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Abstract

Previous studies have established that pre-
trained language models inherently manifest
various biases. Although several debiasing
strategies, such as fine-tuning a model with
counterfactual data, prompt tuning, and repre-
sentation projection, have been introduced, they
often fall short of efficiently unlearning bias or
directly altering the models’ biased essence. To
address these issues, we propose EDITBIAS,
an efficient model editing method to remove
stereotyped bias from language models with
small editor networks. We design a debias-
ing loss to guide editor networks to conduct
local edits on partial parameters for debiasing,
and a remaining loss to preserve the original
language modeling abilities of models during
editing. Experiments demonstrate the high ef-
fectiveness and robustness of EDITBIAS on
eliminating bias compared to classical debias-
ing baselines. Additionally, we explore the ef-
fects of bias and debiasing on language models,
finding that it is challenging to debias larger
and causal language models, and necessary to
balance the trade-off between debiasing efforts
and language modeling abilities when design-
ing debiasing strategies. !

1 Introduction

In recent years, many studies have underscored the
propensity of pre-trained language models (PLMs)
to have social or stereotypical biases (Liang et al.,
2021; Smith et al., 2022; Cheng et al., 2023a; Liu
et al., 2023), such as gender bias (Sun et al., 2019;
Zhao et al., 2020), race bias (Halevy et al., 2021),
among others. To ensure fairness and accuracy
in language models’ applications, it is crucial to
eliminate biases from models.

Numerous studies present various methods to
mitigate bias. Some methods (Zmigrod et al., 2019;
Barikeri et al., 2021) fine-tune the entire models
with counterfactual data obtained by swapping out
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Figure 1: Debiasing a language model with EDITBIAS

bias attribute words?, which is slightly effective and
resource-intensive, especially for large language
models. Others implement debiasing with represen-
tation projection (Dev et al., 2021; Limisiewicz and
Marecek, 2022; Iskander et al., 2023) or prompt-
ing (Sheng et al., 2020; Abid et al., 2021; Mattern
et al., 2022; Venkit et al., 2023). For instance, Sen-
tenceDebias (Liang et al., 2020) debias sentence
representations by subtracting their projection onto
an estimated demographic bias subspace. Ravfo-
gel et al. (2020) introduces Iterative Null-space
Projection (INLP), a method that reduces bias in
word embeddings by iteratively projecting them
onto the null space of bias terms using a linear clas-
sifier. Self-Debias (Schick et al., 2021) prompts
a model to scale down the probabilities of toxic
tokens. However, without internal parameter modi-
fication, a model remains biased essentially and is
not off-the-self for application.

An ideal debiasing approach is expected to re-
move bias from PLMs. Model editing (Yin et al.,
2023; Zhang et al., 2024) can change specific infor-
mation in PLMs by modifying partial parameters,
which infers that model editing can efficiently elim-
inate bias. There are three kinds of editing methods:

The bias attribute word refers to specific features or char-
acteristics that introduce or reflect bias. For example, bias
attribute words for gender bias are she, he, mother, father, and
the alike. Bias attribute words for religion are Christianity,
Judaism, Islam, and so on.



i) fine-tuning a model with new data (Zhu et al.,
2020; Ni et al., 2023), ii) locating before editing
(Meng et al., 2022, 2023; Dai et al., 2022; Wu
et al., 2023b) ¢i¢) utilizing editor hyper-networks
to modify PLMs’ parameters (Cao et al., 2021;
Mitchell et al., 2022a; Cheng et al., 2023b; Tan
et al., 2023). On one hand, fine-tuning consumes
computational resources and data a lot and is not
suitable for large language models. According to
our pre-experiments in Appendix A and Chang
et al. (2023); Hase et al. (2023a), information, like
knowledge and bias can not be simply interpreted
as located neurons. On the other hand, small editor
hyper-networks can be flexibly applied to any lan-
guage model and adaptively designed to conduct
any specific editing task. Thus, we introduce debi-
asing PLMs via model editing with editor hyper-
networks in this paper.

To overcome the aforementioned shortcomings
in previous debiasing methods, EDITBIAS, a
lightweight model editing method to debias stereo-
typed language models, is proposed as shown in
Figure 1. EDITBIAS uses editor networks to mod-
ify a small portion of the parameters, allowing the
edited model to be directly deployable for applica-
tions. A symmetric debiasing loss is designed to
teach the editors how to modify LMs for treating
stereotypical and anti-stereotypical contexts. EDIT-
BI1AS also contains a retaining loss to avoid affect-
ing unrelated associations during editing for pre-
serving PLMs’ modeling abilities. To demonstrate
the effectiveness and robustness of EDITBIAS, we
conduct experiments on StereoSet (Nadeem et al.,
2021) with both masked language models and
causal language models compared to four differ-
ent classical debiasing baselines. The results show
that EDITBIAS achieves the best performance on
debiasing than all baseline methods and is robust
to gender reverse and semantic generality. Further-
more, we thoroughly explore the effects of bias and
the process of debiasing on language models. We
find that debiasing large and causal language mod-
els poses significant challenges and highlight the
necessity to balance the trade-off between the ef-
fectiveness of debiasing and maintaining language
modeling performance, shedding light on future
debiasing works.

2 Related Work

Bias and Debiasing Many works focus on mea-
suring bias in language models, such as societal

bias (Nangia et al., 2020; Nadeem et al., 2021;
Cao et al., 2022; Wan et al., 2023), cultural bias
(Zheng et al., 2022; Naous et al., 2023), and mul-
tilingual bias (Zhao et al., 2020; Vashishtha et al.,
2023), which provide bias measurement metrics
(Hovy and Prabhumoye, 2021; Goldfarb-Tarrant
et al., 2023). To mitigate bias, researchers propose
various debiasing methods (Meade et al., 2022; Gal-
legos et al., 2023). The basic method is to fine-tune
language models on counterfactual data (Lu et al.,
2020; Zmigrod et al., 2019), which is costly. Ex-
cept for fine-tuning, prompting (Schick et al., 2021;
Guo et al., 2022) guides models to calibrate their
bias. Representation projection (Liang et al., 2020;
Ravfogel et al., 2020) is employed to remove bias
representation out of models, which, however, can-
not change the PLMs’ internal bias in essence with-
out modifying parameters. Therefore, we adopt
efficiently editing partial parameters for debiasing.

Model Editing As the real world develops, some
facts become obsolete and different over time. It is
necessary to change, add, or erase facts stored in ex-
isting PLMs (Petroni et al., 2019; Shin et al., 2020;
Li et al., 2022; Hase et al., 2023b). Model edit-
ing (Sinitsin et al., 2020) is come up with to mod-
ify information in PLMs. Editing should follow
some properties (Yao et al., 2023): reliability (pre-
dicting updated facts), locality (keeping accurate
on irrelevant facts), generality (editing neighbor-
ing facts without specific training), and efficiency
(Mitchell et al., 2022a) (efficient in runtime and
memory). The direct but inefficient editing is to
finetune the whole model on new facts (Zhu et al.,
2020). For locality, Dai et al. (2022); Meng et al.
(2022, 2023); Ma et al. (2023a) seek the model
parameters strongly related to the facts and then
edit these localized hidden states. With high ef-
ficiency, edited models can be produced without
changing their parameters by leveraging extra mem-
ories (Mitchell et al., 2022b) and in-context learn-
ing (Zheng et al., 2023). Also, Cao et al. (2021);
Mitchell et al. (2022a) achieve fast editing by train-
ing specific editor networks. Recently, model edit-
ing methods have been applied to unlearn informa-
tion from language models (Chen and Yang, 2023;
Patil et al., 2023; Ishibashi and Shimodaira, 2023;
Yu et al., 2023). Inspired by them, we propose
an efficient model editing method EDITBIAS to
unlearn bias in language models while preserving
the language modeling capability and generalizing
semantically related inputs.
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Figure 2: Debiasing a LM with EDITBIAS. Editor networks ¢ are trained to produce edits on partial parameters WV
of a LM. After editing, an unbiased PLM is obtained with the robustness of gender reverse and semantic generality.
L4 and L, refer to Equation 2 and 3 respectively. s: stereotyped. a: anti-stereotyped. m: meanless.

3 EDITBIAS
3.1 Task and Dataset

A stereotyped model is defined as a language model
that exhibits stereotypical bias, such as stereotypes
of generic opinions towards different demographic
groups in society (Devine, 1989; Nangia et al.,
2020; Bauer et al., 2023). In this paper, we study to
eliminate stereotypical bias in pre-trained language
models while retaining their language modeling
abilities during debiasing. An ideal unbiased lan-
guage model will model stereotypical contexts and
anti-stereotypical contexts with the same probabil-
ity. Therefore, given a biased pre-trained language
model with parameters 6, the debiasing task aims
to minimize its probability difference between the
stereotypical context and the anti-stereotypical con-
text. Furthermore, it is necessary to make sure
that general language modeling abilities are not
hurt during debiasing (Nadeem et al., 2021; Meade
et al., 2022; Ma et al., 2023b; Chintam et al., 2023).

We use the intrasentence set? in this paper. For
each instance s € S, there is a context sentence
x with a blank (e.g., “Girls tend to be more ____
than boys.”) as shown in Figure 1. When three
attribute terms corresponding to stereotypical, anti-
stereotypical, and meaningless associations (e.g.,
“soft”, “determined”, and “fish”) fill in the blank
in z, three target sentences Tsiereo, Lanti, Lmless aIe
formed respectively as

Zstereo: Qirls tend to be more soft than boys.

Zanii: Girls tend to be more determined than boys.

Tmless: Girls tend to be more fish than boys.

The optimization target of the debiasing task can

3Following Meade et al. (2022); Yu et al. (2023), we utilize
only the intrasentence portion in StereoSet, which generally
adapts to the debiasing task and various language models.

be denoted as

ld(mslerem Lanti 9) = KL(PG('|-'L‘slereo)||P(~)('|1‘ami))

1
+ KL(PG('|$anli)||P9('|xstereo)) ( )

For masked language models, P is the average
per-token log probability of the attribute term that
fills the blank in x. For causal language models, Py
is the average log probability of all tokens in tar-
get Sentence Tsereo/anti-stereo/mless following Nadeem
et al. (2021). Meanwhile, to maintain language
modeling capabilities, we hope Py(-|Zmiess) iS un-
changed during debiasing.

3.2 Debising via Model Editing

According to Section 1, to conduct effective and ef-
ficient debiasing, we propose EDITBIAS, a model
editing method to debiasing stereotyped LMs as
shown in Figure 2.

EDITBIAS adopts lightweight model hyper edi-
tor networks ¢ to conduct debiasing edits on PLMs’
partial weights W, following Cao et al. (2021);
Mitchell et al. (2022a); Tan et al. (2023). A pre-
trained language model represents inputs X as
Pg(X). A model editor for debiasing is a function:
(Xstereos Xanti) X L X © x & — ©, which maps
an stereotypical input Zgereo and its correspond-
ing anti-stereotypical input .y, loss function
lg : (Xstereo, Xanti) X© — R, biased pre-trained lan-
guage model parameters 6y, and editor paramters
¢ to new unbiased model parameters ¢,5,. The input
to an editor network gy is the fine-tuning gradient
VW, ld(Zstereo, Tanii, @) at the layer £,¢ € {1, L}.
The editor network will output the layer’s param-
eter edit @Wg, which is helpful to eliminate bias,
to update W,. To be specific, EDITBIAS uses a
debiasing training set S tijaiit“ and a development set

€

84 to learn parameters ¢, for each of the editor

network gy. They are initialized as ¢ at the time



step 0. The partial weights W (e.g., the weights of
the last three layers) we would like to edit are se-
lected before training. At the time step ¢ —1, an edit
is conducted by ¢ and produces parameter updates
W « EDIT (0, W, 1—1, Tsierco, Tanti) With the
rank-1 gradient decomposing from Mitchell et al.
(2022a). Then editable weights are modified by
Wy =Wy — Oég@we for the layer ¢, which is back-
propagated into gp. We design two training losses
for EDITBIAS using the edited weights W to teach
editor networks how to conduct edits on V. One
is a debiasing loss:

Lg= KL(PGW("xstereo)”POW(":Uanti))

(2)
+ KL(P9W<“$anti)||P9W('|xstereo))

Debiasing aims to make a language model
equally treat the stereotypical contexts and anti-
stereotypical contexts for fairness according to Sec-
tion 3.1, which is different from knowledge editing.
Thus, we design £, as symmetric KL divergence
losses to guide editor networks to modify W for
debiasing. Moreover, to avoid negative effects on
the language modeling abilities, another loss is a
retaining loss designed to keep the probability of
meaningless terms unchangeable during editing:

Er = KL(POW("l'mless)HPGW('|$mless)) (3)

The total training loss of EDITBIAS is
Lp(pi—1) = Lg + AL,. At the training
step t, ¢ is updated by an Adam optimizer
(Kingma and Ba, 2015) , which is denoted as
¢t < Adam(¢p;—1, V4 LE(Pi—1)). For evaluation,
model editors produce debiasing edits on a
held-out set S',,. Because the effectiveness of
instance-editing, using one instance in each editing
operation, is limited (Cao et al., 2021; Meng et al.,
2022, 2023; Ma et al., 2023a; Gu et al., 2024),
EDITBIAS adopts batch-editing, using one batch
samples in one edit for the debiasing scenario.
During training and testing, the same batch size is
used for optimal debiasing performance.

4 [Experiments

This section elaborates on experiments and results
of EDITBIAS, along with a more in-depth analysis
and discussion about bias and debiasing effects in
pre-trained language models.

4.1 Setups

Dataset We utilize StereoSet (Nadeem et al.,
2021) to conduct all experiments. There are three

reasons. Firstly, it is widely used (Liang et al.,
2021; Meade et al., 2022; Smith et al., 2022; Jo-
niak and Aizawa, 2022; Limisiewicz et al., 2023;
Omrani et al., 2023; Ma et al., 2023b; Xie and
Lukasiewicz, 2023; Yu et al., 2023; Yang et al.,
2023) to evaluate different types of bias in pre-
trained language models, including gender, race,
and religion bias. Secondly, the meaningless at-
tribute terms in StereoSet can be applied for mod-
eling ability maintenance. Other datasets have no
meaningless association data. Thirdly, the data size
of StereoSet is large enough for training compared
with other bias datasets. Since current bias datasets
are created for measurement, their sizes are usually
small. For example, Crows-Pairs (Nangia et al.,
2020) only has 1508 samples without train/test
splits. Comparatively, more than 8000 samples
in StereoSet are suitable for our work. Gender,
race, and religion bias data from StereoSet are con-
sidered in this work. We stochastically split all
samples related to gender, race, and religion bias
in the test set (6,392 samples) of the intrasentence
StereoSet by 8:1 as S;gaii[“ and Sggi‘; respectively and
use the development set (2,106 samples) as S5
Metrics We use the Stereotype Score and Lan-
guage Modeling Score from StereoSet (Nadeem
et al., 2021) to measure debiasing performance and
language modeling performance respectively. The
Stereotype Score (SS) is the percentage of samples
in which a model prefers stereotypical contexts to
anti-stereotypical contexts.

SS(G) = EseSégﬁl [PQ('|$stereo) > PH('|xanti)]

The Language Modeling Score (LMS) is the per-
centage of examples in which a model ranks the
meaningful associations over meaningless associ-
ations to measure a model’s language modeling
abilities for each attribute term.

1
LMS(G) = iEseSé‘c’g{]l [PG('|xstereo) > P@(“xmless)}

1
+§ESGS£§§{IL [PB("xanti) > P@("xmless)}

An ideal unbiased model has a SS of 50% and an
ideal debiasing will not change the LMS before and
after debiasing.

Methods and Models Compared with EDIT-
BI1AS, four distinguishing baseline debiasing meth-
ods from Meade et al. (2022) are implemented*:

4https: //github.com/McGill-NLP/bias-bench
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RoBERTa-base

RoBERTa-large

Method SS (%) — 50% ALMS (%) — 0 SS (%) — 50% ALMS (%) — 0
gender race religion gender race  religion gender race religion gender  race religion
Pre-edit 6578  62.34  59.54 89.53  89.85 86.46 69.35 62.80  50.76 90.14  90.71 87.98
CDA 62.81 62.14 5755 -0.65 -1.07 +1.79 64.62  60.08  57.67 -1.31 -1.47 +1.39
SentenceDebias  64.17  60.00  55.85 -0.59 -0.18 -3.34 68.52  62.77  46.30 +0.22  -0.06 -1.68
Self-Debias 67.25 60.57  57.00 -0.84 -0.26 -1.02 66.03 5995  51.69 -0.81 -0.21 -0.96
INLP 6193 5944  56.40 -1.49 1034 -1.90 68.66  60.60  53.25 -0.39 -1.30 -3.65
EDITBIAS 49.67 4848 51.04 -3474 -44.00 -52.69 51.10 4580 50.97 -64.06 -57.52 -41.34
GPT2-base GPT2-medium
Method SS (%) — 50% ALMS (%) — 0 SS (%) — 50% ALMS (%) — 0
gender race  religion gender race  religion gender race religion gender  race religion
Pre-edit 62.67 60.57  58.02 9328  89.76 88.46 6558 61.63  62.57 9339 9230 90.46
CDA 60.33 5870  59.97 -0.81 -1.94 -0.17 6329 6136  61.79 -0.21 -3.02 0.00
SentenceDebias ~ 56.57 5539  50.65  -10.55 +1.76 +0.10 67.99 5897  56.64 +0.29  +1.52 +0.34
Self-Debias 6232 5895  57.00 -3.43  +0.09 -2.20 60.28 5729  57.61 -3.47 -4.12 -1.35
INLP 59.87  55.51 55.73 -14.04  -1.34 -1.29 63.17 60.00 58.57 -5.15 -1.49 -2.48
EDITBIAS 46.98 53.03  53.53 -8.80  -15.53  -2554 4820 5329 55.84 -8.97  -2636  -44.81

Table 1: Performance of EDITBIAS compared with baselines. Pre-edit represents the exact SS and LMS of pre-
trained language models before debiasing. ALMS (%) refers to the absolute change in LMS (%) during debiasing.

counterfactual data augmentation (CDA) (Zmigrod
et al., 2019), SentenceDebias (Liang et al., 2020),
Self-Debias (Schick et al., 2021), and iterative
nullspace projection (INLP) (Ravfogel et al., 2020).
Different from all baselines, our editor networks
can be trained and validated with a mixture of all
three types of bias, instead of dealing with only one
particular bias at a time. As for testing, EDITBIAS
is evaluated on gender, race, and religion bias sam-
ples from S separately. The A is determined by
grid searching in each training ranging from {0.5,
1.0, 1.5, 2.0, 2.5, 3.0}. We implement parameter-
efficient model editing utilizing low-rank gradi-
ent decomposition (Mitchell et al., 2022a). MLPs
in different Transformer blocks in pre-trained lan-
guage models are selected to be edited in this paper
according to preliminary experiments described
in Section 4.4. EDITBIAS is a model-agnostic
debiasing method and can be applied to any open-
source language model, such as LLaMA?2 (Touvron
et al., 2023), Mistral (Jiang et al., 2023), QWen
(Bai et al., 2023) and GLM (Zeng et al., 2023).
Due to computational constraints, we conduct ex-
periments on relatively small language models in
this paper, including both masked language mod-
els, RoBERTa-base and RoBERTa-large (Liu et al.,
2019), and causal language models, GPT2-base
and GPT2-large (Radford et al., 2019) with Hug-
gingFace (Wolf et al., 2019). We report the best
debiasing performance among different edited posi-
tions in Table 1 (the last layer for ROBERTA-base,
the penultimate layer for RoBERTa-large, and the
first two layers for GPT2-base and GPT2-medium).

4.2 Main Results

EDITBIAS achieves the best debiasing perfor-
mance on all types of bias compared to all de-
biasing baselines. According to the Stereotype
Scores, EDITBIAS can reduce SS to less than 56%
and more than 46% while most S of debiased mod-
els with previous debiasing baselines are above
60%, which demonstrates EDITBIAS leads to sig-
nificant improvement for debiasing performance.
For instance, as for the SS of RoBERTa-base, ED-
ITBIAS yields an improvement of 711.60, 17.92,
and 174.81 on the absolute difference from 50% for
gender, race, and religion bias respectively, com-
pared with the best SS among all baselines. The
main reason is that the parameters that may be as-
sociated with bias are explicitly edited, which is
illustrated in Section 4.4 and Appendix A. Addi-
tionally, EDITBIAS obtains much better debiasing
performance by training small editor networks in a
few training steps (e.g., 14 steps for RoBERTa-base
and 226 steps for GPT2-base) than fine-tuning an
entire model in 2000 steps with CDA, which indi-
cates the high efficiency of our EDITBIAS. Com-
pared to prompting and representation projections
baselines that can only calibrate models’ output dis-
tributions instead of language models themselves,
EDITBIAS produces off-the-shelf LMs that can
be directly used for application and substantially
outperforms them because modifying parameters
effectively changes the internal representations and
distributions of language models. Moreover, EDIT-
BIAS presents excellent performance on every bias



type though editor networks are trained to produce
edits on a mixture of different types of bias at a
time. It is illustrated that our method can gener-
alize debiasing success to various bias, compared
to debiasing baselines that can only deal with one
particular bias at a time, such as creating a bias
subspace of a certain bias in SentenceBias.

Editing debiasing parameters harms the origi-
nal language modeling abilities. Unfortunately,
EDITBIAS damages LMs’ language modeling ca-
pabilities, though £, is considered. LMS drops
more than 10 (%), especially for editing top lay-
ers of RoBERTa. It is consistent with Gu et al.
(2024); Gupta et al. (2024) that editing exhibits
notable shortcomings in maintaining the inherent
modeling capabilities of language models. Because
rich semantic information and text patterns are cap-
tured by parameters of language models during
pre-training (Geva et al., 2021), directly modify-
ing some parameters will hurt the intrinsic encod-
ing mechanisms. As a result, the whole language
modeling abilities are destroyed, showing that the
model’s semantic recognition between meaningful
and meaningless associations is ambiguous.

Debiasing larger models is more difficult. Com-
paring the results of models with different sizes,
we observe that the difficulty of debiasing and the
modeling effects from editing increase with the
model size. Specifically, the sum of absolute dif-
ference SS from 50% for three types of bias is 1.89
of RoBERTa-base and 9.58 of GPT2-base while
it is 6.27 of ROBERTA-large and 10.93 of GPT2-
medium. And the LMS drops of RoBERTa-large
and GPT2-medium during debiasing are larger than
those of RoBERTa-base and GPT2-base respec-
tively, indicating that larger models are more sen-
sitive to bias (Vig et al., 2020b). According to the
SS of pre-edit models, larger models are more bi-
ased likely because they capture more bias from
the huger pre-training corpus. Meanwhile, with
stronger language modeling abilities, it is harder
for larger models to unlearn bias, and debiasing
via model editing will definitely hurt the modeling
capabilities to a large degree if we expect to im-
plement successful debiasing. Although debiasing
relatively large models is hard, empirical results
demonstrate that EDITBIAS has great potential to
debias large language models, with the advantage
of efficiently modifying small portions of parame-
ters compared to fine-tuning the whole model.

4.3 Ablation Study on Retaining Loss L,

RoBERTa-base

Method SS (%) LMS (%)

gender race religion gender race religion
wlo L, 4737 4606 5192 -4477 -5247 -64.89
w L, 49.67 4848 51.04 -3474 -44.00 -52.69

GPT2-base

Method SS (%) LMS (%)

gender race religion gender race religion
wlo L, 5370 5196 5581 -4327 -43.17 -53.33
w L, 4698 53.03 53.53 -8.80 -15.53 -25.54

Table 2: Ablation study on the retaining loss L.

We perform an ablation study to show the ef-
fectiveness of the retaining loss for maintaining
language modeling abilities during debiasing. We
disable the remaining loss and train editor networks
with the same hyperparameters as the training pro-
cess using the remaining loss. Results are shown in
Table 2. There are large drops on LMS if the retain-
ing loss is not deployed during editing. Specifically,
the LMS drops of GPT2-base increase absolutely
by 34.47, 27.64, and 27.79 for gender, race, and
religion bias respectively during debiasing without
L, which illustrates that the remaining loss plays
an important role in reducing harm to the language
modeling abilities during editing.

4.4 Further Discussion on Editing Positions
and Models for Debiasing

In EDITB1AS, MLPs in some Transformer blocks
are selected to be edited for unlearning bias. To
pursue optimal performance, it is necessary to care-
fully consider which hidden states to be edited.
Before embarking on our main experimental in-
vestigation, therefore, preliminary experiments are
conducted to explore bias effects in PLMs. Fol-
lowing causal tracing from Meng et al. (2022), we
propose bias tracing to track bias effects in PLMs
in Appendix A. It is observed that MLPs in several
early and last Transformer blocks exert a substan-
tial influence on bias captured in language models.
Based on our findings and some existing works that
demonstrate editing MLPs can modify knowledge
associations in PLMs (Geva et al., 2021; Mitchell
et al., 2022a; Meng et al., 2022, 2023; Gupta et al.,
2023; Wu et al., 2023a), EDITBIAS edits MLPs in
the first three and last three blocks for the debias-
ing task. To comprehensively explore the effects
of the debiasing language models via model edit-
ing, we edit MLPs in different encoder & decoder
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Figure 3: SS (%) and ALMS (%) drops of debiased language models after editing MLPs in different encoder &
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Model Blocks Gender Race Religion SUM
Early 2484 1214 1167  48.65

RoBERTa-base [, 18.03 1940 4153  78.96
Ealy 9.8 17.52 2527 5197

RoBERTa-large [, 1208 21.16 1347 4671
Early 2728 1388 3445 7561

GPT2-base Last 3807 3063 3213  100.83

, Early 2922 1174 2142 6238
GPT2-medium a5 2593 5247 2340  101.80

Table 3: The sum of the absolute differences between
SS and 50%. Early (Last) blocks: 1, 2, 3, 12, and 123
(-3,-2, -1, -321, and -21) blocks.

blocks with EDITBIAS, and measure the resulting
debiasing performance and modeling capabilities
in this section. The S and LMS drops of debiased
language models are shown in Figure 3.

Debiasing causal language models is harder
than mask language models. According to Fig-
ure 3, the Stereotype Scores of debiased RoBERTa
are generally better and stabler than that of GPT2
and the LMS drops of RoOBERTa are mostly larger
and more unstable than that of GPT2, which indi-
cates that it is more difficult to debias GPT2 than
RoBERTa utilizing model editing. The reason is
likely the different architectures of RoOBERTa and
GPT2. The bidirectional Transformer in RoOBERTa
might make the model more sensitive to changes
in weights during debiasing than GPT2 with a uni-
directional decoder-only structure because it inte-
grates context from both directions when modeling

bias. Based on the successful debiasing and rela-
tively small LMS drops of GPT2, we can theoreti-
cally surmise that for most causal language models,
debiasing them with editing methods is reliable
and leads to a relatively little impact on modeling
abilities, especially for current decoder-only large
language models, like GPT-Neo (Black et al., 2021)
and LLaMA2-70b (Touvron et al., 2023).

Editing MLPs in early blocks can achieve better
debiasing performance than editing MLPs in
upper blocks. According to Figure 3 and Table
3, in most cases, SS of debiased language models
are closer to 50% after editing MLPs in bottom lay-
ers than in upper layers. Early layers capture basic
linguistic features like syntax and common word
associations while upper layers delve into deeper
semantic relationships, contextual understanding,
and high-level language features (Geva et al., 2021).
Since biases often manifest in fundamental linguis-
tic patterns, like the co-occurrence of bias attribute
words and attribute terms, modifying early layers
allows for correction at the source of these repre-
sentations. Biases encoded in the early layers are
propagated and potentially amplified through the
network as information passes through subsequent
layers. Since upper layers build on the representa-
tions formed by lower layers, biases present at the
beginning can become deeply embedded and more
complex to disentangle at later stages. By targeting
debiasing efforts at the early stages, it’s possible to
prevent the propagation of biases, making the over-



all debiasing process more effective. In contrast,
the upper layers specialize in context-specific and
complex language tasks. Editing biases in these
layers might only address specific manifestations
of bias and not the underlying bias itself.

The trade-off, mitigating biases in language
models without significantly compromising the
language modeling performance, is worth study-
ing further. From Figure 3, we can see that
achieving good debiasing performance comes at
the cost of sacrificing language modeling capa-
bilities. Editing for debiasing often involves al-
tering the model’s parameters to optimize the SS.
However, these parameters were also optimized
to perform well on language tasks, contributing to
the LMS. When adjustments are made to reduce
bias, they can interfere with the model’s learned
patterns, leading to a decrease in language model-
ing performance. Therefore, tackling biases aris-
ing from complex and deeply ingrained patterns
within the training data without affecting the intri-
cate structure of learned representations is challeng-
ing, which inspires us to seek methods to balance
debiasing and modeling performance in the future.

4.5 Reversing Gender Attribute Words

60
54.93 Pre-debias
Debiased

39.71 39.67 39.08
37.21

RoBER‘i’a-base RoBER‘i’a-Iarge GPTZLbase GPT2-rﬁedium

Figure 4: Gender Reverse Robustness. Pre-debias refers
to SS of pre-trained language models on the gender
reverse test set before debiasing. Debiased refers to SS
of debiased models by EDITBIAS.

A robust gender debiasing method can calibrate
a model’s treatment to the two genders, male and
female, equally. For instance, given the two sen-
tences “Girls tend to be more ____ than boys.” and
“Boys tend to be more ___ than girls.”, a debiased
model will equivalently model the stereotypical
term “soft” and the anti-stereotypical term “deter-
mined” in both two sentences though only the first
sentence is used for training. To evaluate this ro-

bustness, a gender counterfactual test set Sé‘zs;der*
is created (Appendix C). We reverse all gender at-
tribute words in the gender bias samples from S
to construct the set. For example, “boys”, “father”,
and “Female” are changed into “girls”, “mother”,
and “Male” respectively. Then the test set is used
to examine the robustness of EDITBIAS, the im-
plementation of which is the same as Table 1. The
results in Figure 4 show that EDITBIAS is robust

enough to unlearn gender counterfactual bias.

4.6 Semantic Generality

Pre-debias EditBias

Model / SS (%)

gender race religion gender race religion
RoBERTa-base 5297 5525 61.83 51.10 5192 5233
RoBERTa-large  50.39 5420 60.50  51.37 4853 4753
GPT2-base 5221 5562 57.65 4823 5595 4995
GPT2-medium 53.11 56.18 62.62 5029 4895 48.05

Table 4: SS (%) on the synonym-augmented test set.

Similar to the generality principle of knowledge
editing, a robust debiasing method should ensure
the debiased language model demonstrates unbi-
ased behavior on a group of semantically similar
attribute terms with attribute terms used in train-
ing, showcasing its adaptability to the nuanced
and dynamic nature of language. To evaluate this
robustness of EDITBIAS, we curate a synonym-
augmented test set that substitutes attribute terms
in St with their synonyms generated by WordNet
(Miller, 1995) using NLTK (Bird and Loper, 2004).
Results in Table 4 show that our debiasing method
can generally remove bias in the language models’
neighboring semantic modeling space.

5 Conclusion

We propose EDITBIAS, an efficient model editing
method to debias language models by modifying
a small portion of PLMs’ parameters with £; and
L. Experiments illustrate that EDITBIAS presents
much better debiasing performance than classical
debiasing methods, and is robust in gender reverse
and semantic generality though it hurts models’
original language modeling abilities. Meanwhile,
we comprehensively investigate debiasing and bias
effects on language models, concluding that debi-
asing larger and causal language models is diffi-
cult, and it is important to consider the trade-off
between debiasing and language modeling perfor-
mance when designing debiasing methods. We
hope our findings can give insights into future de-
biasing works and the NLP community.



Limitations and Future Works

More experiments to extend the debiasing
method. In this work, we only study one bench-
mark dataset with its corresponding metrics. To ex-
tend the generality of our work, more bias datasets
and metrics with various formats, from different
domains and perspectives will be utilized in experi-
ments, such as Stanceosaurus (Zheng et al., 2022)
and HOLISTICBIAS (Smith et al., 2022). Due to
the limited GPU resources, some larger language
models have not been explored, such as LLaMA2
(Touvron et al., 2023), GLM (Zeng et al., 2023),
and GPT-Neo (Black et al., 2021). We will conduct
experiments with with more datasets and models
in the future.

New bias editing methods with less modeling
harm and without training costs. Though ED-
ITBIAS obtains great performance on debiasing,
alleviating its harm to the language modeling abil-
ity is significant and challenging. For instance, to
reduce the modeling damage, we will try to edit
neurons within a tiny disturbance, such as alter-
ing a small term in Taylor expansions of these
activations. When compared to locate-then-edit
approaches, like ROME (Meng et al., 2022) and
MEMIT (Meng et al., 2023), as a meta-learning
method, EDITBIAS necessitates additional training
stages for hyper-networks, potentially leading to
increased time and memory costs. In the future, we
will try different editing methods without explicit
training using large corpora.
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A Bias Tracing

ROME (Meng et al., 2022) and MEMIT (Meng
et al., 2023) utilize causal tracing (Vig et al., 2020a)
to locate facts memorized in the parameters of a pre-
trained autoregressive transformer. After they find
the specific hidden state with the strongest effect
on individual facts, they modify these localized
parameters for changing facts. Inspired by causal
tracing, we propose bias tracing to seek the exact
hidden states that contribute most to bias exhibited
in the language models including masked language
models and causal language models, which will
guide us to select positions to edit for debiasing.

A.1 Tracing Bias Associations

Following Meng et al. (2022), we analyze all in-
ternal activations of a language model M during
three runs: a clean run eliciting the bias in lan-
guage models, a corrupted run disrupting the bias
context modeling, and a corrupted-with-restoration
run measuring bias exhibited in a single state.

* As for the clean run, we obtain Py(-|Zstereo)
and Py(+|zan) for each sample in the datasets,
and collect all hidden activations {hl|i €
[1,K],l € [1, L]} for each token i and each
layer [, given the input text x = [z1,..., k]
and the M with L layers.

In the corrupted run, noise is added to the em-
bedding of all bias attribute words in the input.
For the embedding hY in the token sequences
of bias attributes words to be corrupted, we

set hY := hY + 7, where 7 ~ N(0; o).> Then,
3o is three times the standard deviation of 1000 subject em-

beddings from https://rome.baulab.info/data/dsets/
known_1000. json
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M runs based on the corrupted embeddings
and we collected the following corrupted acti-
vations {hl|i € [1, K],l € [1, L]}. Since the
existence of bias attribute words in a context
is the reason why a context presents bias, cor-
rupting the embedding of bias attribute words
will remove the bias effects on the following
language modeling process.

With noisy embeddings, we restore specific
hidden states of some token ¢ (the bias at-
tribute word, the attribute term, or the to-
ken before the attribute term) and layer [
(the Transformer block, the attention layer,
or the MLP layer) in the corrupted-with-
restoration run, which lets M output the
clean state h!. The following forward-running
executes without more intervention.

We calculate the absolute log probability differ-
ence between Tgereo and Tangi, f, d(07 Tstereo, xanti) =
| log Py(+|Zstereo) —10g Py(-|Zanti)| , to measure bias
in a language model. The larger the difference is,
the more biased M is. By running the network
twice, bias tracing computes the bias effect of acti-
vations. The normal clean run occurs first to obtain
all clean activations. Secondly, embeddings of bias
attribute words are corrupted and the lowest differ-
ence is obtained. Then the corrupted activations

Rl of a certain token i and layer [ are restored to
their original values hé from the same token ¢ and
the same layer [. If an activation restoration of a
token ¢* and layer [* causes a larger difference than
a restoration from other tokens and layers, we can
know that the activations of the token ¢* and layer
[* give more impetus to bias.

A.2 Bias Tracing Results

We conduct gender bias tracing on the intrasen-
tence part of StereoSet at every layer and every to-
ken. The average bias effects of 500 samples with
GPT2-XL after a corrupted run and a corrupted-
with-restoration run are shown in Figure 5 (a) and
(b), respectively.

Bias best corresponds to the states of MLPs at
lower layers. Figure 5 (a) illustrates that at layer
0-13, transformer block states and MLPs play a
much more significant role in bias than attention
layers, with peaking at layer 8. This reveals that
language models intensively present bias in the
foundational representations learned by lower lay-
ers, and these early presentations can influence the
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(a) Bias effect of states at every layer with Attn or MLP modules severed (GPT2-XL)

- Effect of single state
mmm Effect with Attn severed
e Effect with MLP severed

e e
@ @
.- 8

Absolute log probability difference
°
@
8

<lendoftext|>

My
ather~-{ NI
is

[emotional]

(c) Impact of restoring state after corrupted input (d) Impact of restoring state after corrupted input

<lendoftext|>
Everyone
thought
he*
was
a F11

very I
[strong]
fighter

Lo.oa k1.0
0 5 1015 20 25 30 35 40 Corrupt: he

single restored layer within gpt2-xI

1.2
a

0 5 101520 25 30 35 40
single restored layer within gpt2-x|

(e) Impact of restoring Attn after corrupted input  (f) Impact of restoring Attn after corrupted input
0.29
<lendoftext|> <lendoftext|>
Everyone 1.10
My thought
father* 0.98 he* w
0.28 was
0 10 20 30 40 is a 1.05
Layer a M | 0.96 very [
038 (b) Bias effect on different tokens of single states at every layer (GPT2-XL) [sg;;‘régl
W Effect of bias attribute words . U o.0a . L 1.00
W Effect of the token before attribute terms 0 5 1015 20 25 30 35 40 : 0 5 10 15 20 25 30 35 40 Corrupt: he
W Effect of attribute terms center of interval of 10 restored Attn layers center of interval of 10 restored Attn layers
g 036
2
g . .
5 (g) Impact of restoring MLP after corrupted input (h) Impact of restoring MLP after corrupted input
2034 <Jendoftext|> 1.050  <jendoftext|>
¥ Everyone
s My 1.025 thought 12
g tathers {001 | DRI he JIN | S
2032 is 1.000 was
o a
1.1
£ a 1 |l oors very
2 [emotional] [strong]
<030 0.950 fighter
X LI ©- . 1.0
0 5 101520 25 30 35 40 0 5 10 15 20 25 30 35 40 Corrupt: he
center of interval of 10 restored MLP layers center of interval of 10 restored MLP layers
0.28
0 10 20 30 40

Layer

Figure 5: Gender bias tracing on GPT2-XL. (a) Comparing bias effect with and without severing Attn or MLP. (b)
Comparing bias effect on different token positions. The bias impact on output probability is mapped for the effect
of (c-d) each hidden state on the context, (e-f) only MLP activations, and (g-h) only attention activations. * marks
the corrupted bias attribute words and [] refers to the attribute terms in (c-h).

subsequent layers. The reason is that since the
lower layers capture the text patterns (Geva et al.,
2021), bias patterns in the pre-trained corpus, such
as cooccurrence with stereotyped terms, are mem-
orized in the early layers. Figure 5 (b) also shows
that bias attribute words have the most effects at the
early layers. Meanwhile, it indicates that attribute
terms and the token before it associated with bias
at the upper layers, especially for the token be-
fore attribute terms because semantic information
is usually modeled in the top layers, and the token
probability is most influenced by the previous one
in a causal language model. Two cases in Figure
5 (c-h) illustrate the aforementioned observations
well. Besides, Figure 5 (e-f) manifests that atten-
tion from the bias token to attribute tokens shows
a strong relation with bias, which results from the
causal effect of the bias token.

A.3 Tracing Data Construction

We begin with utilizing SPARQL to query the in-
stance of gender, race, and religion, obtaining a
variety of words targeted to specific bias. These
words are the source collection of bias attribute
words. Based on the collection, we then adopt sim-
ple string matching to extract bias attribute words
from the context sentence = of each sample s in the
dataset. As a result, we can trace the activations of
these bias attribute words in language models.
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A.4 Bias Tracing with RoBERTa-large

Figure 6 shows the bias effects of RoBERTa-large.
Different from GPT2-XL, Transformer blocks, at-
tention layers, and MLPs follow the same trend in
bias effects without causal effects. According to
Figure 6 (a), the strong association is located in the
early layers, and the impacts become less and less
from the bottom layer to the top layer because bias
patterns are captured in these beginning layers, the
same as GPT2-XL. Figure 6 (b) also illustrates that
bias words have the most bias effects in the bottom
layers and the attribute terms containing the seman-
tic information of bias influence the modeling at
the upper layers.

B Baselines

CDA (Counterfactual Data Augmentation)
train a pre-trained language model. It generates and
incorporates data that represents what could have
happened under different conditions. By altering
aspects of data related to biased attributes, such as
changing gender or race in a dataset, a counterfac-
tual data set is created to create a more balanced
training environment for models.

Ire-

SentenceDebias (Liang et al., 2020) first esti-
mates the demographic bias subspace by encod-
ing sentences containing bias attribute words or
their counterfactuals into sentence representations



and using principle component analysis (Abdi and
Williams, 2010) to define the bias subspace as the
first K principle components. and then debias sen-
tence representations by subtracting their projec-
tion onto the bias subspace.

Self-Debias (Schick et al., 2021) first prompts a
model to generate toxic text, such as encouraging
a model to discriminate based on gender. Then,
the model can generate a non-discriminative con-
tinuation, during which the probabilities of tokens
that were prominent in the toxic generation are
deliberately scaled down.

INLP (Ravfogel et al., 2020) introduces Itera-
tive Null-space Projection (INLP), a method that
reduces bias in word embeddings by iteratively pro-
jecting them onto the null space of bias terms using
a linear classifier. This method constructs a projec-
tion matrix to project input onto the null space of
the linear classifier, continuously updating both the
classifier and the projection matrix.

C Gender Counterfactual Test Set

We utilize the method mentioned in Appendix A.3
to extract gender attribute words in gender bias
samples. Then these gender attribute words are
reversed into their counter facts manually. The
labels “stereotype” and ‘“‘anti-stereotype” are ex-
changed for each sentence. For instance, after re-
verse, the stereotyped context in Figure 1 is “Boys
tend to be more determined than girls.” and the
anti-stereotyped context is “Boys tend to be more
soft than girls.”.
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Figure 6: Gender bias tracing with RoOBERTa-large.

17



