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Abstract—Learning cooperation in sparse-reward multi-agent
reinforcement learning is challenging, since agents need to explore
in the large joint-state space with sparse feedback. However,
in cooperative games, the cooperative target is often related to
partial attributes, hence there is no need to treat the whole state
space equally. Therefore, we propose Underexplored Subspace
Mining (USM), a novel type of intrinsic reward that encourages
agents to selectively explore partial attributes instead of wasting
time on the whole state space to accelerate learning. Specially,
considering that the target-related attributes are varying in
different games and hard to predefine, we choose to focus
on the underexplored subspace as an alternative, which is
an automatic aggregation of the underexplored bottom-level
dimensions without any human design or learning parameters.
We evaluate our method in cooperative games with discrete and
continuous state space separately. Results demonstrate that USM
consistently outperforms existing state-of-the-art methods, and
becomes the only method that has succeeded in sparse-reward
games evaluated with larger state space or more complicated
cooperation dynamics.

Index Terms—sparse-reward cooperation, multi-agent system,
reinforcement learning, selective exploration

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) has drawn in-
creasing interest in recent years, since it can help address many
challenging real world problems, such as cooperative games
[1], [2] as well as robot fleet coordination [3], [4]. Although
these MARL methods make significant progress in challenging
cooperative tasks, they all rely on dense extrinsic environ-
mental rewards or well-shaped auxiliary rewards designed by
human, making the study of sparse-reward cooperative MARL
largely absent. Indeed, sparse-reward cooperative setting is
common in real world, where agents are required to cooperate
over a long-time horizon to obtain a team reward.

More recently, there are some works studying sparse-reward
multi-agent cooperative MARL. Specially, influence among
agents is captured as intrinsic rewards to encourage agents to
do actions that make influence on others [5], [6]. Besides, there
are also works using hierarchical control to help agents learn
joint exploration skills and the skill selector simultaneously
[7], [8]. Although these methods have made process in sparse-
reward cooperative problems, they suffer from exploration in
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Fig. 1. Two agents are exploring how to push the heavy box
coordinately to the specific area to obtain a reward, where
the cooperation target is only related to the position of the
box. Thus the movements of the box in (a) is more important
than the exploration of the position of agents in (b). And the
method which only focuses on the movement of the box as in
(a) instead of other unrelated exploration as in (b) will learn
faster as shown in (c).

the large joint-state space, and become more inefficient when
the state space grows exponentially w.r.t. the number of agents.

In this paper, we aim to take a step towards solving this
problem. Note that in cooperative games, the cooperative target
is often related to partial attributes. For instance, in a multi-
agent football game, the target is only about the position
of the ball, or in a multi-agent fighting game, the target is
only related to the health of enemies. Thus there is no need
to focus on the exploration in the whole joint-state space,
where most interactions are unnecessary and unrelated to the
target. Therefore we propose Underexplored Subspace Mining
(USM), a novel intrinsic reward which encourages agents to
only focus on the exploration in partial subspaces and avoid
other unnecessary exploration to accelerate the discovery of
rewards. We also demonstrate this phenomenon in Fig. 1.

Specially, considering that the target-related subspace is
varying in different tasks and hard to predefine, we choose
to focus on the underexplored subspace. This is inspired by
the principle of optimism in the face of the uncertainty, which
plays a central role in the exploration methods in many fields
[9]–[12]. For example, in reinforcement learning (RL) area
with sparse reward feedback, this principle encourages agents
to visit novel states that are less visited to achieve a more



efficient exploration [13], [14]. Similarly, we extend this idea
to the subspace level, and assume that the underexplored
subspaces that are less visited are more worthy of being
explored in sparse-reward cooperation problems. Concretely,
when helping agents focus on the underexplored subspace, we
achieve a lightweight subspace identification process, where
the underexplored subspace is automatically aggregated from
the bottom-level dimensions using unsupervised clustering
methods, without any troublesome subspace enumeration or
learning parameters.

Finally, we evaluate USM in sparse-reward cooperative
games with discrete and continuous state space respectively,
and results demonstrate that USM outperforms existing state-
of-the-art (SOTA) methods [6], [7], [15] in simple exploration
games, and becomes more sample efficient in games with
larger state space or more complicated cooperation dynamics.

We summarize our contributions as follow:
• We introduce a novel type of intrinsic reward for agents

to do selective exploration to accelerate their learning in
sparse-reward multi-agent games.

• We propose a lightweight underexplored subspace identi-
fication, which is automatically aggregated from bottom-
level dimensions without any troublesome subspace enu-
meration or learning parameters.

• Our method outperforms existing state-of-the-art methods
in both discrete and continuous state space sparse-reward
cooperative games.

II. BACKGROUND

We base USM on the representative multi-agent reinforce-
ment learning algorithm monotonic value function factoriza-
tion (QMIX) [16]. In this section, we will give a brief introduc-
tion to multi-agent reinforcement learning, the representative
algorithm QMIX and the research of sparse-reward multi-agent
cooperation.

A. Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning aims to address multi-
agent sequential decision problems, especially cooperative
games, which are usually modeled as Dec-POMDP, i.e.,
G = ⟨S,U, P,R, Z,O, n, γ⟩ [17]. S is the state space of
the environment. At each time step t, every agent i ∈ A ≡
{1, . . . , n} chooses an action ui ∈ U which forms the joint
action u ∈ U ≡ Un. P is the state transition function
which maps the current state s and the joint action u to
the next state s′, i.e., P (s′|s,u) : S × U × S → [0, 1].
All agents receive a shared reward r ∈ R according to the
reward function R(s,u) : S × U → R and γ ∈ [0, 1) is
the discount factor. In a partially observable setting, each
agent does not have access to the full state and instead
samples observations z ∈ Z according to observation function
O(s, i) : S × A → Z. The action-observation history for an
agent i is τ i ∈ T ≡ (Z×U)∗ on which it conditions its policy
πi(ui|τ i) : T × U → [0, 1]. The joint action-value function is
defined as Qπ(st,ut) = Est+1:∞,ut+1:∞

[∑∞
k=0 γ

krt+k|st,ut

]
where π is the joint policy. The object of MARL is to find the

joint policy π to maximize the expected sum of the discounted
team reward.

To address the non-stationary issue and the scalabil-
ity problem in MARL, existing MARL algorithms mainly
adopt centralized training and decentralized execution (CTDE)
paradigm. CTDE means during training, the learning algorithm
has access to the full information of all agents, while during
execution each agent makes decisions on its own information.
Based on CTDE paradigm, many value-based [16], [18]–[20]
and policy-based [21]–[24] multi-agent reinforcement learning
algorithm have been developed. In this paper, we also adopt
the widely used paradigm CTDE, and base our method USM
on the predominant value decomposition method QMIX.

B. Value Decomposition Methods and QMIX

As the mainstream of value-based CTDE methods, value
decomposition methods try to estimate the joint-action value
Qtot by learning individual agent utilities Qi, i ∈ A. As a
classical value decomposition method, QMIX [16] factors the
joint action-value Qtot into a monotonic nonlinear combina-
tion of individual utilities Qi. The individual utility is learned
by each agent via a utility network, and a mixer network
with nonnegative weights is used for combining agents’ util-
ities. The nonnegativity in the mixer network ensures that
∂Qtot(s,u)
∂Qi(τ i,ui) ≥ 0, which in turn guarantees Individual-Global-
Max (IGM) Condition [25], i.e., the optimal joint actions
across agents are equivalent to the collection of individual
optimal actions of each agent. QMIX is effective since during
execution, each agent can independently make decisions by
its own utility network without any global information since
IGM condition is satisfied.

C. Sparse-Reward Multi-Agent Cooperation

Compared to the vigorous development of multi-agent re-
inforcement learning in dense-reward cooperative games, the
relevant studies in sparse-reward setting is rare until recently.
These literatures can be grouped into two lines. One common
approach is encouraging agents to make influence on others,
where the influence is predefined like the effects on others’
transition dynamics [6] or policies [5]. The other line mainly
encourages agents to explore environments using combinations
of different cooperative skills, which are usually predefined
[8] or learnable using information theory [7]. However, both
of these two lines encourage exploration in the whole state
space, which makes themselves inefficient in large-scale envi-
ronments.

More recently, there is a new work called cooperative multi-
agent exploration (CMAE) [15], which also encourages agents
to do selective exploration. Note that although both CMAE and
USM propose to focus on the partial space, there are two major
differences between them: (1) The focused partial spaces are
different. CMAE proposes to focus on the restricted spaces,
which are the subset of the global state, and whose number
is growing exponentially w.r.t. the number of agents. While
USM focuses on the underexplored subspace, which is an
unsupervised aggregation of the bottom-level dimensions, and



is not sensitive to the number of agents. (2) The frameworks
of these two methods are different. For exploration, CMAE
needs to train explicit exploration policy in addition to the
coordinated policy for each agent, while USM is a bonus-
based method without introducing any additional exploration
policies, and is easy to be combined with existing MARL
algorithms or other advanced bonus-based methods.

III. METHOD

As discussed above, in USM we introduce a novel intrinsic
reward, which encourages agents to only focus on the explo-
ration of the underexplored subspace. Our work adopts the
mainstream CTDE paradigm, where agents are trained with
access to global information but make decisions based on
their own local information in execution. We base USM on
the representative CTDE algorithm QMIX, where each agent
owns its utility network Qi for decentralized execution, and
there is a monotonic nonlinear mixing network combining
these utility networks to estimate the joint state-action value
Qtot for training.

In our work, the proposed new intrinsic reward will be com-
bined with the extrinsic reward, then factored by the mixing
network together to achieve the implicit credit assignment.
Therefore in Dec-POMDP, agents will receive the weighted
sum of the intrinsic and extrinsic reward at each time step,
rt = rextt + ωrintt , where ω is the hyperparameter to weigh
the importance of both rewards. And the algorithm will be
trained by the loss:

L(θ) = E(τ ,u,r,s)∼D

[(
ytot −Qtot(τ ,u, s; θ)

)2]
(1)

where θ are the network parameters of QMIX, D is the
replay buffer, τ ,u, r, s are the joint action-observation history,
joint-action, intrinsic and extrinsic reward, and global state
respectively, Qtot is the output of QMIX, and ytot, i.e., the
target value estimation is

ytot = rext + ωrint + γmax
u′

Qtot(τ
′,u′, s′; θ−) (2)

γ is the discount factor, and θ− are the parameters of a target
network as used in DQN [26].

In the following we will introduce the calculation of this
intrinsic reward in details, including the determination of the
underexplored subspace and the exploration in this subspace
separately. For simplicity, we will first introduce these two
parts in Section III-A and Section III-B with assumption
that the state space is finite and discrete, then discuss the
form of USM in continuous state space in Section III-C. The
framework of USM is shown in Fig. 2.

A. Underexplored Subspace Identification

USM encourages agents to focus on the underexplored
subspace, however, the identification of the underexplored
subspace is challenging. On the one hand, the number of all
possible subspaces is growing exponentially w.r.t. the number
of agents (the number of subspaces for a N -dimensional joint
state is 2N ), which makes the enumeration inefficient and

unaffordable with limited learning resources. On the other
hand, the threshold used for selecting the underexplored one
is also unknown. To address the difficulties above, we propose
an automatic bottom-level aggregation mechanism achieving
a lightweight subspace identification process.

In cooperative games, we observe that each dimension in the
state vector describes a high-level attribute of the global state.
Besides, according to the principle of optimism in the face
of uncertainty, when the reward is sparse, compared to those
relatively explored dimensions, the underexplored dimensions
are more likely to hinder the achievement of the target, and
thus focusing on them is beneficial for agents to discover
useful skills and coordinated policies. Therefore, instead of
enumerating all possible subspaces and selecting appropriate
one, we choose to record the exploration degree of each
dimension then cluster the underexplored dimensions as the
identification of the focused subspace.

Concretely, agents start to explore randomly, then for a N -
dimensional global state, we use N counters to help measure
the exploration degree of each dimension separately. As for
discrete state space, we use Vi for the i-th dimension state
space and normalized entropy ei to represent the exploration
degree of this dimension. There will be counters recording the
visitation counts of different states (i.e., possible values in the
i-th dimension) in each dimension, and ci counts the visitation
of different states in Vi. Then the state probability distribution
in Vi is:

pi(∗) =
ci(∗)∑

v∈Vi
ci(v)

(3)

Thus the normalized entropy, i.e., exploration degree of the
i-th dimension is:

ei =
Hi

Hmax,i
=

−
∑

v∈Vi
pi(v) log pi(v)

log(|Vi|)
(4)

where |Vi| represents the number of different states in Vi

recorded during exploration. According to (4), the exploration
degree of the i-th dimension space is 1 if different states in
this dimension are sampled uniformly. Note that state visitation
counts are accumulated across episodes, which represents the
algorithm’s exploration degree of different dimensions during
prior training.

After obtaining the exploration degree of all dimensions, an
unsupervised clustering method will be used to cluster these
dimensions according to this statistic. Here we use k-means to
cluster dimensions into k classes. Then the class of the least
explored dimensions consists of the underexplored subspace.
It is worth noting that this underexplored subspace is identified
automatically without troublesome human design or learning
parameters. And for a N -dimensional global state, where each
dimension has M different values, the sum of all possible
subspace is

∑N
i=1

(
N
i

)
M i (where

(
N
i

)
is the combination

number of i out of N ). However, in USM it only takes a
N ×M matrix recording the visitation counts to help identify
the underexplored subspace, where each row represents the
visitation counts of different states in the related dimension.



Fig. 2. The framework of USM, which identifies the underexplored subspace and encourages the exploration in this subspace.
On the left, the underexplored subspace is identified by clustering bottom-level dimensions according the exploration degree of
each dimension, based on the observation that each dimension has its own meaning and exploration difficulty, and underexplored
dimensions are more likely to hinder the cooperation. On the right, the identified subspace is used as a mask to help calculate
the effects of agents on this focused area, which can be combined with other advanced MARL algorithms easily.

B. Underexplored Subspace Exploration

After identifying the underexplored subspace using the
mechanism introduced in Section III-A, the algorithm will
know where to pay attention. In other words, the algorithm
get a mask vector m made up of 0 and 1, whose dimension
is the same as the global state. In the mask, 1 means the
related dimension is included in the underexplored subspace
and 0 means not. Now the question becomes how to make
agents only focus on this part of space. In order to fulfill this
demand, the intrinsic reward is designed as:

rintt (st, st+1) =

∑N
i=1 I

[
sit ̸= sit+1

]
mi∑N

i=1 mi

(5)

where N is the dimension of the global state, I is an indicator
function (1 if the i-th dimension of the global state changes;
0 otherwise), and mi is the i-th dimension of the mask m.
Equation (5) means this intrinsic reward encourages agents to
explore different states, but this difference needs to happen in
the underexplored subspace. In other words, only behaviors
affecting the underexplored subspace will be encouraged,
while others are not, even though they also have an influence
on the environment. In addition, the dimension of the focused
subspace is also considered in the denominator, thus the reward
will be only in relation to the average exploration degree of
the focused subspace, no matter what its dimension is.

Furthermore, in order to ensure that agents do not go
back and forth between consecutive states to gain intrinsic
rewards, which is highly likely to happen especially in grid
world environment, we discount the intrinsic reward in (5)
by

√
N(st+1) referring to [13], [27], where N(st+1) is the

number of times the global state st+1 has been visited during

the past episodes. Hence the overall intrinsic reward used in
USM in discrete environment is:

rintt (st, st+1) =

∑N
i=1 I

[
sit ̸= sit+1

]
mi

(
∑N

i=1 mi)
√
N(st+1)

(6)

C. USM in Continuous State Space

Now we introduce how to identify and explore the un-
derexplored subspace in continuous state space. First for the
subspace identification, we still use k-means clustering to
divide dimensions of the global state, and the only difference
is that the statistic used here is the variance of each dimension
not the entropy. Similarly, in order to ensure the comparability
among dimensions, all dimensions are normalized according to
their own maximum and minimum values, which are recorded
and updated periodically. Hence the i-th dimension clustering
feature used in continuous state spaces is:

vari = σ2
i =

1

n

∑
d∈Di

(d−Di)
2 (7)

where n is the number of global states sampled during prior
training, Di represents the related i-th dimension data, Di is
the average value of data in Di. Then the clustering result will
be used to help determine the underexplored subspace, i.e., the
mask.

As for the intrinsic reward form in continuous state spaces,
it is nearly the same as the form in (5) except that the change
of consecutive states is calculated by the difference not the
comparison, therefore the intrinsic reward here is:

rintt (st, st+1) =

∑N
i=1 |sit − sit+1|mi∑N

i=1 mi

(8)
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Fig. 3. The descriptions of tasks in PWE and SMAC. (a) PushBox. (b) Pass. (c) Island. (d) 5m. A task of SMAC. In these
tasks, the extrinsic reward or the largest extrinsic reward will not be given unless the cooperation target is achieved, which
encourages agents to explore long-term cooperative strategies.

IV. EXPERIMENTS

We evaluate USM with SOTA baselines in sparse-reward
cooperative games with discrete or continuous state spaces
respectively. In the following we will introduce the environ-
ments we study, the baselines we compare with, and finally
the network architecture and training details in our method.

A. Environments

We evaluate our method on two types of challenging sparse-
reward multi-agent cooperative games: (1) a discrete version
of multi-agent particle world environment (PWE) [6], [15],
[21]; (2) a sparse reward version of the StarCraft multi-agent
challenge (SMAC) [2]. These two environments are described
below, and the sketch of them are shown in Fig. 3. Table I
lists the state space of different tasks.

PWE: We consider 3 tasks in this environment, which are
PushBox, Pass and Island. In PushBox, agents are required to
coordinately push a heavy box to a specific position. In Pass,
agents need to move from left room to right room, and the door
between rooms will only open when one of agents occupies
the switch in any room. In Island, agents are coordinated to kill
the wolf, and there are also treasures to distract agents from
cooperation. In these tasks, the extrinsic reward or the largest
extrinsic reward will not be given unless the cooperation target
is achieved, which encourages agents to explore long-term
cooperative strategies.

SMAC: This is a two-team battle game, and each team
controls many agent units. The goal of the team is to elim-
inate all enemy units to obtain the only team reward. This
environment also requires agents to learn long-term cooper-
ative strategies, except that the state in this environment is
continuous and higher-dimensional. In particular we consider
4 representative tasks of different difficulties in SMAC: 3m,
2m vs 1z, 3s vs 5z, 25m.

B. Baselines

In USM, the clustering method in all experiments is k-
means, and k is 2. For PWE tasks, there is no common
basic algorithms and existing methods adopt different basic
algorithms like q-learning method with q-table and prioritized
replay buffer [28] used in CMAE [15], or on-policy PPO
method [29] with GAE [30] in EITI and EDTI [6]. Here

TABLE I
STATE SPACE OF PWE AND SMAC

Name Agents Dimensions State Space
PushBox 2 6, discrete ≈ 1.1× 107

Pass 2 5, discrete ≈ 1.6× 106

Island 2 10, discrete ≈ 1.1× 1010

3m 3 vs 3 21, continuous -
2m vs 1z 2 vs 1 12, continuous -
3s vs 5z 3 vs 5 35, continuous -
25m 25 vs 25 175, continuous -

we adopt the mainstream MARL algorithm QMIX combined
with TD(λ) and prioritized replay buffer (PER) as our basic
algorithm. We call this basic algorithm QMIX(+), and base
USM on it. For SMAC tasks, we directly base USM on QMIX,
which is popular in dense-reward SMAC tasks.

In order to evaluate the performance of USM, we compare it
with SOTA methods that are suitable for discrete or continuous
or both environments. For PWE, we compare USM with
QMIX(+), CMAE, EITI and EDTI. Besides, considering that
count-based method is popular in single-agent exploration
problems [13], [31], [32], we provide the results of QMIX(+)
combined with count-based exploration, i.e., QMIX(+) Count,
where the intrinsic reward is given when a novel global state
is visited. For SMAC tasks, we compare USM with other
value-based CTDE methods, QMIX, MAVEN [7] and CMAE.
Similarly, we also provide the results of QMIX combined with
count-based method RND [14], which evaluates the global
state novelty in continuous environment, i.e., QMIX RND.

Results of baselines we compare with are obtained using
the publicly available code released by their authors. We
evaluate USM and baselines with the evaluation protocol used
in existing methods [2], [16]. Each experiment is repeated
using 5 independent training runs with different random seeds,
and the resulting plots include the median performance shown
in dark color as well as the 25%-75% percentiles shown in
the shaded area.

C. Architecture and Training

For all QMIX-based algorithms used in PWE and SMAC,
most parameters follow the default setting used in QMIX
[16]. As for the hyperparameters of the modules specially
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Fig. 4. Learning curves of different methods during training in PWE tasks. (c) and (d) demonstrate the success rate and the
episode return of different methods in Island respectively.
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Fig. 5. Test win rate of different methods in SMAC tasks. USM becomes the only method succeeding in games with larger
state space like 25m or complicated cooperation dynamics like 3s vs 5z

designed in QMIX(+), i.e., TD(λ) and PER, λ in TD(λ) target
value estimation is 0.9, and α in PER is 1. In USM, at
the beginning, agents will make a random exploration for
10 thousand time steps before doing subspace exploration
(about 32 and 128 episodes in PWE and SMAC tasks), and
the underexplored subspace is updated every 200 episodes for
both environments. The hyperparameter ω used in weighing
the intrinsic and extrinsic reward is important, and it is 1 in
USM, QMIX(+) Count and QMIX RND in all tested tasks.

V. RESULTS

In the following, we will first demonstrate the comparison
between USM and other SOTA methods, then provide a
visualization to help further analyze USM. At last, an ablation
study about the clustering method used in Section III-A will
also be discussed to justify this module.

A. Comparison with State-of-the-Art

The comparison of different methods in PWE tasks is shown
in Fig. 4, which demonstrates the higher sample efficiency
of USM in all tasks. It is worth noting that in PushBox and
Island, USM learns faster than QMIX(+) Count, while in Pass
the opposite is true. We suspect this comes from the different
characteristics of different tasks. Pass requires agents to find a
new room, thus the novel state is needed, making the novelty-
seeking method QMIX(+) Count learn a little faster. While in
tasks PushBox and Island, where seeking novelty in the whole
state space is more inefficient and unrelated to the target, the
advantage of USM with selective exploration is exerted.

Then we compare USM with other baselines in SMAC, and
results are shown in Fig. 5. Note that we plot the performance
of CMAE with a dotted line using the results presented in its
own paper. According to the results we find that in simple
exploration tasks like 3m and 2m vs 1z, USM learns at least
twice as fast as others. Besides, it is worth noting that in
tasks 3s vs 5z and 25m, USM becomes the only method
that can solve the task successfully. In fact, 25m has a larger
state space than 3m or 2m vs 1z as shown in Table I, hence
the performance of USM in 25m illustrates the advantage of
USM in addressing games with larger state space. Moreover,
the task in 3s vs 5z is more complicated than that in 3m or
2m vs 1z, where there is a disparity in strength between the
two teams. In this game, if agents in team 3s want to win,
they must learn to scatter enemies and eliminate them one
by one instead of only attacking enemies one after another
jointly, where the latter strategy is easier to explore. Hence
the performance of USM in 3s vs 5z shows that it indeed
provides agents with more efficient exploration ability, which
helps agents not only learn faster in simple exploration tasks,
but also succeed in finding more sophisticated coordinated
policies in tasks with more complicated cooperation dynamics.

B. Visualization

In order to further explain the performance of USM, we
visualize the underexplored subspace identified during train-
ing, and results are shown in Fig. 6. Fig. 6(a) shows in
PushBox, USM will encourage agents to focus more on the
box which is rarely pushed, then help agents learn to push the
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each enemy unit.
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Fig. 7. Ablation study about the clustering method used in
USM. Compared with USM, the learning of other numbers of
cluster centers is slow and unstable.

box cooridinately. In Pass, Fig. 6(b) shows that USM helps
agents choose to explore the subspace of the door at first, after
that agents start to visit the right room and entropies of x-axis
related dimensions decrease sharply. Then USM encourages
agents to explore the subspace consists of x-axis coordinates
of agents and the door status, which determines whether both
agents can reach the right room. As for in Island shown
in Fig. 6(c), compared with other dimensions that are easy
to explore, like locations of agents and the wolf, USM first
encourages agents to affect the health of agents and the wolf,
and the exploration in this subspace will encourages them to
meet. Then because the wolf can attack agents automatically
while the agents cannot, the health of agents begins to change
dramatically, then drops out of the underexplored subspace.
After that agents begin to focus on the health of wolf then
learn how to kill the wolf gradually. From the development of
the underexplored subspace in PWE, we found that in these
tasks the underexplored subspace includes important target-
related dimensions, and due to the focus on them, agents
learn necessary skills for cooperation and their exploration is
accelerated greatly.

In SMAC, the development of the underexplored subspace
is similar to that in PWE, and we take this process happened
in 3s vs 5z as an example, which is shown in Fig. 6(d). The
global state in this task includes the health, shield, location
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Fig. 8. The focused subspace of USM and x-means. There is
a difference of the focused area between these two method in
different stages divided by gray dotted lines.

and cooldown (the minimum delay between attacks) of allies
and enemies. The result shows that from the beginning, USM
focuses on all dimensions except for the health of allies,
since enemies can attack allies automatically and therefore,
the health of allies are always changing. After focusing on this
underexplored subspace, agents first learn to change their own
locations, since later their location-related parts drop out of the
underexplored subspace. Then agents start to attack enemies’
shield and health, which indeed helps them discover the
successful policy for eliminating all enemies. The development
of underexplored subspace in 3s vs 5z also illustrates that
USM will help agents focus on the subspace that is not
fully explored, avoid unnecessary interaction and accelerate
the learning of cooperation.

C. Ablation Study

In Section III-A, we use k-means where k is 2 to cluster
underexplored dimensions. In the following we will perform
an ablation study to verify this choice. Specifically, we provide
the results of other number of cluster centers (k = 3, 4,
5) and x-means, which can determine the cluster centers
automatically. Here we choose a high-dimensional state space
3s vs 5z to make the comparison, and the performance of dif-
ferent variations is similar in other tasks. Results are shown in
Fig. 7, which demonstrate that with the number of cluster cen-
ters growing, the performance is poorer and the performance



of x-means is especially unsatisfactory. We attribute this result
to the different inclusiveness in different clustering methods.
Note that sometimes the target-related subspace is not fully
learned but may not be the most underexplored, therefore the
cluster method need to find as many underexplored dimensions
as possible, thus k is 2 is conservative but appropriate.

Additionally, we provide the underexplored subspace iden-
tified by USM (k=2) and x-means during training in 3s vs 5z
in Fig. 8. It shows that because x-means always focuses
on the most underexplored subspace, it does not include
some necessary relatively underexplored dimensions at the
beginning, and discards necessary dimensions easily, making
the learning process deficient and fluctuant. On the contrary,
USM clusters dimensions into two classes will include as more
underexplored dimensions as possible at the beginning, and
updates the focused subspace gradually, therefore it achieves
a more robust performance.

VI. CONCLUSION

In this paper, we have proposed USM, a novel type of intrin-
sic reward that encourages agents to do selective exploration,
alleviating the inefficient exploration problem in large state
space, and achieving a significant performance especially in
challenging sparse-reward cooperative games. However, USM
currently can only be used in games with state vector input,
and how to apply it to pixel-input tasks is worth studying.
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