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ABSTRACT

Graph Neural Networks (GNNs) have shown superior performance in Link Predic-
tion (LP). Especially, SEAL and its successors address the LP problem by classi-
fying the subgraphs extracted specifically for candidate links, gaining state-of-the-
art results. Nevertheless, we question whether these methods can effectively learn
the information equivalent to link heuristics such as Common Neighbors, Katz in-
dex, etc. (we refer to such information as heuristic information in this work). We
show that link heuristics and GNNs capture different information. Link heuris-
tics usually collect pair-specific information by counting the involved neighbors
or paths between two nodes in a candidate link, while GNNs learn node-wise rep-
resentations through a neighborhood aggregation algorithm in which two nodes
in the candidate link do not pay special attention to each other. Our further anal-
ysis shows that SEAL-type methods only use a GNN to model the pair-specific
subgraphs and also cannot effectively capture heuristic information. To verify our
analysis, a straightforward way is to compare the LP performance between exist-
ing methods and a model that learns heuristic information independently of the
GNN learning. To this end, we present a simple yet light framework ComHG1

by directly Combining the embeddings of link Heuristics and the representations
produced by a GNN. Experiments on OGB LP benchmarks show that ComHG
outperforms all top competitors by a large margin, empirically confirming our
propositions. Our experimental study also indicates that the contributions of link
heuristics and the GNN to LP are sensitive to the graph degree, where the former
is powerful on sparse graphs while the latter becomes dominant on dense graphs.

1 INTRODUCTION

Link Prediction (LP), aiming at predicting the existence likelihood of a link between a pair of nodes
in a graph, is a prominent task in graph-based data mining (Kumar et al., 2020). It has a wide range
of beneficial applications, such as recommender systems (Wu et al., 2021), molecular interaction
prediction (Huang et al., 2020), and knowledge graph completion (Li et al., 2022).

Throughout the history of LP research, a number of link heuristics have been defined, such as Com-
mon Neighbors (CN), Katz index (Katz, 1953), etc. A link heuristic usually describes a specific fact
or hypothesis that gives the best interpretation to a statistical pattern in link observations (Martı́nez
et al., 2016). The effectiveness of many link heuristics has been confirmed in various real-world LP
applications (Liben-Nowell & Kleinberg, 2007; Zhou et al., 2009; Martı́nez et al., 2016).

Recently, graph representation learning has been proven powerful for LP (Perozzi et al., 2014; Zhang
& Chen, 2018; Yun et al., 2021). Among the approaches in this domain, Graph Neural Networks
(GNNs) have demonstrated stronger LP performance than others like node embedding methods
based on positional encoding (Perozzi et al., 2014; Galkin et al., 2021). Modern prevalent GNNs
like GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), etc. follow a form of neighborhood
information aggregation algorithm in which each node’s representation is updated by aggregating
the representations of this node and its neighbors. In this paper, we use the term GNNs to refer to
such aggregation-based GNNs.

1Our code is available at https://github.com/astroming/ComHG
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Figure 1: An illustration of the difference between link heuristics and aggregation-based GNNs.

In the literature, several LP-specific methods based on GNNs have been proposed, such as SEAL
(Zhang & Chen, 2018), GraiL (Teru et al., 2020) and NBFNet (Zhu et al., 2021). In particular, SEAL
and its follow-up works (Zhang & Chen, 2018; Li et al., 2020; Teru et al., 2020; Yin et al., 2022)
predict the link likelihood between two nodes through classifying the subgraph extracted specifically
for this target pair of nodes (we refer to such subgraph as pair-specific subgraph). SEAL-type
methods also label every node in the pair-specific subgraph according to the relationship of the node
to the target pair of nodes (Zhang et al., 2021). The pair-specific subgraphs together with the node
labeling help SEAL-type methods learn better link representations than other methods, attaining
state-of-the-art LP performance.

Despite all successes achieved by existing GNN-based LP methods, we are still curious about the
question: whether these methods can effectively learn the information equivalent to link heuristics
(i.e., heuristic information) for LP? Our analysis and experiments suggest a negative answer.

Contributions. In this work, we show that traditional link heuristics and GNNs capture different
information. As illustrated in Figure 1, link heuristics are typically defined based on the number
of involved nodes or paths between a pair of nodes. They are pair-specific. By comparison, a
GNN updates the representation of a node by aggregating the representations of this node and its
neighbors, where none of the neighbors is treated particularly. The learned nodes’ representations
are node-level. GNNs pay more attention to what information every node has, while link heuristics
focus more on how many shared neighbors or paths are between a pair of nodes.

The difference between link heuristics and GNNs means that classical GNN-based LP methods sim-
ply combining the node-wise representations of two nodes in a candidate link into a link representa-
tion can hardly learn heuristic information. Moreover, we find that SEAL-type methods also cannot
effectively capture heuristic information. Briefly, despite the help of the pair-specific subgraph and
node labeling techniques, SEAL-type methods still use a GNN (e.g., DGCNN (Zhang et al., 2018)
in SEAL (Zhang & Chen, 2018), R-GCN (Schlichtkrull et al., 2018) in GraiL (Teru et al., 2020)) to
perform graph representation learning, where the GNN inherently lacks the model ability to learn
heuristic information. Meanwhile, the labeling features of nodes are mixed in the neighborhood
aggregation process of the GNN and the heuristic information embedded in the labeling features
cannot be effectively kept in the learned node representations.

A simple way to verify our propositions is to study the LP performance of a model that separates the
heuristic information learning and the GNN-based representation learning. Therefore, we present a
light LP framework ComHG by Combining link Heuristics and the GNN. In ComHG, various link
heuristics are encoded into trainable embeddings and combined with the representations produced
by a GNN, followed by a predictor that takes the combinations as input to perform the final pre-
diction. We conduct experiments on four OGB LP benchmark datasets (Hu et al., 2020). ComHG
significantly outperforms all previous methods on all datasets. The strong results confirm that link
heuristics and the GNN capture different yet effective information for LP, and suggest that combin-
ing both of them can boost LP performance. The results also empirically verify our analysis of the
limitations of existing GNN-based LP methods in learning heuristic information. Furthermore, our
experimental study shows that link heuristics could contribute more to LP performance on sparse
graphs while GNN-based representation learning becomes dominant on dense graphs.

2 PRELIMINARIES

Without loss of generality, we demonstrate our work on homogeneous graphs. Let G = (V,E)
denote a graph G with N nodes, where V is the set of nodes, |V| = N , and E is the set of edges
between the nodes in V. A set of nodes connected directly to a node v ∈ V is the first-order
neighborhood set of v and is denoted as Γv . The degree of a node v is defined as the number of
edges connected to this node. The degree of a graph is defined as the average degree of all nodes.
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Problem formulation. Link prediction is a pair-specific problem, aiming to estimate the likeli-
hood of the existence of an unknown edge Evu /∈ E between two nodes v, u ∈ V. We denote the
existence likelihood of Evu as ŷvu and refer to nodes v, u as the target pair of nodes.

Table 1: Classical link heuristics for
the node pair (v, u).

Heuristic Definition

CN |Γv ∩ Γu|

Jaccard |Γv∩Γu|
|Γv∪Γu|

AdamicAdar
∑

z∈Γv∩Γu

1
log|Γz |

RA
∑

z∈Γv∩Γu

1
|Γz |

Katz
∑∞

l=1 β
l|{path(l)

vu}|

Link heuristics. Link heuristics mainly extract the struc-
tural information between a pair of nodes (Martı́nez et al.,
2016). Shortest Path Distance (SPD) is a basic link heuris-
tic that follows the underlying intuition that the distance
between two related nodes should be short. Table 1 lists
five most widely-used link heuristics. Specifically, Com-
mon Neighbors (CN) is defined as the size of the intersec-
tion between the first-order neighborhood sets of two nodes.
Jaccard coefficient (Jaccard, 1901) normalizes the CN by
the size of the union of the two nodes’ neighborhood sets.
AdamicAdar (Adamic & Adar, 2003) and Resource Alloca-
tion (RA) (Zhou et al., 2009) both suppress the contribution
of nodes by penalizing each node in common neighbors with
its degree. Katz index (Katz, 1953) counts all paths between
a pair of nodes with weights, where |{path(l)vu}| is the size of the set of all paths between node v and
u with the length of l, and β is a damping factor where 0 < β < 1.
Definition 1. The core function of most link heuristics is the set operation of two sets related to two
nodes. We define the generalized function for such link heuristics as

Heuristic(v, u | v, u ∈ V) = f (SETOP(Sv,Su)) , (1)

where SETOP(·, ·) is a set operation (e.g., intersection) applied on two sets. Sv and Su are the sets
related to node v and u, respectively. f(·) is a function applied on the result of SETOP(·, ·).

Many commonly-used link heuristics can be expressed with Equation 1. For example, in CN, Sv
is Γv , Su is Γu, SETOP(·, ·) is the intersection of Sv and Su, and f(·) obtains the cardinality of
the set given by SETOP(Sv,Su). In Katz index, Sv is the set of all paths that contain node v, Su
is the set of all paths that contain node u, and SETOP(Sv,Su) outputs {pathvu} that is the set
of all paths between node v and u. f(·) sums βl|{path(l)vu}| over different path length l, where
{path(l)vu} ⊆ {pathvu}.
Definition 2 (Heuristic information). In this work, we say that the information captured by link
heuristics is heuristic information.

Graph Neural Networks (GNNs). Modern GNNs iteratively update the representation of each
node in a graph by aggregating representations of its neighbors and its own (Corso et al., 2020).
Formally, the representation of a node v given by the l-th layer of a GNN is

h(l)
v = AGGREGATE(l)

({
h
(l−1)
v′ | ∀v′ ∈ Γv ∪ {v}

})
, (2)

where h
(0)
v is initialized with the feature vector of node v, the function AGGREGATE(·) is in-

stantiated as a pooling operation over a set of node representations, such as MAX, MEAN, or
attention-based SUM (Hamilton et al., 2017; Veličković et al., 2018). For simplicity, we omit the
residual connections, activation functions, etc. In this paper, we use the term GNNs to refer to such
aggregation-based GNNs unless otherwise stated.
Remark 1. The representations learned by GNNs are node-wise.

3 CAN EXISTING GNN-BASED LP METHODS EFFECTIVELY LEARN
HEURISTIC INFORMATION?

In this section, we first show the difference between link heuristics and GNNs, and then present our
analysis of the limitations of existing GNN-based LP methods in learning heuristic information.
Proposition 1. The information captured by link heuristics is different from that embedded in the
node representations learned by GNNs.
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Proof. Link heuristics are pair-specific. The Heuristic(v, u | v, u ∈ V) in Equation 1 is specific for
the node pair (v, u), where the core function is a set operation of two sets (Sv,Su). By comparison,
a GNN in Equation 2 learns a node-wise representation h

(l)
v based on a pooling operation over all

elements in the set {h(l−1)
v′ | v′ ∈ Γv ∪ {v}}, where the GNN does not pay special attention to any

particular node in Γv . In other words, two nodes in a candidate link do not pay special attention to
each other in the GNN learning. The information extracted through a set operation of two sets is
fundamentally different from that obtained by a pooling operation over the elements in one set.

In addition, link heuristics mainly extract structural information between a pair of nodes by calcu-
lating the number of shared nodes or paths. They generally take no account of node features. In
contrast, GNNs learn node-level representations that are initialized with node features, where the
structural information of the graph is mainly used for generating the neighborhood set Γv .

According to Proposition 1, we have the following corollary.
Corollary 1. GNNs inherently lack the model ability to learn heuristic information, i.e., the repre-
sentation of each node learned by a GNN lacks heuristic information.

3.1 CLASSICAL GNN-BASED LP METHODS

A direct way of applying a GNN to LP is to combine the learned node-wise representations of two
nodes in a candidate link into a pair-wise link representation and then pass it into a predictor. We
refer to such applications as classical GNN-based LP methods (Hamilton et al., 2017; Veličković
et al., 2018; Wang et al., 2021). Formally, the link likelihood of node pair (v, u) is

ŷvu = PREDICTOR
(
COMBINE

(
h(L)
v ,h(L)

u

))
, (3)

where L is the index of the last GNN layer, COMBINE(·, ·) can be Hadamard production, concate-
nation, etc., and PREDICTOR(·) is a predictor like MLP.
Proposition 2. Classical GNN-based LP methods lack the ability to capture heuristic information.

Proof. The node-wise representations in Equation 3, i.e., h(L)
v ,h

(L)
u , are learned by a GNN. Accord-

ing to Proposition 1 and Corollary 1, both h
(L)
v and h

(L)
u lack heuristic information. Meanwhile, the

function COMBINE(·, ·) in Equation 3 can hardly capture heuristic information like Equation 1,
since this function does not involve any set operation on two sets related to node v and node u.

Classical GNN-based LP methods in Proposition 2 are different from GNNs in Proposition 1. The
former methods are downstream LP applications using the node representations learned by GNNs.

3.2 RETHINKING SEAL-TYPE METHODS

SEAL and its successors (Zhang & Chen, 2018; Li et al., 2020; Teru et al., 2020; Yin et al., 2022)
address the LP problem by classifying the subgraphs that are extracted specifically for candidate
links. We use the term SEAL-type methods to refer to these methods.

The entire 

graph

Extracting the subgraph 

specific for (𝑣, 𝑢)
Labeling 

nodes

Node-wise 

representations

Representation 

for (𝑣, 𝑢)
ො𝑦𝑣𝑢GNN Readout Predictor

Subgraph preparation Subgraph classification

Figure 2: The algorithm flow chart of SEAL-type methods.

We briefly describe the algorithm flow of SEAL-type methods. As shown in Figure 2, given an
entire graph G and a target node pair (v, u), a h-hop enclosing subgraph G(h)

vu with a set of nodes
V(h)

vu = {v′ | Spd(v′, v) ≤ h or Spd(v′, u) ≤ h} is extracted from G, where Spd(·, ·) calculates the
shortest path distance between two nodes. Then, for each node in G(h)

vu , a node labeling trick (Zhang
et al., 2021) is used to assign a labeling vector to the node as its additional features according to its
relationship to (v, u). At the modeling stage, G(h)

vu is fed into a GNN model, and the node-wise repre-
sentations of the nodes in V(h)

vu are learned. Following the last layer of the GNN, a readout function
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READOUT(·) is employed over the learned node-wise representations of all nodes in V(h)
vu , and

then a pair-specific representation for G(h)
vu is produced. At last, a predictor PREDICTOR(·) takes

this pair-specific representation as input to perform LP for the node pair (v, u). Formally, the link
likelihood of (v, u) predicted by SEAL-type methods is

ŷvu = PREDICTOR
(
READOUT

({
h
(L)
v′ | ∀v′ ∈ V(h)

v,u

}))
. (4)

The READOUT(·) (e.g., SortPooling in SEAL (Zhang & Chen, 2018)) is typically used for graph-
level classification, aiming to deal with size differences among graphs.

SEAL-type methods usually use a node labeling trick to add labeling features to each node in the
pair-specific subgraph. The labeling features of a node describe the relationship of the node to the
candidate link. Figure 3 shows an example of this, where the labeling features of a node are the
shortest path distances from the node to the target pair of nodes. Zhang et al. (2021) show that such
labeling features can help a GNN learn better representations for LP.

(1,3)

(1,10)

(1,2)

(1,1) (1,3)(1,4)

(1,3)

(1,6)

Positive link Negative link

𝑣

(1,4)

𝑤𝑢 𝑢

link? link?

Figure 3: Node labeling in SEAL-type
methods. The left is a pair-specific sub-
graph for a positive link sample and the
right is a negative one. The labeling fea-
tures are based on the SPDs from every
node (here only show the first-order neigh-
bors of node v or w) to the target pair of
nodes. For example, on the left, the node
with the labeling features (1, 10) indicates
that the SPD from this node to node v and
u is 1 and 10, respectively.

Despite the benefits brought by the pair-specific sub-
graph and node labeling techniques, our following
analysis shows that SEAL-type methods still suffer
from issues in learning heuristic information.
Proposition 3. The labeling features of nodes contain
heuristic information (e.g., SPD). However, the fea-
tures of each node would be mixed with the features
of other nodes in the neighborhood aggregation pro-
cess of a GNN and thus the heuristic information in
the labeling features cannot be effectively kept in the
learned node representations.

Proof. We use an example to illustrate this. As
shown in Figure 3, the labeling features of a node
in a pair-specific subgraph are SPDs from this node
to the target pair of nodes. If the pooling method
in a GNN is MEAN, then the aggregation of the la-
beling features of the neighbors of node v would be
equal to that of node w, i.e., MEAN({10, 3, 2, 1}) =
MEAN({4, 6, 4, 3, 3}). This means that the labeling features of the neighbors of a node are mixed
in the neighborhood aggregation process, and the distinct heuristic information in these labeling fea-
tures is not effectively kept in the aggregated result. In other words, the aggregated results for node
v and w in the positive and negative link samples become indistinguishable. Note that in practice,
a GNN layer contains a series of complicated operations such as set-based pooling, linear and non-
linear transformations, dropout, residual connection, etc. The heuristic information in the labeling
features could be partially kept in the learned node representations.

Zhang et al. (2021) point out that the labeling features of nodes can help the GNN learn the heuristic
information related to common neighbors. Their explanation is as follows. If node v and u are
labeled, in the first iteration of the neighborhood aggregation in a GNN, only the common neighbors
between node v and u will receive the labeling messages from both v and u; then in the second
iteration, these common neighbors will pass such messages back to both v and u, which can encode
the number of common neighbors into the representations of node v and u. However, we question
this statement. In the second iteration in the explanation above, in addition to the common neighbors
between v and u, the non-common neighbors of node v also pass their messages back to v. The
messages from all neighbors of v are then aggregated through a set-based pooling (e.g., MEAN)
as shown in Equation 2. Such set-based aggregated result for node v inherently cannot retain the
information related to the number of common neighbors. The same goes for node u. Therefore, we
have the following proposition.
Proposition 4. SEAL-type methods cannot guarantee that a GNN can use the node labeling features
to effectively encode the neighborhood-based heuristic information into the node representations.

Propositions 3 and 4 show that SEAL-type methods cannot effectively learn heuristic information
embedded in the labeling features of nodes through GNNs. The main reason is that the GNNs
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used in these methods are based on the neighborhood information aggregation algorithm (e.g.,
DGCNN (Zhang et al., 2018) in SEAL (Zhang & Chen, 2018), R-GCN (Schlichtkrull et al., 2018)
in GraiL (Teru et al., 2020)). The distinguishing labeling features are mixed and become indistin-
guishable after the iterations of set-based neighborhood aggregation.

Proposition 5. SEAL-type methods cannot effectively learn heuristic information for LP.

Proof. We prove this by decomposing the entire algorithm of SEAL-type methods. As shown in
Figure 2, the pair-specific subgraph extraction and the node labeling are the operations at the data
preparation stage. Nevertheless, at the modeling stage, SEAL-type methods still use a GNN (e.g.,
DGCNN in SEAL (Zhang & Chen, 2018)) to learn node-wise representations (i.e., h(L)

v′ in Equa-
tion 4). Therefore, Proposition 1 and Corollary 1 still hold, and h

(L)
v′ in Equation 4 lacks heuristic

information. Furthermore, READOUT(·) in Equation 4 can hardly capture heuristic information.
READOUT(·) is a pooling operation over all elements in one set (e.g., SortPooling in SEAL (Zhang
& Chen, 2018)), which is different from the set operation of two sets used in link heuristics in Equa-
tion 1. Besides, Propositions 3 and 4 show that the heuristic information in the labeling features of
nodes cannot be effectively kept in the learned node representations.

3.3 LIMITATIONS OF OTHER GNN-BASED LP METHODS

Most recently, Zhu et al. (2021) generalize several traditional path-based link heuristics into a path
formulation and propose a novel neural network NBFNet to approximate the path formulation. Dif-
ferent from common GNNs that propagate and aggregate representations of nodes, NBFNet mainly
utilizes the representations of edges between two nodes in a candidate link. NBFNet is a benefi-
cial attempt to learn pair-wise heuristic information through representation learning. However, it
suffers from some issues. First, NBFNet focuses on path-based heuristics like Katz index (Katz,
1953), while neglecting the neighborhood-based heuristics such as CN, RA (Zhou et al., 2009), etc.
Second, the algorithm of NBFNet lacks the ability to utilize node-wise information such as node
attributes and node embeddings. Besides, Yun et al. (2021) present Neo-GNN that weighted aggre-
gates the LP score obtained by neighborhood-based heuristics and the score predicted by a GNN.
However, Neo-GNN does not use path-based heuristics.

4 LEARNING HEURISTIC INFORMATION INDEPENDENTLY OF THE GNN

Pair-wise link heuristics: 
SPD, CN, Jaccard, 
AdamicAdar, etc.

Node-wise attributes,
Node-wise 

embeddings, etc. 

GNN Encoder

Link predictor

COMBINE CONCAT

CONCAT

ො𝑦𝑣𝑢

ℎ𝑣 ℎ𝑢

ℎ𝑣𝑢 𝑒𝑣𝑢

𝑒𝑣𝑢
SPD , 𝑒𝑣𝑢

CN , etc.

...

Figure 4: An overview of ComHG.

Propositions 1-5 show that traditional link heuristics and
GNNs capture different information, and existing GNN-
based LP methods fail to effectively learn heuristic infor-
mation. We can validate these propositions by comparing
the LP performance between existing methods and a model
that learns heuristic information independently of the GNN
learning. To this end, we present a simple yet light LP frame-
work ComHG by Combining link Heuristics and the GNN.

4.1 ComHG: A SIMPLE YET LIGHT LP FRAMEWORK

As shown in Figure 4, ComHG mainly consists of two sep-
arate modules and a predictor. The GNN module produces a
pair-level link representation by combining the node-level
representations of the target pair of nodes. The heuristic
module encodes various link heuristics into trainable em-
beddings and concatenates these embeddings. Then the link
representation and the heuristic embedding are concatenated
and passed into a predictor for the final prediction.

We emphasize that this work focuses on studying the limi-
tations of existing GNN-based LP methods in learning heuristic information. The straightforward
ComHG mainly serves as an examiner to validate our analysis. If Propositions 1-5 hold, ComHG
would be expected to achieve comparable or superior performance to all existing LP methods.
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GNN module. We use a GNN to perform graph representation learning. The GNN can be one of the
existing GNNs such as GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), or even MLP.
We use node attributes, node embeddings, etc. as the initial node features. The node embeddings
are trainable at the training stage. The GNN outputs node-wise representations for all nodes. We
then combine the representations of each target pair of nodes into a pair-specific link representation.
Formally, let L be the index of the last GNN layer. The link representation for node pair (v, u) is

hvu = COMBINE
(
h(L)
v ,h(L)

u

)
, (5)

where COMBINE(·, ·) can be Hadamard production, concatenation, etc.

Heuristic embedding. Independently of the GNN module, ComHG encodes various link heuristics
into trainable embeddings and then concatenates these embeddings. Let evu be the concatenation of
these embeddings for node pair (v, u). We have

evu = CONCAT(e(SPD)
vu , e(CN)

vu , · · · , e(RA)
vu ), (6)

where e(SPD)
vu , e

(CN)
vu , e

(RA)
vu is the embedding of SPD, CN, and RA, respectively. These embeddings

are trained along with the entire framework. Note that ComHG can consider various link heuristics,
which is beneficial to tackle the issue that some link heuristics may only be effective on some
particular graphs (Kovács et al., 2019).

Link predictor. In ComHG, we concatenate the link representation hvu and the heuristic embedding
evu and pass the concatenation into a predictor. Formally, the link likelihood of (v, u) is

ŷvu = PREDICTOR(CONCAT(hvu, evu)) . (7)

We train ComHG using the loss based on negative sampling (Mikolov et al., 2013; Hamilton et al.,
2017), i.e., L = −log(ŷvu) −

∑n
i=1

1
n log(1 − ŷv′

iu
′
i
), where the node pair (v, u) is a positive link

sample, (v′i, u
′
i) is a negative sample, n is the number of negative samples for each positive link.

Computational complexity. ComHG is computationally light. For the GNN module, ComHG can
take advantage of existing light GNNs (Wu et al., 2019; Chiang et al., 2019). For link heuristics,
most heuristics can be computed by matrix addition and multiplication on the adjacency matrix of
a graph. The complexity of the dense matrix addition and multiplication is O(N2) and O(N3),
respectively. In the sparse setting, these complexities can be reduced to O(|E|) (Gao et al., 2020),
where |E| is the number of edges in a graph. The generation of link heuristics in ComHG is light
compared to SEAL-type methods (Zhang & Chen, 2018; Teru et al., 2020). In SEAL-type methods,
the complexity of subgraph generation can be approximated as O(Dh|E|), where D is the degree
of the entire graph and h is the highest hop of the subgraph. We can see that the complexity of
SEAL-type methods increases exponentially as the hop of the pair-specific subgraph increases.

In the following subsections, we present our experimental study.

4.2 EXPERIMENTAL SETUP

Datasets. We conduct experiments on four datasets: ogbl-ddi, ogbl-collab, ogbl-ppa, and ogbl-
citation2 from Open Graph Benchmark (OGB) (Hu et al., 2020). We DO NOT use previous
widely-used datasets such as Cora, Citeseer, Pubmed, etc. because these datasets usually suffer
from a series of issues such as unrealistic and arbitrary data splits, small scale, and data leakage.
Especially, Shchur et al. (2018) show that different data splits on such datasets lead to different re-
sults in performance comparison among modern graph methods. By contrast, the OGB datasets are
collected specifically for the LP task, which cover several realistic applications, span diverse scales
(4K - 3M nodes), and come with standard evaluation procedures (Hu et al., 2020).

Comparison methods. We compare ComHG with several mainstream types of LP methods, includ-
ing 1) heuristic methods: CN, AdamicAdar (Adamic & Adar, 2003), Katz (Katz, 1953); 2) graph
representation learning methods (Non-GNN): Matrix Factorization (MF) (Menon & Elkan, 2011),
DeepWalk (Perozzi et al., 2014), NodePiece (Galkin et al., 2021); 3) GNN methods: GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018), JKNet (Xu
et al., 2018), LRGA+GCN (Puny et al., 2020), PLNLP (Wang et al., 2021), NBFNet (Zhu et al.,
2021) and Neo-GNN (Yun et al., 2021); 4) SEAL-type methods: SEAL (Zhang & Chen, 2018),
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Table 2: Results on test sets of OGB LP datasets. Higher is better. The best in each column is in
bold. The †, ‡, and § indicate the top 1, 2, and 3 results given by previous methods.

Method ogbl-ddi ogbl-collab ogbl-ppa ogbl-citation2
Hits@20 (%) Hits@50 (%) Hits@100 (%) MRR (%)

Non-GNN

CN 17.73± 0.00 52.24± 0.00 27.60± 0.00 51.47± 0.00
AdamicAdar 18.61± 0.00 54.09± 0.00 32.45± 0.00 51.89± 0.00
Katz 15.32± 0.00 53.77± 0.00 26.28± 0.00 46.73± 0.00
MF 13.68± 4.75 38.86± 0.29 32.29± 0.94 51.86± 4.43
DeepWalk 26.42± 6.10 50.37± 0.34 23.02± 1.63 61.05± 2.33
NodePiece 24.15± 3.04 47.88± 0.41 22.85± 0.94 61.52± 1.59

GNN

GCN 37.07± 5.07 44.75± 1.07 18.67± 1.32 84.74± 0.21
GraphSAGE 53.90± 4.74 48.10± 0.81 16.55± 2.40 82.60± 0.36
GAT 55.73± 4.36 42.51± 2.92 23.82± 1.12 79.97± 1.13
JKNet 57.98± 6.88 48.84± 0.83 22.41± 2.35 84.28± 1.38
LRGA+GCN 62.30± 9.12§ 52.21± 0.72 26.12± 2.35 66.49± 1.59
PLNLP 90.88± 3.13† 52.92± 0.98 32.38± 2.58 84.92± 0.29
NBFNet 16.14± 3.72 51.05± 0.38 29.64± 1.03 51.22± 6.17
Neo-GNN 63.57± 3.52‡ 57.52± 0.37† 49.13± 0.60‡ 87.26± 0.84§

SEAL-type

SEAL 30.56± 3.86 54.71± 0.49‡ 48.80± 3.16§ 87.67± 0.32‡

GraiL 31.76± 4.24 54.19± 0.52 47.25± 2.84 86.59± 0.58
DEGNN 26.63± 6.82 53.74± 0.35 36.48± 3.78 60.30± 0.61
SUREL 32.31± 4.15 54.37± 0.46§ 53.23± 1.03† 88.83± 0.18†

Ours
ComHG(MLP) 76.83± 6.11 54.75± 2.52 35.49± 7.22 85.61± 1.83
ComHG(GCN) 91.38± 3.08 58.11± 1.11 61.24± 5.62 88.92± 0.11
ComHG(GAT) 92.15± 3.62 58.03± 1.21 59.85± 5.09 88.23± 0.38

GraiL (Teru et al., 2020), DEGNN (Li et al., 2020), SUREL (Yin et al., 2022). OGB officially
hosts a leaderboard2. We present the results of these methods as reported on this leaderboard or the
original papers. More experimental settings are provided in the Appendix.

4.3 MAIN RESULTS.

The main experimental results are presented in Table 2. ComHG outperforms all top competitors and
achieves state-of-the-art results on all datasets, demonstrating the effectiveness of the LP approach
of learning heuristic information independently of the GNN learning.

As shown in Table 2, GNN-based LP methods usually perform better than non-GNN methods in-
cluding heuristic methods and positional encoding-based embedding methods like DeepWalk and
NodePiece. By comparison, ComHG outperforms all these methods, which could empirically sup-
port our Propositions 1, 2 and confirm that GNN-based representation learning and human-defined
link heuristics capture different yet effective information for LP.

SEAL-type methods show stronger performance than other previous methods on three datasets,
demonstrating their success. However, our Propositions 3, 4 and 5 indicate that such methods cannot
effectively learn heuristic information. The results on ogbl-collab could empirically support these
propositions. As shown on ogbl-collab in Table 2, heuristic methods including CN, AdamicAdar,
and Katz significantly outperform most representation learning methods, indicating that heuristic
information is critical for LP on this dataset. Meanwhile, SEAL-type methods are only slightly bet-
ter (0.62% in SEAL, 0.1% in GraiL, and 0.28% in SUREL) or even worse (−0.35% in DEGNN)
than the best heuristic AdamicAdar. By comparison, ComHG surpasses the AdamicAdar by 4%.
The most likely explanation for this is that SEAL-type methods could not effectively learn the infor-
mation equivalent to the link heuristics used in ComHG, considering that ComHG utilizes various
link heuristics including SPD, CN, AdamicAdar, etc. Moreover, ComHG significantly exceeds the
best SEAL-type methods by 60% and 8% on ogbl-ddi and ogbl-ppa, respectively. All these results
demonstrate the superiority of the simple ComHG. The superiority is even more apparent when
considering that ComHG is computationally lighter than SEAL-type methods.

2https://ogb.stanford.edu/docs/leader_linkprop/
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We also evaluate three variants of ComHG where the GNN module uses MLP, GCN (Kipf &
Welling, 2017) or GAT (Veličković et al., 2018). Table 2 shows that ComHG(MLP) performs worst
across all datasets among three variants, which emphasizes the importance of neighborhood infor-
mation aggregation of the GNN, considering the fact that MLP updates each node’s representation
independently of other nodes. We note that ComHG(GAT) performs worse than ComHG(GCN) on
three datasets. This is probably because the graphs in the three datasets are large and the dimension
of the representations used to compute the attention coefficient in GAT is too small, which limits the
expressive power of GAT (a large dimension will dramatically increase the memory usage).

4.4 EFFECTS OF LINK HEURISTICS AND THE GNN.

During our experiments, we observe an interesting phenomenon in ComHG that the contributions of
link heuristics and the GNN to the LP performance vary dramatically according to the graph degree.
This phenomenon can also be seen in Table 2. For example, on ogbl-ddi with the graph degree of
500, the GNN-based methods such as GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al.,
2018), etc. significantly outperform the heuristic methods like CN and AdamicAdar. In contrast,
on ogbl-collab with the graph degree of only 8, the simple heuristic CN and AdamicAdar methods
perform even better than most representation learning methods.
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Figure 5: Performance of ComHG under
different settings.

To further investigate this phenomenon, we study the
effects of link heuristics and the GNN in ComHG.
Figure 5 shows the results of ComHG using only link
heuristics, only the GNN, and both of them. We
can see that ComHG only using link heuristics per-
forms better on the sparse graph (i.e., ogbl-collab) but
worse on the dense graphs than ComHG only using
the GNN. This trend is consistent with the results ob-
served in Table 2. Moreover, we find that ComHG
using both link heuristics and the GNN yields signifi-
cant performance improvement on sparse graphs (i.e.,
ogbl-collab and ogbl-citation2), while on the dense
ogbl-ppa and ogbl-ddi, ComHG only using the GNN
can achieve the best LP results.

We explain these results as follows. For link heuristics, most link heuristics like CN, SPD, etc.
are effective on sparse graphs but would become indistinguishable between positive and negative
candidate links on dense graphs. For GNN-based representation learning, the representation of a
node in a dense graph would be better learned than that in a sparse graph since more neighboring
nodes would attend the neighborhood aggregation in the dense graph. For example, in a spare graph,
a node v has only one neighbor w. The learning of the representation of node v in a GNN would
only rely on the neighbor w. Then the learned representation of node v would lack the ability to
identify the relationships of v to most of the other nodes in this sparse graph.

5 CONCLUSION

In this work, we showed that aggregation-based GNNs inherently lack the model ability to learn
the information equivalent to traditional link heuristics. We provided an in-depth analysis of why
existing GNN-based LP methods cannot effectively learn heuristic information. With the purpose
of validating our analysis, we introduced a light LP framework ComHG that learns heuristic infor-
mation independently of the GNN learning. The promising results achieved by ComHG empirically
confirm our propositions and demonstrate the importance of heuristic information for LP.

Limitations and future work. We proved our propositions by analyzing the learning mechanism,
algorithm architecture, and even an example. The proofs are not presented in a form of rigorous
mathematical deduction. This is mainly because the node representations learned by GNNs are not
easy to interpret. In addition, ComHG is developed mainly for validating our analysis. It simply
combines the heuristic embedding and link representation separately produced by two modules. We
believe that the power of integrating heuristic information with the GNN is worth exploring in the
future, especially for multiple-node tasks.
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of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-
Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, et al. String v11:
protein–protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic acids research, 47(D1):D607–D613, 2019.

Komal Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by subgraph reasoning.
In International Conference on Machine Learning, pp. 9448–9457. PMLR, 2020.
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A RELATED WORK

In this section, we briefly review several mainstream types of Link Prediction (LP) methods. Most
methods used in performance comparison in our experiments are also described here.

Heuristic methods. Traditional link heuristics are usually defined based on the number of the
neighbors or paths between a pair of nodes (Martı́nez et al., 2016). Most heuristic LP methods are
developed for specific applications and their effectiveness has been confirmed in real-world tasks
(Liben-Nowell & Kleinberg, 2007; Martı́nez et al., 2016; Kovács et al., 2019). In general, heuristic
methods are interpretable (i.e., a link heuristic describes a specific fact or hypothesis to interpret a
statistical pattern in link observations) and inductive (i.e., most link heuristics are independent of
any particular node, and thus can naturally generalize to unseen nodes in the inductive LP (Zhu
et al., 2021)). However, heuristic LP methods suffer from several issues. First, since many link
heuristics are designed for specific graph applications, they may perform well only on a particular
type of graphs (Kovács et al., 2019). Second, their model capacity is limited, considering that they
mainly focus on the topological properties between target pairs of nodes but rarely leverage node
features (Zhang & Chen, 2018).

Node embedding methods based on positional encoding. Node embedding methods are one class
of graph representation learning methods. Such methods encode positional relationships between
nodes into node embeddings. The similarity of nodes in the embedding space reflects the semantic
similarity of nodes in the graph. These methods can partially encode the link heuristic information
into node embeddings. Two nodes would have more similar embeddings if these two nodes are close
to each other (path-based information) and have many common neighbors (neighborhood-based
information) than the two nodes that are far apart. Following the word embedding method (Mikolov
et al., 2013), the models such as Deepwalk (Perozzi et al., 2014), Node2vec (Grover & Leskovec,
2016), etc. learn node embeddings by treating the nodes as words and treating the sequences of
nodes generated based on links as sentences. Most recently, inspired by subword tokenization used
in NLP (Sennrich et al., 2016), NodePiece (Galkin et al., 2021) explores parameter-efficient node
embedding techniques and presents an anchor-based method to learn node embeddings. However,
all these methods typically train embeddings in an unsupervised learning manner. Solely using
such node embeddings for LP empirically perform poorly compared to other representation learning
methods (e.g., GNNs) and sometimes even worse than heuristic methods (Wang et al., 2021).

Graph neural networks. Recently, GNNs have demonstrated effectiveness in diverse real-world
graph-based applications (Liang et al., 2021; Huang et al., 2020; Ying et al., 2021). A number of
GNN models have been proposed. GCN (Kipf & Welling, 2017) is a graph convolutional network
that learns node representations by summing the normalized representations from the first-order
neighbors. GraphSAGE (Hamilton et al., 2017) samples and aggregates representations from local
neighborhoods with pooling methods like MEAN, MAX, LSTM, etc. GAT (Veličković et al., 2018)
introduces an attention-based GNN architecture. LRGA (Puny et al., 2020) incorporates a Low-
Rank global attention module to GNNs for improving their generalization power. These GNNs have
demonstrated powerful LP performance by simply combining the node-level representations of two
nodes in a candidate link into a link representation. Wang et al. (2021) present a framework PLNLP
that jointly uses the node-wise representations learned by a GNN, node embeddings obtained by
positional encoding methods, and even the link representations produced by SEAL-type methods.

SEAL-type methods. SEAL-type methods have shown superior performance among existing LP
approaches (Hu et al., 2020; Teru et al., 2020). SEAL (Zhang & Chen, 2018) extracts a local en-
closing subgraph for each candidate link and uses a GNN (Zhang et al., 2018) to classify these
subgraphs for LP. GraiL (Teru et al., 2020) is developed for inductive knowledge graph reasoning. It
is a method similar to SEAL but it replaces SortPooling readout with MEAN-pooling. DEGNN (Li
et al., 2020) proposes a distance encoding GNN that comes with both theoretical guarantees and
empirical efficiency. For LP, DEGNN uses a SEAL-type strategy but a different labeling technique.
SUREL (Yin et al., 2022) proposes an algorithmic technique to improve the computational efficiency
of subgraph generation in SEAL-type methods, where graph structures are decoupled into sets of
walks that are used to generate pair-specific subgraphs.

These LP methods have achieved great success. However, our analytical and experimental results
show that these existing methods lack the model ability to effectively capture heuristic information.
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B MORE ON THE EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

We implement ComHG using PyTorch and PyTorch Geometric (Fey & Lenssen, 2019). The model
is trained with Adam optimizer (Kingma & Ba, 2014). The learning rate is decayed following
the ExponentialLR method. We conduct all experiments for ogbl-ddi and ogbl-collab on a Linux
machine with 14-core CPU, 192G RAM, and NVIDIA Quadro P6000 (24G), and for ogbl-ppa and
ogbl-citation2 on a machine with 32-cores CPU, 512G RAM and NVIDIA A100 (40G). Table 3 lists
the configurations of ComHG for the best performance. We provide our code for reproducing the
results at https://github.com/astroming/ComHG.

Table 3: Configurations of ComHG for the best performances.

ogbl-ddi ogbl-collab ogbl-ppa ogbl-citation2
GNN module GAT GCN GCN GCN
GNN layers 2 2 2 2
predictor MLP MLP MLP MLP
predictor layer 4 5 3 4
heuristics - SPD,CN,AA - SPD,AA
heuristic embedding dim - 32 - 32
node embedding dim 512 - 256 -
lr 0.003 0.002 0.001 0.001
lr decay gamma 0.995 0.997 0.99 0.995
dropout rate 0.3 0.3 0.3 0.25
gradient clip norm 5 10 5 10
batch size 100000 70000 100000 15000

B.2 DATASETS

Table 4: Statistics of OGB LP datasets.

Dataset #Nodes #Edges #Degree

ogbl-ddi 4, 267 1, 334, 889 500

ogbl-collab 235, 868 1, 285, 465 8

ogbl-ppa 576, 289 30, 326, 273 73

ogbl-citation2 2, 927, 963 30, 561, 187 21

In this work, we do not compare the LP
performance among methods on previous
small graph datasets such as Cora, Citeseer,
Pubmed (Zhu et al., 2021). This is mainly
because the different split proportions of
train, validation, and test sets on these
datasets would lead to dramatically dif-
ferent comparison results (Dwivedi et al.,
2020). We refer readers to (Dwivedi et al.,
2020) for more details about the issues of
these traditional datasets.

As an alternative, we conduct experiments on four LP datasets from OGB (Hu et al., 2020). The
statistics of datasets are summarized in Table 4.

ogbl-ddi is a homogeneous, unweighted, undirected graph built based on a drug-drug interaction
network (Wishart et al., 2018). In this graph, a node represents a drug and an edge describes an
interaction between two drugs. The nodes in this graph do not have any features. OGB officially
splits edges into train, validations, and test sets according to what proteins those drugs target in
the body. The test set is composed of drugs that predominantly bind to different proteins from
drugs in the train and validation sets, thereby evaluating the generalization capacity of the model for
practically useful LP.

ogbl-collab is an undirected graph extracted based on a collaboration network between authors
from MAG (Wang et al., 2020). The nodes represent authors and the edges indicate the collabo-
ration between authors. Every node has 128-dimensional features obtained by averaging the word
embeddings of papers that are published by the authors (Hu et al., 2020). Each edge comes with
an attribute, i.e., the year when the co-authored paper is published. The task is to predict future
author collaborations. The data is split according to time, aiming to simulate a realistic application
in collaboration recommendation.
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ogbl-ppa is an undirected, unweighted graph. Nodes represent proteins from 58 different species,
and edges are biologically meaningful associations between proteins (Szklarczyk et al., 2019). The
node features are obtained based on the species. OGB splits the data according to the type of protein
associations, which meets the practical needs.

ogbl-citation2 is a directed graph built based on the citations between a subset of papers extracted
from MAG (Wang et al., 2020). A node is a paper and has 128-dimensional features obtained by
summarizing word embeddings of its title and abstract. A directed edge indicates that one paper
cites another. The data is split according to time for the purpose of simulating a realistic application
in citation recommendation.
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