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Abstract. Facilitating a satisfying user experience requires a detailed
understanding of user behavior and intentions. The key is to leverage
observations of activities, usually the clicks performed on Web pages.
A common approach is to transform user sessions into Markov chains
and analyze them using mixture models. However, model selection and
interpretability of the results are often limiting factors. As a remedy, we
present a Bayesian nonparametric approach to group user sessions and
devise behavioral patterns. Empirical results on a social network and an
electronic text book show that our approach reliably identifies underlying
behavioral patterns and proves more robust than baseline competitors.

1 Introduction

Being able to translate a user’s behavior into an educated guess of her intent
is often the key to provide a satisfying user experience. Users express different
behavior in different contexts to satisfy their needs, fulfill a task, etc. [1]. Charac-
teristic behavioral traits may thus serve as indicators for future behavior and
capturing these traits is important in many application domains:

Content providers on the Web often rely on repeated user visits. Their success
depends highly on how well they are able to anticipate a user’s needs by providing
the right content, at the right time, and in the right place. Accurately modeling
user behavior not only predicts a user’s actions but informs design and content
decisions. This includes predicting what links a user will click on, deciding where
webpage components should be placed, and what content to provide.

A similar problem arises in emerging areas such as educational research
that aim to provide tailored learning environments and tutoring systems to
children and students. Often it is either undesirable or not possible to build
personalized models, and even when available, such models suffer from the cold
start problem, or are unable to deal with context-dependent variations in user
behavior. Accurately modeling user behavior leads to accurate assessments of a
user’s competency and allows for selecting next items, appropriate feedback, etc.

Recently, user behavior plays an increasing role in security related areas.
Behavioral models are studied as replacements for passwords and intelligent
pieces of operating systems are being developed to actively block security related
components, such as access to a company data base, when the user is checking
news on Facebook. Similarly, security relevant features can be blocked by such a



system if the user behavior deviates from the expected behavior; e.g., to prevent
hacking a stolen device.

Traditionally, Markov models are frequently studied methods in behavioral
contexts [4,10,7,27] due to their good interpretability. The underlying idea is to
exploit the sequential nature of user behavior and translate user sessions into
Markov processes. Using Expectation-Maximization (EM)-based approaches [28],
similar sessions can be grouped to draw conclusions about different types of users
and their behaviors from the arising clusters. While there is nothing wrong with
the general blueprint of these analyzes, they often suffer from being parametric
approaches and using greedy optimization strategies that may lead to poor local
optima. The problem arises because the optimal number of clusters is a priori
unknown and needs to be identified with heuristics (e.g., [30,29]) or trial and error.
Often, this leads to repeated parameter estimations on subsets of the data. In
addition, EM-based algorithms potentially converge to local optima and, therefore,
several repetitions of the same experiment with random initializations are required.
In the presence of todays data set sizes, the multiplicative consequences of
deploying heuristics with EM-based algorithms quickly become prohibitive.

We present a non-parametric Bayesian approach to fit a mixture model of
Markov chains to sequential data, turning behavior into data. We draw conclusions
from the resulting models that constitute novel insights and show how these
insights impact future developments and design decisions.

2 Related Work

Modeling user behavior is often performed using probabilistic models in combina-
tion with some sort of clustering. The most commonly studied type of approaches
are based on Markov models [7,10,4,11,12]. Early work investigates the use of
probabilistic methods and subsequent publications use the formalism of Markov
chains [7,10] to build stochastic models that capture behavioral patterns. [4]
further explores the idea by proposing a mixture model of Markov chains to divide
data into meaningful groups and focus on these groups in the analysis. Here, each
manifestation of a common behavioral pattern is represented by a Markov chain.
Putting this in the context of our application scenario, a user interacts with a
system and, by doing so, transitions between (possibly latent) states of a Markov
model. Each state represents a possible interaction between user and system.
Due to the use of first-order Markov chains, the next state is only conditioned
on the previous state. The approach by [4] yields interpretable results and is
computationally efficient. However, model selection may lead to sub-optimal
results as identifying the number of groups is not always straight forward and
the non-convex problem may have many local optima. A similar approach using
a mixture model of hidden Markov models [11] takes intertwined click traces into
account while [12] propose selective Markov models for identifying user behavior
patterns.

Generally, higher-order Markov models [13,14,15] capture user behavior in
more detail. However, [13] suffers from inefficient computations and results that



are difficult to interpret. Other approaches require unreasonably large data sets
as the model parameters grow exponentially with the number of states N and
order o [14,15]. [19,16,17] make use of Bayesian nonparametric mechanisms to
control the complexity of the respective models. E.g., combining a temporal point
process with a Bayesian nonparametric prior, [19] study the relation between
both areas. The resulting Dirichlet-Hawkes process allows to model user behavior
in greater detail compared to first-order Markov models. However, point processes
focus on predictive performance and often lack interpretability.

To satisfy all requirements, we propose an approach that combines both,
Bayesian nonparametric methods and Markov models. We derive a model that
adapts to the complexity of the data and, at the same time, retains interpretability.

3 Non-parametric Bayesian User Behavior Models

In this section, we briefly introduce mixtures of Markov chains models and discuss
their properties. After pointing out the drawbacks of this approach, we present a
Bayesian nonparametric interpretation that mitigates these issues.

3.1 Mixtures of Markov Chains
Markov chains are probabilistic models for generating sequences of discrete events.
The probability of observing an element directly depends on the previous one3.
Let us consider N sequences (or user sessions) x(i) = (x(i)

1 , . . . , x
(i)
T (i)) of length

T (i) over an alphabet M such that every x(i)
t ∈M with i ∈ {1, . . . , N}. For ease

of notation, every sequence is augmented by auxiliary start x(i)
0 = S and terminal

xT (i)+1 = E symbols, where M ∩ {S,E} = ∅. The probability of observing
adjacent elements is then given by the conditional θu,v = p(xt+1 = v|xt = u)
where u ∈M ∪ {S} and v ∈M ∪ {E}. Note that the first event of a sequence is
selected according to the prior surrogate θS,v = p(x1 = v|S). Thus, the auxiliary
start and terminal symbols allow for capturing prior and terminal distributions,
respectively, where the latter eventually serves as a natural duration model of a
cluster. The parameters θ are estimated by a maximum likelihood approach[4].

If there are several, say K, generating distributions instead of a single one, a
mixture model of Markov Chains (MMC) is required for parameter estimation.
Latent indicator variables zi assign sequences to one of the K clusters and
priors πk = p(z(i) = k|Θ) assess the importance of these clusters where Θ =
(π1, . . . , πK , θ1, . . . , θK). The quantity p(z(i) = k|x(i), Θ) estimates the probability
that sequence i has been generated by the k-th component. To not clutter the
notations unnecessarily, we omit superscript i whenever context allows. The
likelihood of the model is given by

p(x|Θ) =
K∑

k=1
p(z = k|Θ)

T +1∏
t=1

p(xt|xt−1, z = k,Θ) =
K∑

k=1
πk

T +1∏
t=1

θk
xt−1,xt

3 We focus on first-order dependencies but the approach is easily generalized to higher-
order models; notation is quickly getting messy though.



Parameters Θ are estimated using Expectation Maximization (EM) and related
techniques [28,4].

While EM-based approaches yield interpretable results in an efficient and
straight forward way, they suffer from two major drawbacks. Firstly, the actual
number of components is generally unknown and consequently K becomes a
parameter that has to be adjusted in the model selection. Secondly, the greedy
inference by EM-based approaches can converge to local optima. This not only
renders a single solution unquantifiable but, also implies repetitions of the same
experiment necessary (e.g., using different initializations). Combining the two
arguments leads to complex experimentations and quickly becomes tedious.

By contrast, our contribution addresses both limitations of EM-based ap-
proaches. Being a Bayesian nonparametric interpretation of the mixture of Markov
chains, the number of components is adjusted in a data-driven way during the
optimization. The latter is performed by a Gibbs sampling approach that does
not share the greedy nature of EM-based methods.

3.2 Infinite Mixtures of Markov Chains
Our contribution, infinite Mixtures of Markov Chains (iMMC), makes use of a
computationally efficient approximation to the hierarchical Dirichlet processes
(HDP) [2], known as the degree L weak limit approximation [5]. The limiter L
denotes the maximum cardinality of the approximated distribution. The approach
encourages the learning of models with a state space of less than L components
while allowing for the creation of new ones. It can be shown that such an
approximation converges to the original HDP as L→∞ and provides a common
solution to efficient Bayesian nonparametrics [23].

Graphical Model Our model consists of a maximum number of L clusters,
each comprised of a subset of events Ml ⊆ M with l ∈ {1, ..., L}. As before,
we differentiate between observations x and latent variables z that assign se-
quences to clusters. The model is build of two well-known concepts in Bayesian
nonparametrics, the Dirichlet distribution (Dir) and the finite-dimensional hier-
archical Dirichlet process [2,5]. A hierarchical Dirichlet process (HDP) consists
of a two-layer hierarchy of Dirichlet processes (DP).

While the Dirichlet distribution is used to substitute the Multinomial distribu-
tion of the MMC to allow for an adaptive prior distribution over the cardinality
of the clusters, the observation layer is modeled by a degree L weak limit ap-
proximation [5] which captures the Markovian structure of a cluster. The idea
of this design choice is that the distribution over the events of a cluster serves
as a natural base measure to the emission distributions of the events. Here, the
emission distributions denote the transition probabilities from a state to any
other. By representing these emission distributions by DPs themselves, we build
an HDP representing a cluster. Note that this way we define the Markov models
by the emission distributions of its states.

The approximated HDPs consist of a Dirichlet Gl to model the state distribu-
tion within a cluster l and a set of subordinate Dirichlet distributions θlm, which
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Fig. 1: (left) Graphical model of an HDP mixture model; (right) graphical model
of the proposed iMMC; M is the set of events; I is the cardinality of the set of
input sequences with Ti as the length of the corresponding sequence; i ∈ I and
t ∈ {0, . . . , Ti + 1}; white- and gray nodes represent hidden states and observed
states, respectively.

represent the transitions within a cluster, i.e., the transition distribution given
the current cluster l and its current state m ∈Ml. The prior distributions π, Gl

and θlm are then computed by

π|σ ∼ Dir(α/L, . . . , α/L)
Gl|γ ∼ Dir(γ/L, . . . , γ/L)

θlm|α,Gl ∼ Dir (αGl1, . . . , αGlL) .
(1)

Note that the prior and terminal state distributions are encoded within θ due
to the augmentation of start and terminal symbols. Figure 1 (right) shows the
graphical model and the generative process of a single sequence based on the
prior distributions is given by

z|π ∼ π xt|z, xt−1 ∼ θzxt−1 t ∈ {1, . . . , Ti + 1}. (2)

Inference To estimate parameters we make use of a two-step sampling algorithm
which consists of the alternation of sequence assignments and parameter updates.
In the assignment phase we obtain a realization of the latent parameters which
is then used for the update of the prior distributions. These two steps are then
repeatedly run to obtain the final model parameters. In the following we explain
both steps in detail.

Assignment Step Given randomly initialized prior distributions (see Eq. 1), we
compute the likelihood of a sequence x as

p(x|Θ) =
L∑

l=1
p(z = l|Θ)

T +1∏
t=1

p(xt|xt−1, z = l, Θ) =
L∑

l=1
π(l)

T +1∏
t=1

θlxt−1(xt), (3)



Algorithm 1 Blocked Gibbs sampler for iMMC

Given the hyperparameters σ,γ,α

(i) Initialize prior distributions according to Eq. 1

Until convergence do:
(ii) Obtain a realization of z according to Eq. 5

(iii) During assignment step update auxiliary variables as follows:
→ For each assigned sequence, increment:
· bl=z(i) ≡ # observations assigned to cluster l
→ For each observation in the sequence, increment:
· dl=z(i),xt

≡ # observations of state xt assigned to l = z(i)

· sl=z(i),xt−1,xt
≡ # transitions from xt−1 to xt in l = z(i)

(iv) Re-sample prior distributions
(v) Build final model from multiple sample-sets of the parameters

where x0 and xT +1 represent the artificial boundary nodes and π the prior
distribution over the clusters. The marginal distribution is

p(x|z = l, Θ) ∝ π(l)
T +1∏
t=1

θlxt−1(xt). (4)

Therefore, the assignments can be sampled as

z(i) ∼ Mu
(∑

l∈L

p(x|z = l, Θ)δl

)
, (5)

where δ represents the Dirac delta.

Update Step After obtaining a new sample of assignments the prior distributions
have to be updated. This is an essential step in the Gibbs sampler and, in our case,
straight-forward given that all distributions consist of DPs. Therefore, statistics
are gathered during the assignment step. We keep track of the state distribution
and transitions within the clusters. Thus, dl,m records the number of observations
of state m assigned to cluster l and sl,m1,m2 records the number of transitions
from state m1 to state m2 within cluster l. Finally, bl keeps track of the number
of observations assigned to luster l. For each iteration, the auxiliary variables
document the assignment step. Then, we can re-sample the distributions using
the statistics as the new evidence. A summary of the entire inference process is
given in Alg. 1. Note, that, while seemingly similar to classic EM-approaches,
the Gibbs sampler is based on sampling rather than on ML solutions. Therefore,
it can be shown, that under certain conditions the sampler will converge to the
global optimum [31].
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Fig. 2: Generative processes of scenario II (left) and scenario III (right); states
are indexed by hexadecimal numbers (1-f).

4 Experiments

We first evaluate the clustering performance of our model in controlled scenarios
to understand its effectiveness and to shed light on extreme cases. The synthetic
nature of the data allows us to accurately evaluate the clustering performance of
our approach. Then we will focus on the interpretability of the clusters and of
the extracted patterns. Therefore, we extract usage patterns of users browsing
a social network website without prior knowledge. Finally, an analysis of the
behavior on an electronic textbook using iMMC will show that the obtained
patterns correlate with the success of the corresponding student, suggesting that
behavior patterns hold further, sensitive information about students.

4.1 Synthetic data

In this section we compare the clustering performance of our algorithm, the
infinite mixture model of Markov chains (iMMC), to the traditional mixture
model of Markov chains approach (MMC). We pick the latent Dirichlet allocation
(LDA) [32] as an additional baseline to asses the importance of the sequential
information contained in the observations. LDA only makes use of the frequency
count of events within a sequence.

We generate three synthetic scenarios to generate different sets of clusters. In
the context of user behavior, a cluster represents the causal reason for an observed
sequence of events: clusters thus serve as proxies for user intention/interest. Their
state spaces are the set of events that are associated with one or more clusters.
A learning task is simpler when state spaces are disjoint (Scenario I). An example
are clusters like ‘cooking’ and ‘driving a car’ that have no state spaces of events
in common. Learning tasks with fully overlapping state spaces are more difficult
(Scenario III, Fig. 2 (right)). Examples are clusters that share many events such as
‘cooking’ and ‘baking’ or ‘driving a car’ and ‘driving a motorcycle’. The learning
task in Scenario II (Fig. 2 (left)) addresses both characteristics.



Fig. 3: Accuracy of each method on different scenarios and for dataset sizes.

Table 1: Error rates for the synthetic clustering tasks; each data set consists of
10k, 100k, and 250k data points (small, medium, large).

Scenario I Scenario II Scenario III
Small Medium Large Small Medium Large Small Medium Large

LDA 20.92% 28.14% 28.62% 14.69% 12.09% 20.20% 27.95% 29.54% 29.06%
MMC 19.60% 9.90% 5.13% 5.94% 6.78% 4.77% 14.26% 20.36% 8.47%
iMMC 0.14% 2.23% 0.26% 0.00% 0.54% 2.78% 8.61% 5.82% 5.15%

Given a scenario, we obtain a corresponding data set by selecting uniformly
at random one of its clusters. Then we run its generating process which yields a
sequence of actions. This procedure is repeated until we have the desired number
of actions in the set of generated sequences. For each scenario we evaluate the
algorithms on data sets of sizes of 10, 000, 100, 000 and 250, 000 data points. For
each combination of scenario and data set size, we generate 10 data sets and
report on results of the averaged performances over 5 runs for each of these data
sets. While we use a single set of hyperparameter values for our algorithm (each
is set to 1), we supply the MMC with the correct number of clusters and apply a
soft clustering. For LDA we transform each sequence into a frequency vector of
events occurring in the sequence.

Even though MMC was provided with the correct number of clusters and
our algorithm had to adjust it to the data, our algorithm is as efficient as MMC.
Table 1 and Figure 3 shows the overall clustering performance of both algorithms
on all data sets and scenarios. In all cases, our algorithm outperforms MMC.
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Fig. 4: An examplary solution of the identified clusters; exit states are omitted,
their probability equals 1 minus the sum of emission probabilities of a state.

4.2 Facebook data

In this experiment, we demonstrate how the model can be applied for information
extraction tasks from huge dataset. This is especially useful for tasks that come
with no or only little prior knowledge. The data set for the next evaluation
contains user navigation data from Facebook [18]. For each user, the invoked
pages are recorded and grouped into sessions. Examples for such invoked pages
are ’Login’, ’Newsfeed’, ’Load more news’, ’Like’, etc. The dataset contains 152
unique invoked pages, 49, 479 sessions of 2, 749 users, and 8, 197, 308 observations.
Every session is interpreted as a sequence of observations.

The most frequently observed behavioral pattern is user’s checking for updates
on the newsfeed by waking up the device and, without performing any additional
activity, put to sleep shortly after. Figure 4 depicts two more complex patterns of
users on Facebook. The first pattern, on the left, describes passive user behavior
without any direct communication. Users following this patterns tend to look
at their newsfeed (News) or at their own timeline (ownTL). While updating
(represented by the loop on ownTL) or scrolling (moreTL) their own timeline,
they would sometimes be interested in someone else’s time-line (otherTL). There,
they scroll through it but will most likely go back to their own timeline. They tend
to look at more entries (viewNews) from their newsfeed and interact (self-loop)
with them. If they open a gallery (Photo), they would look at several pictures
(self-loop on Photo) before returning to their previous activity.

The pattern in the right part of 4 describes a more active behavior. While
also browsing their Facebook universe, users frequently comment on newsfeeds’
and timelines’ entries. Additionally, the users visit fan and company pages (
pages). The iMMC algorithm successfully distinguished different session behaviors
without any prior knowledge on the data, nor dependencies between events.



4.3 Electronic text books

In this section, we present insights on the usage patterns of students interacting
with an electronic text book for history called the mBook [6]. We show that
identified usage patterns correlate with psychometric scores.

Among others, the mBook has been successfully deployed in the German-
speaking community of Belgium. Together with psychologists and didacticians,
we aim to evaluate the pros and cons of daily use in classrooms on children
and teachers. In addition to an event log that tracks all user actions in the
book, demographic variables as well as variables measuring competencies and
interest are regularly assessed. Since 2013, about 3, 000 users have created 370, 000
sessions. In this experiment, we focus on 803 sessions of a subset of 286 users
between February and March 2017. Our aim is to identify characteristic usage
patterns to later search for correlation with psychometric variables.

Related studies reveal that time-on-page and cursor trajectories often serve as
indicators for student engagement [21,22]. However, in our case, the text book is
mainly used on tablets in class rooms and, hence, cursors or eye tracking are not
available. We thus aim to identify alternative indicators that are precise enough
to capture characteristic traits of different behavior. We define and differentiate
75 atomic events that a user can trigger, ranging from pressing a button to
various scrolling performances. The latter are further divided into 9 events :
scroll.direction.duration. The direction can be up, down or fix if the movement
is of less than 10 pixels. The duration can be fast, medium or slow for event
duration of respectively less than 1 second, between 1 and 3 seconds and more
than 3 seconds. In the following, node names will be abbreviated using only the
first letter. For example a scroll.down.fast is reduced to d.f.

In contrast to the analysis of the Facebook data set, where the huge amount
of data allowed for a deployment of MMC, in this case a MMC would fail due to
the lack of a sufficient amount of data; information criteria are known to perform
poorly when the sample size is smaller than the number of parameters [20] as
shown in Figure 5 (left). The evolution of three information criteria AIC [29],
AICc [26], and BIC [30] is depicted for different numbers of clusters where every
point in the figure denotes the best result out of 30 repetitions. Theoretically,
the minima of these curves are supposed to give the optimal solutions given the
involved parameters. Due to the ill-posed optimization problem, however, the
criteria grow almost linearly. The AIC curves reaches a mininum for two clusters,
what is not really interesting. Thus information criteria do not allow to draw
conclusion.

By contrast, our Bayesian approach successfully clusters the data using γ = 2,
σ = 1.5, λ = 2.4, L = 100 and 10, 000 iterations. After every 1, 000 iterations, an
intermediate clustering is computed as the average of the last 1, 000 iterations.
The first intermediate clustering is based on 34 clusters, the final solution settles
on 32 clusters. The evolution of the solution is shown in Figure 5 (right). The blue
line (left scale) represents the evolution of the normalized mutual information
(NMI) relative to the final solution. The red line (right scale) refers to the entropy
of the clustering for the actual iteration. After 7, 000 iterations the NMI indicates



Fig. 5: Left: BIC, AIC and AICc for MMC. Right: NMI and entropy for iMMC
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Fig. 6: Two exemplary scrolling patterns.

that the clustering is already 90% similar to the final one. The decrease in entropy
shows that the algorithm merges the data into fewer clusters. The plateau after
7, 000 iterations indicates fine granular changes of cluster memberships.

There are eight resulting clusters with at least 20 sessions. We focus on the
scrolling events and show two patterns in Figure 6 realizing the smallest and
highest entropy, respectively. Note that the weights do not sum up to one, as we
ignore outgoing edges to non-scroll events in this analysis.

The first thing to notice is that in Pattern 1, scroll.fix.* cannot be reached
from another type of scroll. Either it starts a scrolling sequence or it indicates
mis-usage or hesitation of the user. Although Pattern 8 is more complex, it shares

Table 2: The most strongly correlated event transitions for each score.
Score Max Corr. Event Min Corr. Event
Competence 0.697 f.f → u.f -0.719 u.m→ u.s
Knowledge 0.962 d.m→ u.f -0.947 d.s→ d.m
Motivation 0.748 f.f → f.f -0.714 f.f → u.f
IT Access 0.751 d.s→ u.f -0.735 f.f → d.f
IT Skill 0.837 d.s→ u.f -0.743 d.m→ d.s



the fact that users tend to not transit to slower scrolls. This can be interpreted
by the observed behavior that ’longer’ scrolls are corrected by faster ones. This
is typical behavior for users who are scrolling while reading the text on the page.
This is also reflected in high self-transition probabilities of scroll.down.slow and
scroll.fix.fast. Multiple ways to reach this last event are likely caused by stopping
a scroll with a small scroll and keeping the finger on the tablet.

Psychometric Correlations During the four years of the experiment, the
children are assessed at the end of each school year. Five factors are measured.
Competency and knowledge in the field are assessed using item response the-
ory [33,34]. Additionally, their motivation, access to digital devices and their skills
in the usage of these are assessed by multiple choice questionnaires (advanced
skills weight more than simple ones).

To correlate the assessed variables with our clustering, we represent clusters
by the average score of all children who have sessions in the cluster. We compute
Pearson correlation coefficients [26] that are adjusted for small sample sizes for
the 81 possible transition probabilities between scroll events and the 8 resulting
clusters with at least 20 elements.

The maximum and minimum correlations for the assessed variables are re-
ported in Table 2. Except for motivation, high correlated transitions for every
variable end with a scroll.up.fast and a change in direction. Knowledge has a
correlation of almost 1.0 with scroll.down.medium → scroll.up.fast, and of nearly
−1.0 with scroll.down.slow → scroll.down.medium. Pattern 8 is the only pattern
containing these two edges. However, the correlations cancel out in the final
result. Figure 7 confirms that cluster 8 loads only weakly on knowledge compared
to the others.

Fig. 7: Scores and probabilities of their most correlated transition for the 8 biggest
clusters.



The first row in Figure 7 shows the loadings for the 8 biggest clusters. The
clusters are organized from top to bottom according to their entropy.

Patterns 1 and 8 (see Fig. 6) are extracted from clusters 1 and 8, respectively.
Both patterns are often observed by pupils with high competencies in history.
Therefore, these patterns may serve as behavioral indicators for a user’s com-
petency. This finding is supported by the high correlation of cluster 1 with the
prior knowledge of the user. Seemingly, knowledgeable children prefer simpler
scrolling patterns. By contrast, cluster 2 contains highly motivated children that
possess high computer skills. The pupils in cluster 6 are also motivated but do
not possess such a high ICT literacy and thus do not know to handle electronic
devices that well.

The second row in Figure 7 displays the values among clusters of the most
strongly correlated transitions to the corresponding score. Negative correlations
are not shown for interpretability. These plots give an impression of the correla-
tions. For knowledge and motivation scores, the probability of scroll.down.medium
→ scroll.up.fast and scroll.fix.fast → scroll.fix.fast could be used to predict their
respective scores in the assessment. With respect to competence, a high transition
probability seemingly also implies a high score in the assessment. However the
opposite does not hold true. Cluster 8, as also seen in Figure 6, has a smaller
probability of transitioning from scroll.fix.fast to scroll.up.fast, although the
average competency score of the cluster is the largest.

Our results show for the first time that behavioral indicators in electronic
text books can be identified to discriminate between children. Results like this
will have a high impact on the next generations of electronic text books so that
they become adaptive and provide individual learning environments for every
child.

5 Conclusion

We presented a Bayesian nonparametric approach to modeling user behavior.
The nonparametric nature of our approach allowed for the efficient identification
of the underlying clusters within user event data. Our model showed significant
improvements over related approaches when analyzing such data. We obtained a
natural state-duration model by capturing end-state distributions of the clusters.
The models allowed us to capture state durations based on the dynamics of the
cluster. Furthermore, representing each cluster as a Markov chain led to easily
interpretable results that may impact design decisions and future developments
of the respective service.
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