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ABSTRACT

Models of human behavior for prediction and collaboration tend to fall into two
categories: ones that learn from large amounts of data via imitation learning,
and ones that assume human behavior to be noisily-optimal for some reward
function. The former are very useful, but only when it is possible to gather a
lot of human data in the target environment and distribution. The advantage
of the latter type, which includes Boltzmann rationality, is the ability to make
accurate predictions in new environments without extensive data when humans
are actually close to optimal. However, these models fail when humans exhibit
systematic suboptimality, i.e. when their deviations from optimal behavior are not
independent, but instead consistent over time. Our key insight is that systematic
suboptimality can be modeled by predicting policies, which couple action choices
over time, instead of trajectories. We introduce the Boltzmann policy distribution
(BPD), which serves as a prior over human policies and adapts via Bayesian
inference to capture systematic deviations by observing human actions during a
single episode. The BPD is difficult to compute and represent because policies
lie in a high-dimensional continuous space, but we leverage tools from generative
and sequence models to enable efficient sampling and inference. We show that the
BPD enables prediction of human behavior and human-AI collaboration equally as
well as imitation learning-based human models while using far less data.

1 INTRODUCTION

Understanding human preferences, predicting human actions, and collaborating with humans all
require models of human behavior. One way of modeling human behavior is to postulate intentions,
or rewards, and assume that the human will act rationally with regard to those intentions or rewards.
However, people are rarely perfectly rational; thus, some models relax this assumption to include
random deviations from optimal decision-making. The most common method for modeling humans
in this manner, Boltzmann rationality (Luce, 1959; 1977; Ziebart et al., 2010), predicts that a human
will act out a trajectory with probability proportional to the exponentiated return they receive for
the trajectory. Alternatively, some human models eschew rewards and rationality for a data-driven
approach. These methods use extensive data of humans acting in the target environment to train a
(typically high capacity) model with imitation learning to predict future human actions (Ding et al.,
2011; Mainprice & Berenson, 2013; Koppula & Saxena, 2013; Alahi et al., 2016; Ho & Ermon, 2016;
Ma et al., 2017; Schmerling et al., 2018; Chai et al., 2019; Wang et al., 2019; Carroll et al., 2020).

Both these methods for modeling humans are successful in many settings but also suffer drawbacks.
Imitation learning has been applied to modeling humans in driving (Sun et al., 2018), arm motion
(Ding et al., 2011), and pedestrian navigation (Ma et al., 2017), among other areas. However, it
requires a lengthy process of data collection, data cleaning, and feature engineering. Furthermore,
policies learned in one environment may not transfer to others, although there is ongoing work to
enable models to predict better out-of-distribution (Torrey et al., 2005; Brys et al., 2015) or in many

Our code and pretrained models are available at https://github.com/cassidylaidlaw/
boltzmann-policy-distribution.
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Figure 1: We propose an extension of the Boltzmann rationality human model to a distribution over
policies instead of trajectories. (a) A person walks to work each day, choosing route A, B, or C and
receiving varying rewards based on route length. Route B has the highest reward but for 4 days we
observe the person take route A. (b) In this setting, the Boltzmann trajectory model still predicts with
high confidence that the person will take route B on day 5 (assuming the reward function is known
and cannot be updated). (c) In contrast, our model defines a distribution over policies, the Boltzmann
policy distribution (BPD), whose PDF is shown here on the left. Using the BPD as a prior for the
person’s policy, we can calculate a posterior over policies after the first 4 days (shown on the right)
and predict they will take route A with high probability on day 5. In other settings we consider, the
BPD adapts in a matter of minutes to a human’s policy.

environments simultaneously (Duan et al., 2017; Singh et al., 2020). On the other hand, reward-based
models often learn a reward in a low-dimensional space from limited data (Ziebart et al., 2009;
Kuderer et al., 2015; Kretzschmar et al., 2016) and tend to transfer more easily to new environments
and be robust to distribution shifts (Sun et al., 2021). For many useful tasks, most elements of the
reward function might even be clear a priori; in thoses cases, Boltzmann rationality has enabled
successful human-AI collaboration based only on data observed during execution of a single task
(Bandyopadhyay et al., 2013), e.g. assisting a person to reach an unknown goal (Dragan & Srinivasa,
2013; Javdani et al., 2015). However, Boltzmann rationality fails to capture human behavior that is
systematically suboptimal. As we show, in some environments this makes it no better at predicting
human behavior than a random baseline.

To solve human-AI collaboration tasks, some methods seek to bypass the issues of Boltzmann
rationality while still avoiding collecting large amounts of human data. These methods train a
cooperative AI policy which is robust to a wide range of potential human behavior via population-
based training (Stone et al., 2010; Knott et al., 2021; Strouse et al., 2021), or attempt to find a “natural”
cooperative equilibrium, as in the work on zero-shot coordination (Hu et al., 2020; Treutlein et al.,
2021). However, such approaches have drawbacks as well. First, they do not define an explicit
predictive human model, meaning that they cannot be used to predict human behavior or to infer
human preferences. Furthermore, population-based training methods struggle to include enough
diversity in the population to transfer to real humans but not so much that it is impossible to cooperate.
And, while zero-shot coordination has shown promise in cooperative games such as Hanabi (Hu
et al., 2021), it still assumes human rationality and cannot account for suboptimal behavior. Thus,
Boltzmann rationality is still widely used despite its shortcomings.

We argue that Boltzmann rationality struggles because it fails to capture systematic dependencies
between human actions across time. Consider the setting in Figure 1. Boltzmann rationality predicts
the person will take the shortest path, route B, with high probability. Conditioned on the (known)
goal of getting to the office, observing the person choose route A gives no information about how the
person will act in the future. Thus, the following day, the probability under the Boltzmann trajectory
distribution of choosing route A remains unchanged. Similarly, in the setting of Figure 3, observing a
person walk to the right around an obstacle gives no information about how they will navigate around
it in the future. However, in reality people are consistent over time: they tend to take the same action
in the same state, and similar actions in similar states, whether because of consistent biases, muscle
memory, bounded computational resources, or myriad other factors. Such consistency is supported
well by behavioral psychology (Funder & Colvin, 1991; Sherman et al., 2010).

Our key insight is that systematic suboptimality can be captured by going beyond predicting distribu-
tions over trajectories, and coupling action choices over time by predicting distributions over policies
instead. Assuming that people will choose a policy with probability proportional to its exponentiated
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Figure 2: (a) Before deployment, we calculate the Boltzmann policy distribution (BPD) as a prior over
human policies by using a model of the environment and the human’s reward function. Crucially, this
step requires no human data given that we know the human’s reward function. Even if the objective is
not known, but represented in a low capacity class, it can be inferred via IRL form very limited data
in different environments from the target one (Ziebart et al., 2010). Note that using a high capacity
model for the reward would become equivalent to imitation learning (Ho & Ermon, 2016) and lose
the advantages of Boltzmann rationality. (b) At deployment time, we infer a posterior distribution
over a human’s policy by updating the BPD prior based on human actions within the episode. This
enables adaptive, online prediction of future human behavior. (c) We can also take actions adapted to
the posterior distribution in a human-AI collaboration setting.

expected return induces a Boltzmann policy distribution (BPD), which we use as a prior over human
policies. Observing a person taking actions updates this distribution to a posterior via Bayesian
inference, enabling better prediction over time and capturing systematic deviations from optimality.
An overview of the process of calculating and updating the BPD is shown in Figure 2. In the example
in Figure 1, the BPD predicts that the person will continue to take route A even though route B is
shorter. In Figure 3, the BPD predicts that the person is more likely navigate around the obstacle to
the right in the future after watching them do it once.

One could argue that updating the BPD in response to observed human actions is no different than
training a human model via imitation learning. However, we show that the BPD can give predictive
power over the course of a single episode lasting less than three minutes similar to that of a behavior
cloning-based model trained on far more data. Thus, the BPD has both the advantages of both
Boltzmann rationality—that it works with very little data—as well as imitation learning—that it can
adapt to systematically suboptimal human behavior.

One challenge is that calculating the Boltzmann policy distribution for an environment and using
it for inference are more difficult than computing the Boltzmann rational trajectory distribution.
Whereas the Boltzmann trajectory distribution can be described by a single stochastic policy (the
maximum-entropy policy), the BPD is a distribution over the space of all policies—a high dimensional,
continuous space. Furthermore, the complex dependencies between action distributions at different
states in the BPD that make it effective at predicting human behavior also make it difficult to calculate.

To approximate the BPD, we parameterize a policy distribution by conditioning on a latent vector—an
approach similar to generative models for images such as VAEs (Kingma & Welling, 2014) and GANs
(Goodfellow et al., 2014). A policy network takes both the current state and the latent vector and
outputs action probabilities. When the latent vector is sampled randomly from a multivariate normal
distribution, this induces a distribution over policies that can represent near-arbitrary dependencies
across states. See Figure 3 for a visualization of how elements of the latent vector can correspond to
natural variations in human policies. In Section 2, we describe how to optimize this parameterized
distribution to approximate the BPD by minimizing the KL divergence between the two. During
deployment, observed human actions can be used to calculate a posterior over which latent vectors
correspond to the human’s policy. We investigate approximating this posterior both explicitly using
mean-field variational inference and implicitly using sequence modeling.

We explore the benefits of the Boltzmann policy distribution for human prediction and human-AI
collaboration in Overcooked, a game where two players cooperate to cook and deliver soup in a
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Figure 3: Unlike Boltzmann rationality, the Boltzmann policy distribution captures a range of possible
human policies and enables deployment-time adaption based on observed human actions. In this
gridworld, the agent must repetitively travel to the apple tree in the upper right corner, pick an apple,
and drop it in the basket in the lower left corner. (a) Using the methods in Section 2, we calculate
an approximation to the BPD as a policy conditioned on two latent variables z1 and z2. After the
distribution is calculated, z2 controls which direction the agent travels on the way to the tree and z1
controls which direction the agent travels on the way back, capturing natural variations in human
behavior. (b) After observing 0, 2, and 6 actions in the environment, we show the inferred posterior
over z and the resulting predicted action probabilities. The model quickly adapts to predict which
way the person will go around the obstacle in the future. (c) In contrast, the Boltzmann trajectory
distribution (Boltzmann rationality) cannot adapt its predictions based on observed human behavior.

kitchen (Carroll et al., 2020). The BPD predicts real human behavior far more accurately than
Boltzmann rationality and similarly to a behavior cloned policy, which requires vast amounts of
human data in the specific target environment. Furthermore, a policy using the BPD as a human
model performs better than one using Boltzmann rationality at collaboration with a simulated human;
it approaches the performance of a collaborative policy based on a behavior cloned human model.

Overall, the BPD appears to be a more accurate and useful human model than traditional Boltzmann
rationality. Further, by exploiting knowledge of the reward function in the task, it achieves perfor-
mance on par with imitation learning methods that use vastly more data in the target environment.
But while in our setting the reward function is known (i.e. the task objective is clear), this is not
always be the case. There are many tasks in which it needs to be inferred from prior data (Christiano
et al., 2017), or in which reward learning is itself the goal (Ng & Russell, 2000). However, any
reward-conditioned human model like the BPD can be inverted to infer rewards from observed
behavior using algorithms like inverse reinforcement learning. We are hopeful that using the (more
accurate) BPD model will in turn lead to more accurate reward inference given observed behavior
compared to using the traditional Boltzmann model.

2 THE BOLTZMANN POLICY DISTRIBUTION

We formalize our model of human behavior in the setting of an infinite-horizon Markov decision
process (MDP). We assume a human is acting in an environment, taking actions a ∈ A in states
s ∈ S . Given a state st and action at at timestep t, the next state is reached via Markovian transition
probabilities p(st+1 | st, at). We assume that the person is aiming to optimize some reward function
R : S ×A → R. This may be learned from data in another environment or specified a priori; see the
introduction for discussion. Rewards are accumulated over time with a discount rate γ ∈ [0, 1).

Let a trajectory consist of a sequence of states and actions τ = (s1, a1, . . . , sT , aT ). Let a policy be a
mapping π : S → ∆(A) from a state to a distribution over actions taken at that state. The Boltzmann
rationality model, or Boltzmann trajectory distribution, states that the probability the human will take
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a trajectory is proportional to the exponentiated return of the trajectory times a “rationality coefficient”
or “inverse temperature” β:

pBR(τ) ∝ exp
{
β
∑T
t=1γ

tR(st, at)
}

(1)

This is in fact the distribution over trajectories induced by a particular policy, the maximum-entropy
policy, which we call πMaxEnt (Ziebart et al., 2010). That is,

pBR(s1, a1, . . . , sT ) = p(s1)

T−1∏
t=1

p(st+1 | st, at)πMaxEnt(at | st) (2)

Say we are interested in using the Boltzmann trajectory distribution to predict the action at time t
given the current state st and all previous states and actions. This can be calculated using (2):

pBR(at | s1, a1, . . . , st−1, at−1, st) =
pBR(s1, a1, . . . , st, at)

pBR(s1, a1, . . . , st)
= πMaxEnt(at | st) (3)

The implication of (3) is that, under the Boltzmann trajectory distribution, the action at a particular
timestep is independent of all previous actions given the current state. That is, we cannot use past
behavior to better predict future behavior.

However, as we argue, humans are consistent in their behavior, and thus past actions should predict
future actions. We propose to assume that the human is not making a choice over trajectories, but
rather over policies in a manner analogous to (1):

pBPD(π) ∝ exp
{
β Eat∼π(st)

[∑∞
t=1γ

tR(st, at)
]}

= exp {βJ(π)} (4)

(4) defines the Boltzmann policy distribution (BPD), our main contribution. Note that J(π) denotes
the expected return of the policy π. Under the Boltzmann policy distribution, previous actions do
help predict future actions:

pBPD(at | s1, a1, . . . , st−1, at−1, st) =
∫
π(at | st) pBPD(π | s1, a1, . . . , st−1, at−1) dπ (5)

That is, previous actions a1, . . . , at−1 at states s1, . . . , st−1 induce a posterior over policies pBPD(π |
s1, a1, . . . , st−1, at−1). Taking the expectation over this posterior gives the predicted next action
probabilities under the BPD.

Both Boltzmann rationality and the BPD assume that the human is near-optimal with high probability,
and thus neither may perform well if a person is very suboptimal. However, as we will show in our
experiments, people generally are close enough to optimal for the BPD to be a useful model.

Approximating the distribution While we have defined the BPD in (4), we still need tractable
algorithms to sample from it and to calculate the posterior based on observed human actions. This is
difficult because the BPD is a distribution over policies in the high dimensional continuous space
(∆(A))

|S|. Furthermore, the density of the BPD defined in (4) is a nonlinear function of the policy
and induces dependencies between action probabilities at different states that must be captured.

We propose to approximate the BPD using deep generative models, which have been successful
at modeling high-dimensional distributions with complex dependencies in the computer vision
and graphics literature (Goodfellow et al., 2014; Kingma & Welling, 2014; Dinh et al., 2015). In
particular, let z ∼ N (0, In) be a random Gaussian vector in Rn. Then we define our approximate
policy distribution as

π(· | s) = fθ(s, z)

where fθ is a neural network which takes a state s and latent vector z and outputs action probabilities.
Each value of z corresponds to a different policy, and the policy can depend nearly arbitrarily on
z via the neural network fθ. To sample a policy from the distribution, we sample a latent vector
z ∼ N (0, In) and use it to calculate the action probabilities of the policy at any state s. Let qθ(π)
denote this distribution over policies induced by the network fθ. Figure 3 gives an example of a
policy distribution approximated using latent vectors z ∈ R2.

To predict the human’s next action given previous actions using qθ(π), it suffices to calculate a
posterior over z, i.e.

qθ(at | s1, a1, . . . , st−1, at−1, st) =
∫
fθ(st, z) qθ(z | s1, a1, . . . , st−1, at−1) dz (6)

We discuss at the end of this section how to approximate this inference problem.

Optimizing the distribution While we have shown how to represent a policy distribution using a
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deep generative model, we still need to ensure that this policy distribution is close to the BPD that
we are trying to approximate. To do so, we minimize the KL divergence between the approximation
qθ(π) and pBPD(π):

θ∗ = arg min
θ

DKL(qθ(π) ‖ pBPD(π)) (7)

To optimize (7), we expand the KL divergence:

θ∗ = arg min
θ

−Eπ∼qθ(π)[log pBPD(π)] + Eπ∼qθ(π)[log qθ(π)]

= arg max
θ

Eπ∼qθ(π)[βJ(π)] +H(qθ(π)) (8)

Here, H(qθ(π)) denotes the entropy of the generative model distribution. Note that although the
density pBPD(π) includes a normalization term, it is a constant with respect to θ and thus can be
ignored for the purpose of optimization. Equation (8) has an intuitive interpretation: maximize the
expected return of policies sampled from qθ(π), but also make the policies diverse (i.e., the policy
distribution should be high entropy). The first term can be optimized using a reinforcement learning
algorithm. However, the second term is intractable to even calculate directly, let alone optimize;
entropy estimation is known to be very difficult in high dimensional spaces (Han et al., 2019).

To optimize the entropy of the policy distribution, we rewrite it as a KL divergence and then optimize
that KL divergence using a discriminator. Let µ(π) denote the base measure with which the density
of the BPD is defined in (4). Let pbase(π) = µ(π)/

∫
dµ(π), i.e. µ(π) normalized to a probability

measure. Then the entropy of the policy distribution qθ(π) is equal to its negative KL divergence
from pbase(π) plus a constant:

H(qθ(π)) = log
(∫
dµ(π)

)
−DKL(qθ(π) ‖ pbase(π)) (9)

We include a full derivation of (9) in Appendix B.1. While (9) replaces the intractable entropy term
with a KL divergence, we still need to optimize the divergence. This is difficult as we only have
access to samples from qθ(π), so we cannot compute the divergence in closed form. Instead, we use
an adversarially trained discriminator to approximate the KL divergence. The discriminator d assigns
a score d(π) ∈ R to any policy π. It is trained to assign low scores to policies drawn from the base
distribution and high scores to policies drawn from qθ(π):

d = arg min
d

Eπ∼qθ(π)
[

log (1 + exp {−d(π)})
]

+ Eπ∼pbase(π)

[
log (1 + exp {d(π)})

]
(10)

Huszár (2017) show that if (10) is minimized, then DKL(qθ(π) ‖ pbase(π)) = Eπ∼qθ(π)[d(π)].
That is, the expectation of the discriminator scores for policies drawn from the distribution qθ(π)
approximates its KL divergence from the base distribution pbase(π). Similar to the training of GANs,
the policy network fθ attempts to “fool” the discriminator by making it more difficult to tell its
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policies apart from those in the base distribution, thus increasing the entropy of qθ(π).

Putting it all together, the final optimization objective is
θ∗ = arg max

θ
Eπ∼qθ(π)[βJ(π)− d(π)] (11)

where d is optimized as in (10). We optimize θ in (11) by gradient descent. Specifically, at each
iteration of optimization, we approximate the gradient of the expectation in (11) with a Monte Carlo
sample of several policies π1, . . . , πM ∼ qθ(π). The gradient of the discriminator score d(πi) can be
calculated by backpropagation through the discriminator network. The gradient of the policy return
J(πi) is approximated by a policy gradient algorithm, PPO (Schulman et al., 2017).

Choice of base measure An additional parameter to the BPD is the choice of base measure µ(π)
and the derived base distribution pbase(π) = µ(π)/

∫
dµ(π). These define the initial weighting of

policies before considering the reward function. In our experiments, we define the base measure as a
product of independent Dirichlet distributions at each state:

µ(π) = pbase(π) =
∏
s∈S

ps(π(· | s)) ps
ind.∼ Dir(α, . . . , α) ∀ s ∈ S (12)

The concentration parameter α used in the Dirichlet distribution controls the resulting distribution
over policies; we explore the effect of α in Section 2, Figures 4 and 5, and Appendix C.2.

Parameterization of policy and discriminator We modify existing policy network architectures
to use as fθ(s, z) by adding an attention mechanism over the latent vector z. We use a transformer
(Vaswani et al., 2017) neural network as the discriminator. See Appendix A.2 for more details.

Online prediction with the Boltzmann policy distribution Predicting actions with the BPD
requires solving an inference problem. In particular, we need to solve (6), predicting the next action
by marginalizing over the posterior distribution of latent vectors z. We explore approximating this
inference both explicitly and implicitly. First, we approximate the posterior over z as a product
of independent Gaussians using mean-field variational inference (MFVI, see Appendix A) (Blei
et al., 2017). This approach, while providing an explicit approximation of the posterior, is slow and
cannot represent posteriors which are multimodal or have dependencies between the components of
z. Our second approach ignores the posterior and instead directly approximates the online prediction
problem qθ(at | s1, a1, . . . , st). To do this, we generate thousands of trajectories from the BPD by
sampling a latent z for each and rolling out the resulting policy in the environment. Then, we train a
transformer (Vaswani et al., 2017) on these trajectories to predict the next action at given the current
state st and all previous actions. This avoids the need to compute a posterior over z explicitly.
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Figure 6: Cross entropy
(lower is better) of Boltz-
mann rationality (BR) and
the BPD on synthetic hu-
man data in the apple pick-
ing gridworld from Figure
3. See Section 3 for details.

Exploring the Boltzmann policy distribution Using the methods
described above, we compute approximate Boltzmann policy distribu-
tions for three layouts in Overcooked: Cramped Room, Coordination
Ring, and Forced Coordination. A visualization of the resulting policy
distribution for Cramped Room at one state can be seen in Figure 4,
which highlights the effect of the parameter α. We also visualize the
BPD for a simple gridworld environment in Figure 3(a). This figure
shows that components of the latent vector z capture natural variation
in potential human policies.

In Figure 5, we show that, unlike a Boltzmann distribution over tra-
jectories, the BPD allows actions in previous states to be predictive of
actions in future states. The predictive power of past actions is higher
for lower values of α, which also motivates our choice of α = 0.2
for the remaining experiments. Figure 8 shows that the BPD can use
the dependence between actions over time to predict systematically
suboptimal actions in Overcooked.

3 EXPERIMENTS

We evaluate the Boltzmann policy distribution in three settings: predict-
ing simulated human behavior in a simple gridworld, predicting real
human behavior in Overcooked, and enabling human-AI collaboration
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Figure 7: Prediction performance (cross-entropy, lower is better) of various human models on real
human data for three Overcooked layouts. Error bars show 95% confidence intervals for the mean
across trajectories. See Section 3 for details and discussion.

(a) Cramped Room: the optimal
action is to move up to get an
onion, but the human repeatedly
goes to the left.

(b) Forced Coordination: the
optimal action is to turn to the left
to pick up an onion, but the human
always moves down instead.

(c) Coordination Ring: the
human consistently tries to
interact with the pot already full
of soup to put in another onion.

Figure 8: The Boltzmann policy distribution predicts real human behavior in Overcooked better than
Boltzmann rationality (BR) by adapting to systematically suboptimal humans. In each of the three
layouts, the shown state is reached multiple times in a single episode. The human repeatedly takes the
suboptimal action overlaid on the game. The predictions of the BPD and BR for each timestep when
the state is reached are shown below the game, ignoring “stay” actions (see Appendix C.3). BPD
adapts to the human’s consistent suboptimality while BR continues to predict an incorrect action.
Note that actions at one state can also help predict actions at different states; see Figure 5.

in Overcooked. The full details of our experimental setup are in Appendix A. We provide further
results and ablations in Appendix C.

Simulated human data First, we investigate if the BPD can predict synthetic human trajectories
better than Boltzmann rationality in the apple picking gridworld shown in Figure 3. In this environ-
ment, the human must travel back and forth around an obstacle to pick apples and bring them to
a basket. To generate simulated human data, we assume the human has a usual direction to travel
around the obstacle on the way to the tree and a usual direction to travel on the way back. We assign
different simulated humans “consistency” values from 0.5 to 1, and these control how often each
human takes their usual direction. A consistency of 0.5 means the human always picks a random
direction, while a consistency of 1 means the human always takes their usual direction around the
obstacle.

The mean cross-entropy assigned to trajectories sampled from these simulated humans by the BPD
and Boltzmann rationality at each consistency value is shown in Figure 6, with the shaded region
indicating the standard deviation. As expected, the BPD is particularly good at predicting human
behavior for the most consistent humans. However, it even does better than Boltzmann rationality
at predicting the humans which randomly choose a direction to proceed around the obstacle each
time. This is because our simulated trajectories always go straight to the tree and back to the basket.
Boltzmann rationality gives a chance for the human to reverse direction, but the BPD picks up on the
consistent behavior and gives it higher probability, leading to lower cross-entropy.

Human prediction in Overcooked Next, we evaluate the predictive power of the Boltzmann
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Figure 9: Performance of various “robot” policies at collaborating with a behaviorally cloned “human
proxy” policy on three Overcooked layouts. Error bars show 95% confidence intervals for the mean
return over trajectories. See Section 3 for details and discussion.

policy distribution on trajectories of real human-with-human play collected by Carroll et al. (2020) in
Overcooked. As in the gridworld, we evaluate online prediction: given a human’s trajectory until
time t− 1, predict the action the human will take at time t.

We compare three approaches to the BPD for online prediction in Overcooked. First, we train a
behavior cloning (BC) model on a set of human trajectories separate from those evaluated on. This
model allows us to compare a data-intense prediction method to our approach which adapts over the
course of a single trajectory (less than 3 minutes of real time). Second, we train an optimal policy
using reinforcement learning (PPO) with self-play. We expect this policy to have low predictive
power because humans tend to be suboptimal. Third, we calculate a Boltzmann rational policy.

The predictive performance of all models is shown in Figure 7. The self-play and Boltzmann
rational models are both no more accurate than random at predicting human behavior in all three
Overcooked layouts. In contrast, the BPD predicts human behavior nearly as well as the behavior
cloned model. As expected, the MFVI approach to prediction with the BPD performs worse because
its representation of the posterior over z is explicitly restricted. These results validate the BPD as an
accurate reward-conditioned human model.

Human-AI collaboration Predicting human behavior is not an end in itself; one of the chief
goals of human model research is to enable AI agents to collaborate with humans. Thus, we also
evaluate the utility of the Boltzmann policy distribution for human-AI collaboration. The Overcooked
environment provides a natural setting to explore collaboration since it is a two-player game. To test
human-AI collaborative performance, we pair various collaborative “robot” policies with a simulated
“human proxy” policy, which is trained with behavior cloning on held-out human data. Carroll et al.
(2020) found that performance this proxy correlated well with real human-AI performance.

We compare several collaborative policies based on similar approaches to the prediction models.
First, we evaluate the behavior cloned (BC) model. Since it and the human proxy are both trained
from human data, this approximates the performance of a human-human team. Second, we train
a human-aware RL policy (Carroll et al., 2020), which is a best-response to the BC policy. This
approach requires extensive human data to train the BC policy. We also evaluate the self-play optimal
policy; this policy is optimized for collaboration with itself and not with any human model.

Next, we train collaborative policies based on both the Boltzmann rational and BPD models. During
each episode of training, the collaborative policy is paired with a simulated human policy from the
human model—the MaxEnt policy for Boltzmann rationality, or a randomly sampled policy from the
BPD. The human model’s actions are treated as part of the dynamics of the environment; this allows
the collaborative policy to be trained with PPO as in a single-agent environment. This approach is
similar to human-aware RL, but we train with reward-conditioned human models instead of behavior
cloned ones. Over the course of training, each collaborative policy maximizes the expected return of
the human-AI pair, assuming the human takes actions as predicted by the respective human model.

Because human actions are correlated across time under the BPD, we train BPD-based col-
laborative policies both with and without memory. The policies with memory have the form
π(aRt | s1, aH1 , . . . , st−1, aHt−1, st); that is, they choose a robot action aRt based both on the current
state st and also human actions aHt′ taken at prior states. This allows adaption to the human’s policy.

9
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Figure 9 shows the results of evaluating all the collaborative policies with human proxies on the
three Overcooked layouts. In all layouts, the human-aware RL policy does better than either a
self-play policy or the BC policy, matching the results from Carroll et al. (2020). The collaborative
policies based on Boltzmann rationality tend to perform poorly, which is unsurprising given its weak
predictive power. The collaborative policies based on the BPD perform consistently better across
all three layouts. Surprisingly, the BPD-based collaborative policies with memory do not perform
much differently than those without memory. This could be due more to the difficulty of training
such policies than to the inability for adaption using the BPD.

4 CONCLUSION AND FUTURE WORK

We have introduced the Boltzmann policy distribution, an alternative reward-conditioned human
model to Boltzmann rationality. Our novel model is conceptually elegant, encompasses systematically
suboptimal human behavior, and allows adaption to human policies over short episodes. While we
focused on human prediction and human-AI collaboration, reward-conditioned human models are
also used for reward learning, by inverting the model to infer rewards from behavior. Our results
have important implications for reward learning: if Boltzmann rationality is unable to explain human
behavior when the reward is known, it will be impossible to infer the correct reward given only
observed behavior. Since the BPD better predicts human behavior in our experiments, it should lead
to better reward learning algorithms as well. We leave further investigation to future work.
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APPENDIX

A EXPERIMENT DETAILS

Here, we give further details about our experimental setup, hyperparameters, and network architec-
tures. We implement the calculation of the BPD and all collaborative training using RLlib (Liang
et al., 2018) and PyTorch (Paszke et al., 2019). We use RLlib’s PPO implementation with the
hyperparameters given in Table 1.

Gridworld environment We implemented the apple-picking gridworld used in Section 3 and
Figures 3 and 6. The Boltzmann rational (MaxEnt) policy is calculated with soft value iteration. The
Boltzmann policy distribution is calculated using the methods described in Section 2.

Overcooked environment We use the implementation of Overcooked from Carroll et al. (2020).
We also use the human data they collected; the train set is used for training the BC policy and
the test set is used for training the human proxy policy and evaluating all predictive models. The
implementation of Overcooked has changed slightly since the data was collected: players now have
to use an “interact” action to start cooking soup. Previously, soup automatically started cooking. We
insert“interact” actions in each episode where the players would have had to start cooking the soup to
make up for this.

Overcooked is a two-player game while our formalism underlying the BPD applies to single agent
environments. However, since Overcooked is perfectly cooperative, the two-player game is equivalent
to a single-player game where the agent picks two actions at each timestep independently. Thus,
except for when training collaborative policies, we use a single policy network for both players.

We use an episode length of 400 for most experiments; this corresponds to about a minute of real-time
play. For human prediction, we use the episode length of the human-human data, which is around
1200 for each episode (about 3 minutes).

Additionally, we implement one small change to the Overcooked environment that we find speeds up
reinforcement learning. The environment includes an auxiliary reward with better shaping whose
weight is annealed to zero over the course of training. In the original implementation, this auxiliary
reward is only given to the agent which takes a particular action, like placing an onion in a pot. We
modify this to give the auxiliary reward to both agents such that the environment is fully cooperative.
This particularly improves training on Forced Coordination, where one agent is otherwise unable to
receive any auxiliary reward.

We anneal the auxiliary reward to zero over 2.5 million timesteps, except when calculating the
Boltzmann policy distribution. In that case, we anneal over 20 million timesteps because estimating
the policy gradient over a distribution of policies results in slower training.

Calculating the Boltzmann policy distribution To calculate the BPD, we use the methods
described in Section 2. We set the temperature 1/β = 0.1 for the BPD as well as the Boltzmann
trajectory distribution, as we found that this is the maximum that does not lead to near-zero return.
We set the concentration parameter of the Dirichlet base distribution described in (12) to α = 0.2.
We also explore using α = 1 in Figures 4 and 5 and give quantitative results in Appendix C.2.

We use latent vectors z of dimension 1,000 for Overcooked. We also tried using a vector of dimension
100, but found this did not give enough flexibility to capture human behavior; see Appendix C.1. We
use the same latent vector during each episode for both players.

Since our method for approximating the BPD is similar to GAN training, we find it is prone to
instability. Following Radford et al. (2016), we set the Adam momentum term β1 = 0.5 when
calculating the BPD to reduce this instability.

Overall, we generally found that the BPD required a larger-than-usual RL batch size compared to
training a single policy, since the BPD is essentially an infinite population of policies. However,
besides this, we were able to use the hyperparameters, network architectures, and reward shaping
largely unchanged from the original Overcooked paper. Thus, while the BPD is somewhat more
computationally demanding than typical RL methods, we did not find it needed much additional
hyperparameter tuning.
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Approximate inference with mean-field variational inference Online action prediction with the
BPD requires computing a posterior distribution over latent vectors z conditioned on a sequence of
past states and actions:

qθ(z | s1, a1, . . . , sT−1, aT−1) (13)
We approximate this inference problem with mean-field variational inference (Blei et al., 2017). We
approximate the posterior by a parameterized distribution qµ,σ(z) which is a product of independent
Gaussians:

qµ,σ(z) =

n∏
i=1

φ

(
zi − µi
σi

)
(14)

Here, φ(·) is the density of a standard normal distribution and µ, σ ∈ Rn. We minimize the KL
divergence between qµ,σ(z) and the true posterior by maximizing the expectation lower bound
(ELBO):

max
µ,σ

Ez∼qµ,σ(z)
[

log qθ(s1, a1, . . . , sT−1, aT−1 | z)
]
−DKL(qµ,σ(z) ‖ N (0, In))

= max
µ,σ

Ez∼qµ,σ(z)

[
T−1∑
t=1

log fθ(at | st, z)

]
−

n∑
i=1

DKL(N (µi, σ
2
i ) ‖ N (0, 1)) (15)

That is, we optimize µ and σ both (i) to maximize the sum of the log-probabilities assigned to each
observed action by policies using latent vectors z ∼ qµ,σ(z), and (ii) to minimize KL divergence to
the prior over z. We use SGD to optimize (15) by estimating the expectation with a Monte Carlo
draw of z values and calculating the KL divergence in closed form.

Once the posterior has been approximated by maximizing (15), we can estimate the next action
probabilities by marginalizing over the posterior:

qθ(aT | s1, a1, . . . , sT−1, aT−1, sT ) ≈ Ez∼qµ,σ(z)[fθ(aT | sT , z)]
We approximate this expectation via Monte Carlo sampling.

For repeated online prediction over a long episode, performing the optimization in (15) from scratch at
every timestep is computationally expensive. We speed up inference by using the µ and σ values from
the previous timestep to initialize optimization at the following timestep. Using this initialization, we
find we only need one SGD iteration per timestep to effectively optimize (15).

Training the predictive sequence models As describe in Section 3, we also approximate the
online action prediction problem

qθ(at | s1, a1, . . . , st−1, at−1, st) (16)
with the BPD by training a transformer on rollouts from the distribution. Specifically, we sample
50,000 policies from the BPD and roll out a trajectory for each policy. Then, we train both a trans-
former and an LSTM (Hochreiter & Schmidhuber, 1997) to predict (16) over this set of trajectories
by standard supervised learning. We describe the specific training hyperparameters in Table 2 and
architectures in Appendix A.2.

Behavior cloning We use a similar behavior cloning (BC) procedure to Carroll et al. (2020). BC
policies are trained to minimize the cross entropy over human trajectories with Adam (Kingma & Ba,
2014). We lower the learning rate by a factor ten if the cross entropy has not meaningfully improved
in 5 epochs. We regularly evaluate the BC policies playing with themselves in Overcooked. We chose
an iteration to stop training for each layout based on when the policies perform best. We use the
manually designed features from Carroll et al. (2020) as input to the BC policy network. They also
hardcode their BC policies to take a random action when stuck in the same state for too long; we do
not do this.

Training the collaborative policies As described in Section 3, we train collaborative policies as a
best response to the BC policy (i.e., human-aware RL), the Boltzmann rational (MaxEnt) policy, and
the BPD. We train the collaborative policies using PPO for one player while using a fixed policy for
the other player.

Since the BPD enables better prediction of future behavior given past behavior, we tried training a
policy with memory to cooperate with policies sampled from BPD. This policy takes as input not
only the current state, but also previous states and the human actions at those states:

π(aRt | s1, aH1 , . . . , st−1, aHt−1, st)
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We found that directly trying to optimize such a policy with PPO did not lead to good performance.
Instead, we use the hidden state of the LSTM network trained for online prediction as an extra input
to the policy network (in addition to the state). We hypothesize that the LSTM’s hidden state already
contains all necessary information to adapt to the human’s policy, so we do not need to further train
the LSTM during policy optimization. We find that this leads to much more stable training. However,
learning a policy with memory is still slower, so we use more training iterations of PPO (see Table 1).

Evaluation collaborative performance We evaluate the performance of collaborative policies
with a human proxy policy behavior-cloned from held-out data. Since each Overcooked layout has
different starting positions for the two players, we roll out 1,000 episodes with each starting position
permutation and average all the returns.

A.1 HYPERPARAMETERS

PPO Hyperparameter Value (Gridworld) Value (Overcooked)
Training iterations 500 500

(policies with memory) 1,000
Batch size 2,000 100,000
SGD minibatch size 2,000 8,000
SGD epochs per iteration 8 8
Optimizer Adam Adam
Learning rate 10−3 10−3

Gradient clipping 0.1 0.1
Discount rate (γ) 0.9 0.99
GAE coefficient (λ) 0.98 0.98
Entropy coefficient 0 0
KL target 0.01 0.01
Clipping parameter (ε) 0.05 0.05

Table 1: PPO hyperparameters.

Hyperparameter Value (Overcooked)
Training epochs 4
Batch size (num. episodes) 40
Optimizer Adam
Learning rate 10−3

Table 2: Sequence model training hyperparameters.

BC Hyperparameter Value (Overcooked)
Training epochs

(Cramped Room) 500
(Forced Coordination) 150
(Coordination Ring) 250

SGD minibatch size 64
Optimizer Adam
Initial learning rate 10−3

Table 3: Behavior cloning hyperparameters.

A.2 NETWORK ARCHITECTURES

Here, we describe the architectures used for policy networks, the discriminator from Section 2, and
sequence models from Section 3.
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Behavior cloning For our behavior cloned policies in Overcooked, we use a multilayer perceptron
(MLP) with two hidden layers of size 64.

Overcooked policies For all other policies in Overcooked, we input the state as a two-dimensional
grid with 26 channels corresponding to various features in the environment, e.g. counters, players, etc.
These states are first processed through a convolutional neural network with three layers of 25 hidden
units each and filter sizes of (5, 5), (3, 3), and (3, 3) respectively. Then, the resulting activations are
flattened and passed through three fully-connected layers with 64 hidden units. We use leaky ReLUs
with negative slope -0.01 for all activation functions.

Conditional policy network The conditional policy network fθ(s, z) used to approximate the
BPD additionally takes in as input z ∈ Rn, the random latent vector. We found that directly
concatenating z to the state representation or the input of the first fully-connected layer led to slow
and unstable training. Instead, we used an attention mechanism (Bahdanau et al., 2016) over the
latent vector. Let a be the activations after the first fully-connected layer. We transform a by a fully
connected layer to a matrix of size m × n and then take the softmax over each row such that the
elements add to 1. This gives a matrix W , our attention weights. Then, we concatenate Wz to a and
feed the resulting vector through the remainder of the network. This allows the network to attend to
arbitrary combinations of the values in z and improves training considerably. We set m = 4 for the
gridworld experiments and m = 10 for Overcooked.

Discriminator We give as input to the discriminator network d a sequence of states and actions
s1, a1, . . . , sk, ak. We let k = 10, finding that using more actions and states leads to instability
because it is too easy for the discriminator to tell apart policies from the base distribution and the
approximated BPD.

The actions at each state are one-hot encoded and appended to the state representation. Then, for
Overcooked, the states are passed through a convolutional state encoder, which creates a separate
representation for each state-action pair. Next, the resulting representations are passed through
a three-layer transformer with one head and dmodel = 64. This allows the discriminator to pool
information about the policy across states. Finally, the outputs of the transformer are averaged and
fed through a final linear layer to produce the discriminator score of the policy.

Sequence models for prediction As described above, we train both LSTMs and transformers to
estimate (16), i.e. to predict the next human action aT given the current state st and past states and
actions s1, a1, . . . , sT−1, aT−1. As input to these sequence models, we give a tuple of (st−1, at−1, st)
at each timestep t, and train them by minimizing the cross entropy between the output and the true
action at. We find that giving as input both the previous state st1 and previous action at−1, as opposed
to just the previous action at−1, helps the models to better associate past actions with the states in
which they were taken.

The remainder of a the sequence model for Overcooked consists of a policy network as described
above, with the fully connected layers replaced by either an LSTM or transformer. We use 3 layers
and 256 hidden neurons for both the LSTM and transformer.

B DERIVATIONS

B.1 ENTROPY AS KL DIVERGENCE

Here, we derive the equation used in Section 2 to relate the entropy of the policy distribution qθ(π) to
its KL divergence from the normalized base measure pbase(π) = µ(π)/

∫
dµ(π). First, note that

dµ

dpbase
(π) =

∫
dµ(π),
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where dµ
dpbase

is the Radon-Nikodym derivative between µ(π) and pbase(π). Now,

H(qθ(π)) =

∫
− log

dqθ
dµ

(π) dqθ(π)

= log
(∫
dµ(π)

)
−
∫

log
(∫
dµ(π)

)
+ log

dqθ
dµ

(π) dqθ(π)

= log
(∫
dµ(π)

)
−
∫

log

(
dqθ
dµ

(π)
∫
dµ(π)

)
dqθ(π)

= log
(∫
dµ(π)

)
−
∫

log

(
dqθ
dµ

(π)
dµ

dpbase
(π)

)
dqθ(π)

= log
(∫
dµ(π)

)
−
∫

log

(
dqθ
dpbase

(π)

)
dqθ(π)

= log
(∫
dµ(π)

)
−DKL(qθ(π) ‖ pbase(π)).

B.2 DISCRIMINATOR APPROXIMATES KL DIVERGENCE

For completeness, we also derive the result of Huszár (2017) showing that minimizing the discrimina-
tor objective given in (10) approximates the KL divergence between qθ(π) and pbase(π). Recall that
the discriminator is chosen by solving the following optimization problem:

d = arg min
d

Eπ∼qθ(π)
[

log (1 + exp {−d(π)})
]

+ Eπ∼pbase(π)

[
log (1 + exp {d(π)})

]
. (17)

Assuming that qθ(π) and pbase(π) both have a density with respect to the Lebesgue measure, we can
rewrite (17) as

d = arg min
d

∫
log (1 + exp {−d(π)}) qθ(π) + log (1 + exp {d(π)}) pbase(π) dπ. (18)

Clearly, the integral in (18) is minimized if and only if the integrand is minimized for all π. That is,
we have that

∀π d(π) = min
d(π)∈R

log (1 + exp {−d(π)}) qθ(π) + log (1 + exp {d(π)}) pbase(π).

It is straightforward to show that the value of d(π) which minimizes this is

d(π) = log

(
qθ(π)

pbase(π)

)
.

Thus, taking the expectation of d(π) gives the KL divergence between qθ(π) and pbase(π):

Eπ∼qθ(π)[d(π)] = Eπ∼qθ(π)
[
log

(
qθ(π)

pbase(π)

)]
= DKL(qθ(π) ‖ pbase(π)).

C ADDITIONAL EXPERIMENTS

In this appendix, we present results from additional experiments that did not fit in the main text.
First, we explore alternative choices of hyperparameters for the BPD. We also include an ablation
of prediction with sequence models using the BPD. We conclude with a closer look at prediction of
human behavior in Overcooked and what makes different human models perform better or worse.

C.1 LATENT VECTOR DIMENSION

We explore the effect of altering the dimensionality n of the latent vector z used to approximate the
BPD through the policy network fθ(s, z). We use n = 1, 000 throughout the rest of our experiments,
but we also tried using n = 100. The effects on prediction and collaboration are shown in Figure
10. We find that reducing n has negative effects on collaborative performance and also on prediction
using MFVI. Surprisingly, setting n = 100 does not affect the performance of a transformer trained
to perform prediction using the BPD. We are not sure why this happens—the transformer may simply
be good at predicting out-of-distribution. Even if explicitly optimize over values of z for low cross
entropy on human data when n = 100, we are unable to reach the performance of the transformer.
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Figure 10: The effect on human prediction and human-AI collaboration of changing the dimension n
of the latent vector z used to approximate the BPD. See Appendix C.1 for details and discussion.
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Figure 11: The effect on human prediction of changing the concentration α of the Dirichlet base
distribution pbase(π) using to calculate the BPD. See Appendix C.2 for details and discussion.

C.2 BASE DISTRIBUTION CONCENTRATION

Next, we try changing α, the parameter of the Dirichlet distribution used to define pbase(π). Recall
from Section 2 and Figures 4 and 5 that lower values of α correspond to a more consistent human
while higher values correspond to a more random human. We use α = 0.2 for most experiments
throughout the paper, but here we explore the effects of using α = 1 for predicting human behavior.
The results are shown in Figure 11. Using a transformer with α = 0.2 predicts human behavior the
best for all layouts, validating our choice of α and our assumption that humans are consistent.

C.3 FURTHER PREDICTION EXPERIMENTS

Here, we investigate what makes different models better or worse at human prediction in Overcooked.
In particular, we noticed that the majority of the actions taken in Overcooked by humans are “stay”
actions—that is, actions that do not do anything. Thus, simply predicting a “stay” action with high
probability can lead to good predictive performance. In Figure 12 we separate out the stay actions
and, in the right two columns, show the cross entropy and accuracy of models excluding these actions.
That is, we remove all timesteps when a stay action was taken and remove the stay probability
from the output of the human model. After removing stay actions, Boltzmann rationality is a better
predictor of human behavior, although behavior cloning and the BPD are still superior. We also note
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that while the BPD has similar cross entropy to behavior cloning, its accuracy is slightly lower on
non-stay actions. This could explain why collaborative policies trained with the BPD do not always
outperform those trained with a behavior cloned human model, e.g. on Forced Coordination (see
Figure 9).

We also explored some other baselines and ablations of the BPD. First, we try removing all reward
information and simply trying to predict based on a random distribution over policies—that is, using a
uniform prior over policies and doing online inference. Using the same procedure as for the BPD, we
sample trajectories from thousands of random policies drawn from pbase(π) and train a transformer
for online prediction over these trajectories. The resulting prediction performance on real human data
is shown in Figure 12 as the white bars. At first, it appears that this technique is quite successful,
rivaling behavior cloning and the BPD in cross entropy and accuracy. However, this largely seems
to be because it consistently predicts the human will take a stay action. Removing these actions,
it is clear that using a random policy distribution does not results in good predictive performance.
These experiments validate the utility of knowing the human’s reward function for predicting human
behavior and serve as an ablation of our method of online prediction.

Next, we explored alternatives to behavior cloning. As discussed in Appendix A, we used hand-
crafted features to train all the behavior cloning models, following Carroll et al. (2020). We additional
tried BC directly using the raw observations and found it performed slightly worse. Furthermore,
we explored using generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016) as a more
robust alternative to BC. We found that both these approaches performed similarly to or slightly
worse than BC; see Figure 12 for the full results.

Finally, we explored an alternative to online prediction with the BPD. For this baseline, we simply
started with a random initialized policy network and updated it after each timestep of a test episode
using the BC loss. The results for this method using either hand-crafted features or raw observations
are shown in Figure 12 with the label ”Online BC.” Online BC is directly comparable to online
inference with the BPD since they both do not require prior human data. However, we generally found
that online BC does not perform as well as BC or the BPD, particularly when using raw observations.
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Figure 12: A variety of metrics for predictive power of various human models on the three Overcooked
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details and discussion.
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