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Abstract
Unsupervised dataset alignment estimates a
transformation that maps two or more source do-
mains to a shared aligned domain given only
the domain datasets. This task has many ap-
plications including generative modeling, unsu-
pervised domain adaptation, and socially aware
learning. Most prior works use adversarial learn-
ing (i.e., min-max optimization), which can be
challenging to optimize and evaluate. A few re-
cent works explore non-adversarial flow-based
(i.e., invertible) approaches, but they lack a uni-
fied perspective. Therefore, we propose to unify
and generalize previous flow-based approaches
under a single non-adversarial framework, which
we prove is equivalent to minimizing an upper
bound on the Jensen-Shannon Divergence (JSD).
Importantly, our problem reduces to a min-min,
i.e., cooperative, problem and can provide a nat-
ural evaluation metric for unsupervised dataset
alignment. We present preliminary results of our
framework on simulated and real-world data.

1. Introduction
In many cases, a practitioner has access to multiple related
but distinct datasets such as agricultural measurements
from two farms, experimental data collected in different
months, or sales data before and after a major event. Un-
supervised dataset alignment (UDA) is the ML task aimed
at aligning these related but distinct datasets in a shared
space, which may be a latent space, without any pairing
information between the two domains (i.e., unsupervised).
This task has many applications such as generative mod-
eling (e.g., (Zhu et al., 2017)), unsupervised domain adap-
tation (e.g., (Grover et al., 2020; Hu et al., 2018)), batch
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effect mitigation in biology (e.g., (Haghverdi et al., 2018)),
and fairness-aware learning (e.g., (Zemel et al., 2013)).

The most common approach for obtaining such align-
ment transformations stems from Generative Adversarial
Networks (GAN) (Goodfellow et al., 2014), which can
be viewed as minimizing a lower bound on the Jensen-
Shannon Divergence (JSD) between real and generated dis-
tributions. The lower bound is tight if and only if the inner
maximization is solved perfectly. CycleGAN (Zhu et al.,
2017) maps between two datasets via two GAN objectives
between the two domains and a cycle consistency loss,
which encourages approximate invertibility of the transfor-
mations. However, adversarial learning can be quite chal-
lenging in practice (see e.g. (Lucic et al., 2018; Kurach
et al., 2019)) because of the competitive nature of the min-
max optimization problem. Also, the research community
only has reasonable model evaluation metrics for certain
data types. Specifically, the commonly accepted Frechet
Inception Distance (FID) (Heusel et al., 2017) is only appli-
cable to image or auditory data, which have standard pow-
erful pretrained classifiers, and even the implementation of
FID can have evaluation issues (Parmar et al., 2021). No
clear metrics exist for tabular data or non-perceptual data.

Recently, flow-based methods that leverage invertible mod-
els have been proposed for the UDA task (Grover et al.,
2020; Usman et al., 2020). AlignFlow (Grover et al.,
2020) leverages invertible models to make the model cycle-
consistent (i.e., invertible) by construction and introduce
exact log-likelihood loss terms derived from standard flow-
based generative models as a complementary loss terms
to the adversarial loss terms. Yet, AlignFlow still lever-
ages adversarial learning and does not provide a general
evaluation metric. Log-likelihood ratio minimizing flows
(LRMF) (Usman et al., 2020) use invertible flow models
and density estimation to avoid adversarial learning alto-
gether and define a new metric based on the log-likelihood
ratio. However, LRMF depends heavily on the density
model class and can only partially align datasets if the tar-
get distribution is not in the chosen density model class.
Additionally, the LRMF metric depends on this density
model class and is only defined for two datasets.

Therefore, to avoid challenging adversarial learning and
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generalize previous flow-based approaches, we propose a
unified non-adversarial UDA framework, which we prove
is equivalent to minimizing an upper bound on the JSD. Im-
portantly, our problem reduces to a min-min, i.e., coopera-
tive, problem, and the JSD upper bound can provide a nat-
ural evaluation metric for UDA that can be applied in any
domain. Our framework requires two parts, the outer min-
imization requires an invertible model and the inner mini-
mization requires a density model (e.g., Gaussian mixture
models or normalizing flows (Dinh et al., 2017)). We sum-
marize our contributions as follows:

• We prove that a minimization problem over density
models is an upper bound on a generalized version of
JSD that allows for more than two distributions. Im-
portantly, we also theoretically quantify the bound gap
and show that it can be made tight if the density model
class is flexible enough.

• We use this JSD upper bound to derive a novel regular-
ized loss function for UDA and explain its relationship
to prior methods.

• We demonstrate the feasibility of our method on sim-
ulated and real-world data.

Notation We will denote distributions as PX(x) where
X is the corresponding random variable. Invertible func-
tions will be denoted by T (·). We will use Xj ∼ PXj to
denote the observed random variable from the j-th distri-
bution. We will use Zj , Tj(Xj) ∼ PZj

≡ PTj(Xj) to
denote the latent random variable of the j-th distribution
after applying Tj to Xj (and note that Xj = T−1j (Zj)).
We will denote the mixtures of these observed or latent dis-
tributions as PXmix ,

∑
jwjPXj

and PZmix ,
∑
jwjPZj

,
where w is a probability vector. We denote KL divergence,
entropy, and cross entropy as KL(·, ·), H(·), and Hc(·, ·),
respectively, where KL(P,Q) = Hc(P,Q)−H(P ).

2. Regularized Alignment Upper Bound Loss
We first remind the reader of the generalized Jensen-
Shannon divergence for more than two distributions, where
the standard JSD is recovered if w1 = w2 = 0.5.
Definition 1 (Generalized Jensen-Shannon Divergence
(GJSD) (Lin, 1991)). Given k distributions {PXj

}kj=1 and
a corresponding probability weight vector w, the gener-
alized Jensen-Shannon divergence is defined as (proof of
equivalence in appendix):

GJSDw(PX1
, · · · , PXk

) ,
∑
jwj KL(PXj

,
∑
jwjPXj

)

≡ H
(∑

jwjPXj

)
−
∑
jwj H(PXj

) . (1)

The goal of distribution alignment is to find a set of trans-
formations {Tj(·)}kj=1 (which will be invertible in our

case) such that the latent distributions align, i.e., PTj(Xj) =
PTj′ (Xj′ )

or equivalently PZj
= PZj′ for all j 6= j′. Given

the properties of divergences, this alignment will happen if
and only if GJSD(PZ1

, · · · , PZk
) = 0. Thus, ideally, we

would minimize GJSD directly with respect to Tj , i.e.,

min
T1,··· ,Tk∈T

GJSD(PT1(X1), · · · , PTk(Xk)) (2)

≡ min
T1,··· ,Tk∈T

H
(∑

jwjPTj(Xj)

)
−
∑
jwj H(PTj(Xj)) ,

where T is a class of invertible functions.

2.1. GJSD Upper Bound

However, we cannot evaluate the entropy terms in Eqn. 2
because we do not know the density of PXj

; we only have
samples from PXj

. Therefore, we will upper bound the first
entropy term in Eqn. 2 (H

(∑
jwjPXj

)
) using an auxiliary

density model and decompose the other entropy terms by
leveraging the change of variables formula for invertible
functions.

Theorem 1 (GJSD Upper Bound). Given an auxiliary den-
sity model class Q, we form a GJSD upper bound:

GJSDw(PZ1 , · · · , PZk
)

≤ min
Q∈Q

Hc(PZmix , Q)−
∑
jwj H(PZj ) ,

where the bound gap is exactly minQ∈QKL(PZmix , Q).

Proof of Theorem 1. For any Q ∈ Q, we have the follow-
ing upper bound:

GJSDw(PZ1
, · · · , PZk

)

= Hc(PZmix , Q)−Hc(PZmix , Q)︸ ︷︷ ︸
=0

+H(PZmix)−
∑
jwj H(PZj

)

= Hc(PZmix , Q)−KL(PZmix , Q)−
∑
jwj H(PZj

)

≤ Hc(PZmix , Q)−
∑
jwj H(PZj

) ,

where the inequality is by the fact that KL divergence is
non-negative and the bound gap is equal to KL(PZmix , Q).
The Q that achieves the minimum in the upper bound is
equivalent to the Q that minimizes the bound gap, i.e.,

Q∗ = argmin
Q∈Q

Hc(PZmix , Q)−
∑
jwj H(PZj )︸ ︷︷ ︸

Constant w.r.t. Q

(3)

= argmin
Q∈Q

Hc(PZmix , Q) −H(PZmix)︸ ︷︷ ︸
Constant w.r.t. Q

(4)

= argmin
Q∈Q

KL(PZmix , Q) . (5)

The tightness of the bound depends on how well the class
of density models Q (e.g., mixture models, normalizing
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flows, or autoregressive densities) can approximate PZmix ;
notably, the bound can be made tight if PZmix ∈ Q.
Also, one key feature of this upper bound is that the
cross entropy term can be evaluated using only samples
from PXj

and the transformations Tj , i.e., Hc(PZmix , Q) =∑
jwjEPXj

[− logQ(Tj(xj))]. However, we still cannot
evaluate the other entropy terms H(PZj

) since we do not
know the densities of PZj (or PXj ). Thus, we leverage the
fact that the Tj functions are invertible to define an entropy
change of variables.

Lemma 2 (Entropy Change of Variables). Let X ∼ PX
and Z , T (X) ∼ PZ , where T is an invertible transfor-
mation. The entropy of Z can be decomposed as follows:

H(PZ) = H(PX) + EPX
[log |JT (x)|] , (6)

where |JT (x)| is the determinant of the Jacobian of T .

The key insight from this lemma is that H(PX) is a constant
with respect to T and can thus be ignored when optimizing
T , while EPX

[log |JT (x)|] can be approximated using only
samples from PX . Combining Theorem 1 and Lemma 2,
we can arrive at our final objective function which is equiv-
alent to minimizing an upper bound on the GJSD:

GJSDw(PZ1 , · · · , PZk
)

≤ min
Q∈Q

Hc(PZmix , Q)−
∑
jwj H(PZj ) (7)

= min
Q∈Q

∑
jwjEPXj

[− logQ(Tj(x))|JTj (x)|]

−
∑
jwj H(PXj

) ,
(8)

where the last term −
∑
jwj H(PXj ) is constant with re-

spect to Tj functions so they can be ignored. We formally
define this loss function as follows.

Definition 2 (Alignment Upper Bound Loss). Given k con-
tinuous distributions {PXj

}kj=1, a class of continuous dis-
tributions Q, and a probability weight vector w, the align-
ment upper bound loss is defined as follows:

LAUB(T1, · · · , Tk; {PXj}kj=1,Q,w)

, min
Q∈Q

∑
jwjEPXj

[− log |JTj
(x)|Q(Tj(x))] , (9)

where Tj are invertible and |JTj (x)| is the absolute value
of the Jacobian determinant.

Notice that this alignment loss can be seen as learning the
best base distribution given fixed flow models Tj . We now
consider the theoretical optimum if we optimize over all
invertible functions.

Theorem 3 (Alignment at Global Minimum of LAUB). If
LAUB is minimized over the class of all invertible functions,
a global minimum of LAUB implies that the latent distribu-
tions are aligned, i.e., PTj(Xj) = PTj′ (Xj′ )

for all j 6= j′.
Notably, this result holds regardless of Q.

Informally, this can be proved by showing that the problem
decouples into separate normalizing flow losses where Q
is the base distribution and the optimum is achieved only
if PTj(Xj) = Q for all Tj (formal proof in the appendix).
This alignment of the latent distributions also implies the
translation between any of the observed component distri-
butions. The proof follows directly from Theorem 3 and
the change of variables formula.

Corollary 4 (Translation at Global Minimum of LAUB).
Similar to Theorem 3, a global minimum of LAUB implies
translation between any component distributions using the
inverses of Tj , i.e., PT−1

j′ (Tj(Xj))
= PXj′ for all j 6= j′.

2.2. Regularization via Transportation Cost

While the alignment objective is the most challenging
part of UDA, we argue that regularization is also criti-
cal for practical and stable alignment (or translation) be-
tween datasets because there are many optimal alignment
solutions—even infinitely many in most cases (see ap-
pendix for two examples). We alleviate this issue by adding
expected transportation cost (usually squared Euclidean
distance) as a regularization to our objective inspired by
optimal transport (OT) concepts.

Definition 3 (Regularized Alignment Upper Bound Loss).
Given similar setup as in Def. 2 and a transportation cost
function c(a, b) ≥ 0 for transporting a point from a to b,
the regularized alignment upper bound loss is defined as:

LRAUB(T1, · · · , Tk; {PXj}kj=1,Q,w, λ, c)
, min
Q∈Q

∑
jwjEPXj

[− log |JTj
(x)|Q(Tj(x))

+ λc(x, Tj(x))] .

(10)

2.3. Relationship to Prior Works

AlignFlow is special case without adversarial terms
AlignFlow (Grover et al., 2020) without adversarial loss
terms is a special case of our method for two distributions
where the density model class Q only contains the stan-
dard normal distribution (i.e., a singleton class) and no reg-
ularization is used (i.e., λ = 0). Thus, AlignFlow can be
viewed as initially optimizing a poor upper bound on JSD;
however, the JSD bound becomes tighter as training pro-
gresses because the latent distributions independently move
towards the same normal distribution.

LRMF is special case with only one transformation
Log-likelihood ratio minimizing flows (LRMF) (Usman
et al., 2020) is also a special case of our method for only
two distributions, where one transformation is fixed at the
identity (i.e., T2 = Id) and no regularization is applied (i.e.,
λ = 0). While the final practical LRMF objective is a spe-
cial case of ours, the theory is developed from a different
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(a) Original (b) LRMF (c) RAUB(ours) (d) Original (e) AlignFlow (f) RAUB(ours)
Figure 1: Top row is latent space and bottom is the data translated into the other space. (a-c) LRMF, which only has one
transformation T may not be able to align the datasets if the density model class Q is not expressive enough (in this case
Gaussian distributions) while using two transformations as in our framework can align them. (d-f) AlignFlow (without
adversarial terms) may not align because Qz is fixed at a standard normal, while our approach with learnable mixture of
Gaussians for Qz is able to learn an alignment (both use the same Tj models).

(a) Paired transform for X1 (b) Paired transform for X2

Figure 2: An unregularized alignment loss (top) can lead
to excessive and unexpected movement of points in the la-
tent representation (lines connect transported points), while
our regularized alignment loss (bottom) yields a unique and
regularized solution that moves points significantly less and
is closer to the identity function.

<MNIST ⇔ USPS>

Training Test Training Test

<0 ⇔ 1 in MNIST>

Figure 3: Preliminary results on a high dimensional
real world datasets demonstrate the feasibility of our
method. The complex translation between MNIST and
USPS datasets (left) does not seem to overfit, while the
simple translation between MNIST 0 to 1 may overfit (as
seen by right most column of test). The first and third
columns are the original images, and the second and the
fourth columns are the translated images.

but complementary perspective. The LRMF metric devel-
oped requires an assumption about a given density model
class, which enables a zero point (or absolute value) of the
metric to be estimated but requires fitting extra domain den-
sity models. Usman et al. (2020) also do not uncover the
connection of the objective as an upper bound on JSD re-

gardless of the density model class. Additionally, to ensure
alignment, LRMF requires that the density model class in-
cludes the true target distribution because only one invert-
ible transform is used, while our approach can theoretically
align even if the shared density model class is weak (see
Theorem 3 and our simulated experiments).
Cooperative versus Adversarial Networks Analogous
to the generator G and the discriminator D in adversar-
ial learning, our framework has two main networks, Tj
and Qz . We can use any invertible function for Tj (e.g.,
coupling-based flows (Dinh et al., 2017), neural ODE flows
(Grathwohl et al., 2018), or residual flows (Chen et al.,
2019)) and any (approximate) density models for Qz (e.g.,
kernel densities (in low dimensions), mixture models, au-
toregressive densities (Salimans et al., 2017), normaliz-
ing flows (Kingma and Dhariwal, 2018), or even VAEs
(Kingma and Welling, 2019)). Thus, our framework has
similar modularity compared to adversarial approaches. In
contrast, we have a min-min, i.e., cooperative, optimization
problem, but our transformations must be invertible and the
auxiliary density model Qz may be more difficult to train
than the auxiliary discriminator D. We expect these limita-
tions to be alleviated as new invertible models and density
models are continually being developed.

3. Experiments and Conclusion
We first demonstrate the differences of our approach to
LRMF and AlignFlow in Fig. 1 and the importance of reg-
ularization in Fig. 2. We also demonstrate the feasibility
of our approach for high-dimensional datasets in some pre-
liminary experiments shown in Fig. 3. Please see appendix
for details for experiments. Yet, scaling up our framework
in practice is still a fundamental challenge, and our ap-
proach inherits some weaknesses of JSD, which may not
give useful gradient information in certain cases. Thus,
while these experiments and our theoretical work build a
unified foundation for cooperative alignment learning, our
work also open up new theoretical and practical questions.
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A. Proofs
Proof of Equivalence in Def. 1. While the proof of the equivalence is well-known, we reproduce here for completeness.
As a reminder, the KL divergence is defined as:

KL(P,Q) = EP [log P (x)
Q(x) ] = EP [− logQ(x)]− EP [− logP (x)] = Hc(P,Q)−H(P ) , (11)

where Hc(·, ·) denotes the cross entropy and H(·) denotes entropy. Given this, we can now easily derive the equivalence:

GJSDw(PX1
, · · · , PXk

) =
∑
jwj KL(PXj

, PXmix) (12)

=
∑
jwj(Hc(PXj

, PXmix)−H(PXj
)) (13)

=
∑
jwj Hc(PXj

, PXmix)−
∑
jwj H(PXj

) (14)

=
∑
jwjEPXj

[− logPXmix ]−
∑
jwj H(PXj

) (15)

=
∑
jwj

∫
X −PXj

(x) logPXmix(x)dx−
∑
jwj H(PXj

) (16)

=
∫
X −

∑
jwjPXj

(x) logPXmix(x)dx−
∑
jwj H(PXj

) (17)

=
∫
X −PXmix(x) logPXmix(x)dx−

∑
jwj H(PXj

) (18)

= H(PXmix)−
∑
jwj H(PXj

) . (19)

Proof of Lemma 2. First, we note the following fact from the standard change of variables formula:

PX(x) = PZ(T (x))|JT (x)|
⇒ PX(x)|JT (x)|−1 = PZ(T (x)) .

(20)

We can now derive our result using the change of variables for expectations (i.e., LOTUS) and the probability change of
variables from above:

H(PZ) = EPZ
[− logPZ(z)] = EPX

[− logPZ(T (x))]

= EPX
[− logPX(x)|JT (x)|−1]

= EPX
[− logPX(x)] + EPX

[− log |JT (x)|−1]
= H(PX) + EPX

[log |JT (x)|] .

Proof of Theorem 3. Given any fixed Q, minimizing LAUB decouples into minimizing separate normalizing flow losses
where Q is the base distribution. For each normalizing flow, there exists an invertible Tj such that Tj(Xj) ∼ Q, and this
achieves the minimum value of LAUB. More formally,

min
T1,··· ,Tk

LAUB(T1, · · · , Tk) (21)

= min
T1,··· ,Tk

∑
jwjEPXj

[− log |JTj
(x)|Q(Tj(x))] (22)

=
∑
jwj min

Tj

EPXj
[− log |JTj (x)|Q(Tj(x))] + H(PXj )−H(PXj ) (23)

=
∑
jwj min

Tj

EPXj
[− log |JTj

(x)|Q(Tj(x))] + H(PXj
)− EPXj

[− logPXj
(x)]) (24)

=
∑
jwj H(PXj

) +
∑
jwj minTj

EPXj
[log

PXj
(x)|JTj

(x)|−1

Q(Tj(x))
] (25)

=
∑
jwj H(PXj

) +
∑
jwj minTj

EPXj
[log

PTj(Xj)
(Tj(x))

Q(Tj(x))
] (26)

=
∑
jwj H(PXj

) +
∑
jwj minTj

EPTj(Xj)
[log

PTj(Xj)
(z)

Q(z) ] (27)

=
∑
jwj H(PXj

) +
∑
jwj minTj

KL(PTj(Xj), Q) . (28)
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Given that KL(P,Q) ≥ 0 and equal to 0 if and only if P = Q, the global minimum is achieved only if PTj(Xj) = Q,∀j and
there exist such invertible functions (e.g., the optimal Monge map between PXj

andQ for squared Euclidean transportation
cost (Peyré and Cuturi, 2019)). Additionally, the optimal value is

∑
jwj H(PXj ), which is constant with respect to the Tj

transformations.

B. Examples of Non-Unique Alignment Solutions
B.1. Gaussian Example

Suppose the component distributions are normal distributions, i.e., X1 ∼ N (µ1, I) and X2 ∼ N (µ2, I), and for even
greater simplicity, we assume T2 is the identity, i.e., T2(x) = x. Then, a global optimal solution could be T1(x) =
U(x−µ1+µ2) for any orthogonal matrix U , i.e., there are infinitely many invertible functions that align the distributions.
Note that this lack of unique solutions is not restricted to orthogonal rotations (see appendix for a more complex example).

B.2. Complex Example

Consider the 1D case where Q only contains the uniform distribution. Thus, T1 and T2 must map their distributions to the
uniform distribution for alignment. One solution would be that T1 = F1 and T2 = F2 where F1 and F2 are the CDFs of
PX1 and PX2 . Yet, there are infinitely many other possible solutions. Consider an invertible function that subdivides the
unit interval into an arbitrarily large number of equal length intervals and then shuffles these intervals with a fixed arbitrary
permutation. More formally, we could define this as:

Sm,π(x) =


x− 1

m + π(1)
m if x ∈ [0, 1

m )

x− 2
m + π(2)

m if x ∈ [ 1m ,
2
m )

...
...

x− m
m + π(m)

m if x ∈ [m−1m , 1]

, (29)

where π(·) is a permutation of the integers 1 to m. Given this, then other optimal solutions could be T1 = Sm,π ◦ F1 and
T2 = F2 for any m > 1 and any permutation π. This idea could be generalized to higher dimensions as well by mapping
to the multivariate uniform distribution and subdividing the unit hypercube similarly.

C. 2D dataset comparison with related works
C.1. Single T vs. Double T ’s (LRMF vs. Ours)

We first compare our method with LRMF (Usman et al., 2020) method. We construct the experiment to have the task:
Transform between the two half-circled distributions X1 and X2 in the moons dataset. In this example, we made two
models, one with LRMF setup and one with our RAUB setup. As illustrated in Figure 1, the LRMF method fails to
transform between X1 and X2. Even though Q can model well enough for T1(X1), Q can only model the mean and
variance of T2(X2) which is obviously not informative enough. Therefore, the LRMF fails to transform between two
datasets. While in the RAUB setup, both T1(X1) and T2(X2) are modeled to the same distribution while Q can model
well enough. And the resulting inverted version of X1 and X2 shows valid transformation. Therefore, the performance of
the LRMF model is limited by the power of the density model Q which means if Q fails to model one of the transformed
data distribution well enough, data alignment cannot be achieved with high performances.

C.2. Simple Fixed Q vs. Learnable Q (AlignFlow vs. Ours)

Next we compare our method with AlignFlow(Grover et al., 2020; Hu et al., 2018) setup. We construct the experiment to
have the task: Transform between the two random patternsX1 andX2 in the randomly generated datasets. Again, we made
two models with AlignFlow and our RAUB setups respectively. As illustrated in Figure 1, the AlignFlow method fails to
transform between X1 and X2, because the transformed dataset T1(X1) and T2(X2) failed to reach the normal distribution
Q. While in the RAUB setup, the density model Q is learned to help fit the transformed distributions T1(X1) and T2(X2),
which allows them to be aligned with each other. Therefore, the performance of the AlignFlow model is limited by the
performances of the invertible functions.
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C.3. Regularized vs. Un-regularized (Some prior works vs. Ours)

We finally show the importance of the regularization term. We construct the experiment to have the task: Transform
between two concentric circles with the same mean but slighted different radius. In this example, we make two models
with RAUB setup, but one with regularization and one without. As illustrated in the Figure 2, both models are able to
transform between two distributions with high performances. However, the transformation pattern is not natural in terms
of the ’moving cost’ of each point. Each pair created by the unregularized model has bigger transportation cost compared
to the pairs created by the regularized model. Therefore, we argue that by adding a transportation cost, the resulting
transformation between samples would be closer to an identity transformation and therefore more stable.

Note: All implementation details on the toy dataset are available in the Appendix C.

D. Real-world datasets
To verify the extensibility of our fundamental idea, we also performed our experiments in real-world data. Concretely,
we compare our model’s performance with the baselines in the image translation task since an evaluation on the dataset
alignment are intuitive and interpretable.

D.1. Experiment Details

We use MNIST and USPS dataset in our experiments. Both two datasets are composed of hand-written digits with 10
classes. Specifically, for the simplest setting, we do our experiments with zero and one classes of MNIST datasest be-
cause a translation from zero to one and vice versa requires a semantic transformation, i.e., those two numbers cannot be
transformed into each other with a simple translation or rotation. We next perform our experiments with more complicated
settings by aligning two different MNIST and USPS datasets.

To cover the high complexity of the real-world data, we exploit a CNN-based flow model (Dinh et al., 2016) as our
invertible functions. We also introduce the state of the art density model (Salimans et al., 2017) as our Q. Regarding a
training procedure, as mentioned in subsection F.1, we first pre-train our Qz model to efficiently train our T functions. We
then set our frameworks to gradually transfer knowledge from Q to Ts by introducing β to our loss function, as elaborated
in subsection F.2. Learning rate is empirically set to be 0.002 and scheduled to be exponentially decreased after training
10 epoch with a decaying factor of 0.95.

D.2. Experiment Results

Fig. 3 shows the results of the two real world datasets. The left experiment in the figure shows that the upper bound on
the JSD is effectively minimized since the translations between MNIST and USPS are decently working. This implies that
common structures of the different domains, e.g., digit information are properly mapped into the shared representations
T1(X1) and T2(X2) while distinctive characteristics of the domains, e.g., a bigger and a thicker pattern of USPS can be
transformed via T−11 and T−12 . We believe this demonstrates that the tight upper bound (by Q) of the JSD effectively
successively forms the indistinguishable representations.

On the other hand, our proposed idea has some limitations to tackle in the realworld dataset. First of all, as shown in the
simpler 0⇔1 experiment in Fig. 3, our complex T with the simple Q yields the overfitting. Second, β in the realworld
experiments has to be carefully set in training our frameworks. To elaborate, once the gradually increasing β reaches a
specific value, following the fractional distributions strategy in subsection F.2, it starts to make the model performance
worse. Third, model performance with the higher resolution, e.g., 256× 256 needs to be conducted to convincingly verify
the performance in realworld dataset. We think these limitations have to be explored to better understand the behavior of
our frameworks in realworld dataset.

E. Detailed Parameters Used in 2D Dataset Experiment
E.1. LRMF vs. Ours Experiment

• T for LRMF setup: T1: 8 channel-wise mask for Real-NVP model with s and t derived from 64 hidden channels of
fully connected networks. T2: Identity function.
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• T for RAUB setup: T1 and T1: 8 channel-wise mask for Real-NVP model with s and t derived from 64 hidden
channels of fully connected networks. Regularization coefficient λ = 0

• Q for both: A single Gaussian distribution with trainable mean and trainable variances.

E.2. Alignflow vs. Ours Experiment

• T for both: 2 channel-wise mask for RealNVP model with s and t derived from 8 hidden channels of fully connected
networks.

• Q for Alignflow setup: A single fixed normal distribution.

• Q for RAUB setup: A learnable mixture of Gaussian with 3 components. Regularization coefficient λ = 0

E.3. Regularized vs. Unregularized Experiment

1. T for both: 8 channel-wise mask for RealNVP model with s and t derived from 64 hidden channels of fully connected
networks.

2. Q for both: A learnable mixture of Gaussian with 2 components.

3. λ for unregularized Experiment : λ = 0

4. λ for regularized Experiment : λ = 0

F. Algorithm
F.1. Pre-trained Model

One of the benefits of our method over the baseline methods is that it is possible to harness the power of the pre-trained
density model as our Q. It is worth mentioning the use of the pre-trained Q enables the gap between the upperbound
and the GJSD to be small, thus the better performance can be theoretically ensured compared to baselines with relatively
simple Q. Furthermore, it is possible to accomplish the statistical and computational efficiency in a training procedure.
Specifically, the number of required data to train the networks T can be significantly reduced and the training time can be
shortened. Based on these, we leveraged one of the pre-trained state-of-the-art density model () as our Q throughout our
experiment.

F.2. Train with fractional distributions

Most state-of-the-art density would not have a nice convex structure across the entire domain of the images. They will
mostly have a nice peak structure within a small range from the true distributions but remain noisy for the rest domain.
This would cost the result to fall into local minimum easily at the very beginning and slow or even prevent the loss to a
more desirable low value. At the same time, this narrowed range of convexity pattern will make the transform function T
much harder to learn so that the transformed distribution T (x) will fail to fit the distribution of Qz . This is also an even
bigger problem if we are using a pre-trained model of Qz to begin with. Therefore, in order to circumvent this kind of
situation, we propose to use a fractional power of distributions of Qz at the first epoch, and slowly increase the power up
to 1 to met the original loss objectives.

The basic idea behind the newly introduced fractional power is to expand the variance of Qz so that the originally nice
range of convexity will get expand, so that the algorithm should have a relatively loss function structure to start with. As
the training goes, since T (x) is more close to the distribution of density model, we can slightly increase the fractional
power to reduce the range of complexity. After we have increased our power to 1, the objective is exactly the same of our
original loss function. By using this kind of warm start epochs, we can have our T (x) to start at a relatively good range in
Qz , which result in a more efficient learning curve for T .

The implementation of this idea is also straightforward: By introducing the fractional power β, we have
log |JTj (x)|Q(Tj)

β(x) = log |JTj (x)|+ logQ(Tj)
β(x) = log |JTj (x)|+ β logQ(Tj)(x).


	Introduction
	Regularized Alignment Upper Bound Loss
	GJSD Upper Bound
	Regularization via Transportation Cost
	Relationship to Prior Works

	Experiments and Conclusion
	Proofs
	Examples of Non-Unique Alignment Solutions
	Gaussian Example
	Complex Example

	2D dataset comparison with related works
	Single T vs. Double T's (LRMF vs. Ours)
	Simple Fixed Q vs. Learnable Q (AlignFlow vs. Ours)
	Regularized vs. Un-regularized (Some prior works vs. Ours)

	Real-world datasets
	Experiment Details
	Experiment Results

	Detailed Parameters Used in 2D Dataset Experiment
	LRMF vs. Ours Experiment
	Alignflow vs. Ours Experiment
	Regularized vs. Unregularized Experiment

	Algorithm
	Pre-trained Model
	Train with fractional distributions


