The MSEs decrease as the
number of training data increases, while those of the NRAE are lower than most of the other baselines
regardless of the number of training data.

Second, we train convolutional neural networks and compare the test reconstruction MSEs (Table 3).
We conduct two experiments i) with the entire public data denoted by L (large) and ii) with the subset
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Figure 10: The test reconstruction MSEs as the number of training data changes.

of data denoted by S (small). The number of selected subsets are around 20 ∼ 30% of the entire
data. NRAE-L and NRAE-Q produce lower reconstruction MSEs than most of the other baselines,
meaning that the manifolds learned with our methods better generalize to the test data. The CAE
experiment on CELEBA data is excluded because of its high computational cost for high-dimensional
data. Other measures such as the Frechet-Inception Distance (FID) scores [11] and the Evidence
Lower Bound (ELBO) are reported in the Supplementary Material.

Table 3: The test reconstruction MSEs, the lower the better. The latent space dimensions are 16, 32,
32, 32, 64, 128, 128, 128 for MNIST, FMNIST, KMNIST, Omniglot, SVHN, CIFAR10, CIFAR100,
and CELEBA, respectively. The best and second-best results are colored red and blue, respectively.

Dataset Size AE VAE WAE DAE CAE GRAE SPAE NRAE-L NRAE-Q

MNIST S 0.01002 0.01091 0.01009 0.00999 0.00998 0.01004 0.00989 0.00953 0.00968
L 0.00688 0.00756 0.00690 0.00684 0.00692 0.00696 0.00694 0.00649 0.00683

FMNIST S 0.01485 0.01652 0.01428 0.01446 0.01319 0.01331 0.01363 0.01289 0.01277
L 0.01118 0.01235 0.01106 0.01099 0.01052 0.01060 0.01065 0.01060 0.01044

KMNIST S 0.03267 0.03234 0.03283 0.03280 0.03279 0.03206 0.03268 0.03071 0.03021
L 0.02844 0.02963 0.02776 0.02814 0.02762 0.02753 0.02732 0.02564 0.02602

Omniglot S 0.03038 0.03627 0.03078 0.03068 0.02714 0.02967 0.02889 0.02668 0.02631
L 0.02704 0.03192 0.02728 0.02696 0.02567 0.02648 0.02644 0.02578 0.02539

SVHN S 0.00320 0.00420 0.00320 0.00369 0.00273 0.00317 0.00307 0.00202 0.00192
L 0.00174 0.00204 0.00190 0.00177 0.00178 0.00173 0.00175 0.00148 0.00147

CIFAR10 S 0.01466 0.01620 0.01431 0.01427 0.01208 0.01452 0.01504 0.00768 0.00691
L 0.00960 0.01123 0.00863 0.00900 0.00755 0.00832 0.00898 0.00629 0.00587

CIFAR100 S 0.01465 0.01713 0.01463 0.01484 0.01369 0.01391 0.01477 0.00765 0.00717
L 0.01015 0.01064 0.00951 0.00862 0.00842 0.00910 0.00912 0.00678 0.00635

CELEBA S 0.00780 0.00937 0.00830 0.00782 - 0.00814 0.00861 0.00608 0.00747
L 0.00613 0.00646 0.00630 0.00590 - 0.00595 0.00665 0.00563 0.00565

Compatibility with other regularization methods. In this section, we show that the NRAE loss
function can be used together with other existing latent space distribution regularization methods to
improve their generalization performance. We train convolutional neural networks with the MNIST
and CIFAR10 data (small). As shown in Table 4, the NRAE loss improves WAE, CAE, and SPAE
by significant margins. For VAE, there is only little improvement, primarily because the VAE
regularization term is too dominant in training. Interestingly, some cases of WAE, CAE, and SPAE
combined with the NRAE loss show even better generalization performance compared to NRAE
alone. These results imply that a proper combination of the neighborhood reconstruction loss and
existing regularization methods can lead to further improvements in performance.

Extended NRAE. Instead of using a quadratic (or linear) approximation of fθ, we can approximate
the composition function Fθ,φ = fθ ◦ gφ to define the neighborhood reconstruction loss. While
NRAE only requires the computation of the Jacobian-vector product or Hessian-vectors product
of fφ, E-NRAE requires the computation of these quantities for Fθ,φ. We train convolutional
neural networks on the MNIST and CIFAR10 data (small) and compare their generalization abilities
and computational requirements. As shown in Table 5, the extended versions show comparable
generalization performance to the original version, yet take a longer per-epoch runtime (100 batch
size and 10,000 training data).
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Table 4: Comparison of the test reconstruction MSEs for VAE, WAE, CAE, GRAE, and SPAE before
and after being combined with the NRAE loss function. MNIST and CIFAR10 data (small) are used.

Dataset NRAE-L NRAE-Q VAE NRVAE-L NRVAE-Q WAE NRWAE-L NRWAE-Q

MNIST 0.00953 0.00968 0.01091 0.01089 0.01098 0.01009 0.00952 0.00966
CIFAR10 0.00768 0.00691 0.01620 0.01613 0.01609 0.01431 0.00707 0.00684

NRAE-L NRAE-Q CAE NRCAE-L NRCAE-Q SPAE NRSPAE-L NRSPAE-Q

MNIST 0.00953 0.00968 0.00998 0.00936 0.00965 0.00989 0.00942 0.00975
CIFAR10 0.00768 0.00691 0.01208 0.00718 0.00724 0.01504 0.00723 0.00703

NRAE-L NRAE-Q GRAE NRGRAE-L NRGRAE-Q

MNIST 0.00953 0.00968 0.01004 0.00945 0.00974
CIFAR10 0.00768 0.00691 0.01452 0.00716 0.00694

Table 5: Comparison of the test reconstruction MSEs and per-epoch runtime estimates for NRAE-L,
NRAE-Q, E-NRAE-L, and E-NRAE-Q using MNIST and CIFAR10 data (small).

Dataset Metric NRAE-L E-NRAE-L NRAE-Q E-NRAE-Q

MNIST mse 0.00953 0.01000 0.00968 0.01017
runtime 21.57 s 24.85 s 34.73 s 40.96 s

CIFAR10 mse 0.00768 0.00712 0.00691 0.00732
runtime 59.14 s 61.28 s 89.24 s 100.18 s

5 Conclusion

This paper has proposed a new graph-based autoencoder, the Neighborhood Reconstructing Au-
toencoder (NRAE), that is capable of learning accurate manifolds that are robust to noisy training
data and have the correct local connectivity and geometry, while being easy to implement, scalable,
and computationally efficient. Neighborhood graphs that capture the local geometry of the data
distribution are combined with local quadratic (or linear) approximations of the decoder function to
formulate a new neighborhood reconstruction loss, which turns out to be a generalization of the origi-
nal point reconstruction loss. Through extensive experiments with both synthetic and standard image
datasets, we have demonstrated the manifold smoothing property, geometry preserving property, and
the generalization performance advantages – in some cases by significant margins – of our method.

Further, we have empirically verified that (i) a proper combination of the neighborhood reconstruction
loss and existing regularization terms that focus on the latent space distributions can lead to further
improvements in performance and (ii) in neighborhood reconstruction loss, approximating the decoder
only is sufficient for learning the correct manifold while being computationally more efficient than
approximating both the encoder and decoder.

Our algorithm can be further enhanced in a number of different ways. First, the current implementation
of NRAE uses the k-NN graph construction with Euclidean distance metric and a simple kernel
function that outputs binary values. These choices are made for simplicity, and clearly sub-optimal.
Other combinations of the graph construction method (e.g., the persistent homology [24]), distance
metric (e.g., using deep metric learning), and kernel function (e.g., the Gaussian kernel) are worth
exploring. Second, NRAE can be extended to a stochastic model in a number of ways, e.g., using the
probabilistic autoencoder [3] that uses the latent variable model, or the energy-based approach as
done in [23].
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