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ABSTRACT

We study self-supervised video representation learning that seeks to learn video
features from unlabeled videos, which is widely used for video analysis as label-
ing videos is labor-intensive. Current methods often mask some video regions and
then train a model to reconstruct spatial information in these regions (e.g., original
pixels). However, the model is easy to reconstruct this information by consider-
ing content in a single frame. As a result, it may neglect to learn the interactions
between frames, which are critical for video analysis. In this paper, we present a
new self-supervised learning task, called Masked Motion Modeling (M3Video),
for learning representation by enforcing the model to predict the motion of mov-
ing objects in the masked regions. To generate motion targets for this task, we
track the objects using optical flow. The motion targets consist of position transi-
tions and shape changes of the tracked objects. To predict these trajectory motion
targets, the model has to consider multiple frames comprehensively. Besides, to
help the model capture fine-grained motion details, we enforce the model to pre-
dict trajectory motion targets in high temporal resolution based on a video in low
temporal resolution. After pre-training using our M3Video task, the model is able
to anticipate fine-grained motion details even taking a sparsely sampled video as
input. We conduct extensive experiments on four benchmark datasets to evaluate
the effectiveness of our M3Video. Remarkably, when doing pre-training with 400
epochs, we improve the accuracy from 67.6% to 69.2% and from 78.8% to 79.7%
on Something-Something V2 and Kinetics-400 datasets, respectively.

1 INTRODUCTION

Video representation learning, which aims to extract powerful features to describe a video, plays a
critical role in video analysis like action recognition (Yan et al., 2022), action localization (Chen
et al., 2019), video retrieval (Bain et al., 2021), etc. Recently, vision transformers have shown
their superiority in representing video, taking advantage of their spatial-temporal modeling using a
flexible attention mechanism. However, training a vision transformer requires large-scale labeled
data (Touvron et al., 2021), which is infeasible in most cases due to the high complexity of video
annotation. How to perform self-supervised video representation learning using unlabeled video
only has been a prominent research topic (Chen et al., 2021; Benaim et al., 2020; Luo et al., 2020).

Recently, the success of mask-and-predict tasks in NLP (Brown et al., 2020; Devlin et al., 2018)
points out a feasible way for training a transformer model in a self-supervised manner. Prior
works (Bao et al.; He et al., 2022; Zhou et al., 2022) have successfully introduced this task to
pre-train an image transformer. They mask some image regions randomly and reconstruct the in-
formation within these regions. The reconstruction targets vary in different works, including raw
RGB pixels (He et al., 2022), hand-crafted local patterns (Wei et al., 2022) and discrete VQ-VAE
embedding (Bao et al.). All of these targets represent static appearance information in the image.
Based on these successes, some researchers (Wang et al.; Wei et al., 2022; Tong et al., 2022) attempt
to extend the mask-and-predict task to the video domain, where they mask 3D video regions and
reconstruct appearance information as done in the image domain.

However, simply using the appearance reconstruction target for learning video representation suffers
from two limitations. First, the model is easy to finish this mask-and-predict task by only utilizing
appearance clues in every single frame. This can be proven by the fact that the mask-and-predict

1



Under review as a conference paper at ICLR 2023

𝑡ℎ

𝑤

(b) Static target vs. trajectory motion target

𝑡ℎ

𝑤

Existing 

static target

Our trajectory

motion target

𝑡0 𝑡0 𝑡1

𝑡2

Autoencoder

Input video

(a) Two key factor to recognizing an action

Position change Shape change

Figure 1: Illustration of motion target for M3Video. (a) Motion information contains position
change (marked by orange arrows) and shape change (marked by blue contour) over time. (b) Ex-
isting static target (e.g., HOG) can not represent these changes. In contrast, we propose a trajectory
motion target to better represent action.

task can be well solved in the image domain (He et al., 2022; Wei et al., 2022), where the model
can reconstruct the masked region depending on the unmasked information in a single image. In
this sense, the transformer may neglect to learn the interaction between frames, which is critical
for representing an action. Second, during the process of masking regions, existing works (Tong
et al., 2022; Wei et al., 2022) often sample frames sparsely with a fixed stride, and then mask some
regions in these sampled frames. The reconstruction targets only contains information in these
sparse sampled frames, and thus are hard to provide supervision signals for learning fine-grained
motion details. Providing the model with more motion details is critical to distinguish different
actions (Bertasius et al., 2021; Arnab et al., 2021).

In this paper, we aim to design a new prediction target to tackle these two issues. Figure 1(a) shows
two key factors to recognizing an action, i.e.position change and shape change. From the position
change of the hand, we realize the person would move his/her hand toward the pen, and from the
shape change (pinching fingers), we are aware that he/she attend to grab something. We believe that
anticipating these changes helps the model better understand an action.

Based on this observation, instead of predicting the appearance features of the masked regions, we
design a trajectory motion target, which represents impending position and shape changes, for the
mask-and-predict task. Specifically, for each masked patch, we track the moving object in different
frames to generate a trajectory, as shown in Fig 1(b). This trajectory contains information in two
aspects: the position features that describe relative movement; and the shape features that describe
shape changes of the tracked object along the trajectory. To predict this trajectory motion target,
the model has to learn the correlation and interaction of objects among different frames and try to
estimate their accurate motions. We name the proposed mask-and-predict task Masked Motion
Modeling (M3Video). Moreover, to help the model learn fine-grained motion details, we further
propose to interpolate the trajectory motion targets where the model is asked to reconstruct spatially
and temporally dense trajectory motion targets from sparsely sampled video input. This is inspired
by the video frame interpolation task (Xiang et al., 2020) where a deep model is able to reconstruct
dense video at pixel level from sparse video input. Different from it, we aim to reconstruct the fine-
grained motion details of moving objects, which has higher-level motion information and is help-
ful for understanding actions. Experiments on four datasets prove that the representations learned
from the proposed mask-and-predict task achieve state-of-the-art performance on downstream action
recognition tasks. Our main contributions are as follows:

• We propose a trajectory motion target and a masked motion modeling (M3Video) task for self-
supervised video representation learning. Compared with existing static targets, modeling the
proposed motion target endows the model to anticipate the movement and shape change of moving
objects, which is critical for understanding actions.

• In the M3Video task, we propose to reconstruct the spatially and temporally dense trajectory
motion target from the sparse video input. Through interpolating dense trajectories, the model
learns fine-grained motion details without increasing computational costs.

• We evaluate our M3Video on four benchmark datasets. Compared to static targets and short-
term motion targets, reconstructing the proposed trajectory motion target achieve state-of-the-art
performance, increasing action recognition accuracy from 67.6% to 69.2% and from 78.8% to
79.7% on Something-Something V2 and Kinetics-400 datasets, respectively.
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2 RELATED WORK

Self-supervised Video Representation Learning. Self-supervised video representation learn-
ing aims to learn discriminative video features for various downstream tasks in the absence
of accurate video labels. Most of the existing methods try to design an advanced pretext
task like predicting the temporal order of shuffled video crops (Xu et al., 2019), perceiving
the video speediness (Benaim et al., 2020; Chen et al., 2021) or solving puzzles (Luo et al.,
2020; Jing et al., 2018). In addition, instance discrimination is also widely used in this do-
main CVRL,LSTCL,SVT,BE,ASCNet,FlowCoTraining. With the help of contrastive learning and
the Siamese network, constraining the consistency between different augmentation views brings
significant improvement in self-supervised video learning (Qian et al., 2021; Wang et al., 2021c;
Ranasinghe et al., 2022; Wang et al., 2021b), and some of these methods focus on mining hard
positive samples in different perspectives (Huang et al., 2021; Han et al., 2020). Besides, Track-
ing video objects’ movement is also used in self-supervised learning (Wang & Gupta, 2015; Wang
et al., 2021a), however, they only require the model to figure out the position and size changes of
a specific video patch. Different from these methods, our proposed M3Video trace the fine-grained
movement and shape changes of different parts of objects in the video, hence resulting in a superior
video representation.

Mask Modeling for Vision Transformer. He et al. (2022) and Bao et al. show two different
mask image modeling paradigms and both achieve state-of-the-art results. Because of the similarity
between image and video, these two paradigms are also suitable for pre-training video transform-
ers (Tong et al., 2022; Wang et al.). In Tong’s work (Tong et al., 2022), the video volume is masked
by some random tubes, and the training objective is to regress the RGB pixels located in the tubes.
In contrast, Wang et al. use a pre-trained VQ-VAE tokenizer (Ramesh et al., 2021) for both video
and image modalities to generate discrete visual tokens, which aims to release the model from fit-
ting short-range dependencies and high-frequency details. Though the VQ-VAE tokenizer provides
the semantic level signal for each spatial-temporal patch separately, pre-training such a tokenizer
requires an unbearable number of data and computation costs (Ramesh et al., 2021), which is in-
efficient. Inspired by the previous success of traditional hand-craft image descriptors, Wei et al.
(2022) directly predicts features of the masked video contents and found that the Histogram of Gra-
dient (HOG) feature is particularly a strong target for the proposed objective. Existing Mask Video
Modeling methods only take into account static information in each video frame, thus the model
can speculate the masked area by watching the visible area in each frame independently and failed
to learn multi-frame interactions. Different from the video prediction methods (Patraucean et al.,
2016; Srivastava et al., 2015; Recasens et al., 2021; Gupta et al., 2022) that predict the future frames
in pixel or latent space, our Masked Motion Modeling task predicts incoming fine-grained motion
in masked video regions, including position changes and shape changes.

3 PROPOSED METHOD

We first revisit the current masked video modeling task for self-supervised video representation
learning, followed by a toy experiment showing that the task can be easily finished by only consid-
ering the content in a single frame, and thus the existing works may neglect to learn action features
(c.f. Section 3.1). Then, we introduce our masked motion modeling, where we replace the static
appearance reconstruction target with a motion target to help the model anticipate impending actions
(c.f. Section 3.2).

3.1 REVISITING MASKED VIDEO MODELING

Given a video clip sampled from a video, self-supervised video representation learning aims to
learn a feature encoder fenc(·) that maps the clip to its corresponding feature that best describes
the video. Existing masked video modeling methods (Tong et al., 2022; Wei et al., 2022) attempt
to learn such a feature encoder through a mask-and-predict task. Specifically, the input clip is first
divided into multiple non-overlapped 3D patches. Some of these patches are randomly masked and
the remaining patches are fed into the feature encoder, followed by a decoder fdec(·) to reconstruct
the information in the masked patches. The reconstruction targets vary in different works (e.g., raw
pixel in VideoMAE (Tong et al., 2022) and HOG in MaskFeat (Wei et al., 2022)). However, these
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Figure 2: Overview of M3Video. Given a sparsely sampled video, we divide it into several patches
and randomly mask out some of them. An autoencoder is utilized to predict motion information,
i.e., a trajectory motion target containing position changes and shape changes of moving objects, in
the masked regions.

targets share a common characteristic where they all represent static appearance information of the
masked patches. This static information can be easily inferred from other unmasked patches in the
same single frames (He et al., 2022). In this sense, the model may neglect to learn the interaction
between multiple frames, which is critical for learning action features.
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Figure 3: Comparison of reconstruction errors.
Pixel can be reconstructed by single frame content
while trajectory can not.

To evaluate whether these static targets can be
inferred from a single frame, we conduct a toy
experiment. Specifically, we randomly sam-
ple a frame and replace all other frames with
this one, which leads to a static video. We
mask the same regions in all frames to ensure
that the masked content will not appear in other
frames. We then feed the static video into the
model to perform the mask-and-predict task.
In this sense, the model has to reconstruct the
target (raw pixel in this experiment) based on
the unmasked content in a single frame. In
Fig 3, we show the reconstruction L2 error
curve w.r.t. training epoch. The model that re-
gresses pixels using the single frame content
performs comparatively with the model using
multi-frame video (two blue curves). This sug-
gests that the masked pixel can be well recon-
structed by conditioning on the single frame content. We also conduct the same experiments to
reconstruct our proposed motion target (c.f. Section 3.2.2). We found that the gap between single-
frame and multi-frame input (orange curves) is large. This suggests the model has to consider the
content from different frames for reconstructing our proposed target. This is helpful for teaching the
model to learn action features from the interaction between frames.

3.2 M3VIDEO: MASKED MOTION MODELING

3.2.1 GENERAL SCHEME OF M3VIDEO

Our M3Video task follows the mask-and-predict paradigm of the existing masked video modeling
task (Tong et al., 2022) but replaces the static appearance target with a motion target that represents
the position and shape change of objects. As shown in Fig 2, a video clip is sampled uniformly
from a video and is divided into a number of non-overlapped 3D patches of size t × h × w. We
follow Tong et al. (2022) to use the tube masking strategy, where the masking map is the same for all
frames, to mask a portion of patches. For computation efficiency, we follow He et al. (2022) to only
feed the unmasked patches (and their positions) to the encoder. The output features together with
learnable [MASK] tokens are fed to a decoder to reconstruct motion target z in the masked patches.
The training loss for this mask-and-predict task is

L =
∑
i∈I

|zi − ẑi|2, (1)

where ẑ is the predicted motion target, and I is the index set of motion targets in all masked patches.
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Motivated by the fact that we humans recognize actions by perceiving position changes and shape
changes of moving objects, we extract these two types of information to build the motion target. By
predicting this target, the model is endowed with the ability to anticipate actions from the interaction
between frames. Another important characteristic of the proposed motion target is that it contains
fine-grained motion information extracted at raw video rate. This fine-grained motion information
provides the model with a supervision signal to anticipate fine-grained action from sparse video
input. In the following, we will introduce the proposed motion target in detail.

3.2.2 TRAJECTORY MOTION TARGET FOR MASK MODELING

The motion of moving objects can be represented in various ways such as optical flow (Farnebäck,
2003), histograms of optical flow (HOF) (Laptev et al., 2008), and motion boundary histograms
(MBH) (Laptev et al., 2008). However, these descriptors can only represent short-term motion
between two adjacent frames. We hope our motion target represents long-term motion, which is
critical for video representation. To this end, inspired by Wang et al. (2013), we first track the
moving object in the following L frames to cover a longer range of motion, resulting in a trajectory
T, i.e.,

T = (pt,pt+1, · · · ,pt+L), (2)
where pt = (xt, yt) represents a point located at (xt, yt) of frame t, and (·, ·) indicates the concate-
nation operation. Along this trajectory, we fetch the position features zp and shape features zs of
this object to compose a trajectory motion target z, i.e.,

z = (zp, zs). (3)

The position features are represented by the position transition relative to the last time step, while
the shape features are the HOG descriptors of the tracked object in different time steps.

Tracking objects using spatially and temporally dense trajectories. Some previous works (An-
jum & Cavallaro, 2008) try to use one trajectory to represent the motion of an individual object. In
contrast, Wang et al. (2013) points out that tracking spatially dense feature points sampled on a grid
space performs better since it ensures better coverage of a video. We follow Wang et al. (2013) to
use spatially dense grid points as the initial position of each trajectory. Specifically, we uniformly
sample K points in a masked patch of size t×h×w, where each point indicates a part of an object.
For each point, we track it through temporally dense L frames according to the dense optical flow,
resulting in K trajectories. In this way, the trajectory is able to capture spatially and temporally
fine-grained motion information of objects as reconstruction targets for the mask-and-predict task.

As a comparison, the reconstruction target in existing works is often extracted from temporally
sparse videos sampled with a large sample stride s > 1. The model takes as input a sparse video
and predict these sparse targets for learning video representation. Different from these works, our
model also takes as input sparse video but we push the model to interpolate trajectory motion targets
containing fine-grained motion information. This simple trajectory interpolation task does not in-
crease the computational cost of the video encoder but helps models learn more fine-grained action
information even given sparse video input. More details about flow calculating and tracking can be
found in Appendix A.

Representing position features. Given a trajectory T consisting of the tracked object position
at each frame, we are more interested in the related movement of objects instead of their absolute
location. Consequently, we represent the position features with related movement between two
adjacent points ∆pt = pt+1 − pt, i.e.,

zp = (∆pt, ...,∆pt+L−1), (4)

where zp is a L×2 dimensional feature. As each patch contains K position features, we concatenate
and normalize them as position features part of the trajectory motion target.

Representing shape features. Besides embedding the movement, the model also needs to be
aware of the shape changes of objects to recognize actions. Inspired by Dalal & Triggs (2005), we
use histograms of oriented gradients (HOG) with 9 bins to describe the shape of objects.

Compared with existing works (Wei et al., 2022; Tong et al., 2022) that reconstruct HOG in every
single frame, we are more interested in the dynamic shape changes of an object, which can better
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Table 1: Comparison of different targets.
Our trajectory motion target outperforms all
the other targets.

Target Acc@1 Acc@5

Pixel 61.1 86.6
HOG 61.1 86.9

HOG + Flow 60.9 86.4
HOG + HOF 61.3 86.6
HOG + MBH 61.4 86.8

HOG + Traj. w/o shape 63.5 88.2
Traj. (ours) 64.1 88.4

Table 2: Effectiveness of trajectory interpola-
tion. Interpolating the trajectory motion target
brings significant improvement compared to the
baselines.

Target Interpolation Acc@1 Acc@5

HOG % 61.1 86.9
HOG ! 60.9 86.8

HOG + MBH % 61.3 86.8
HOG + MBH ! 61.4 86.8

Traj. (ours) % 62.2 87.5
Traj. (ours) ! 64.1 88.4

represent action in a video. To this end, we follow Wang et al. (2013) to calculate trajectory-aligned
HOG, consisting of HOG features around all tracked points in a trajectory, i.e.

zs = (HOG(pt), ...,HOG(pt+L−1)), (5)

where HOG(·) is the HOG descriptor and zs is a L × 9 dimensional feature. Also, as one patch
contains K trajectories, we concatenate K trajectory-aligned HOG features and normalize them as
the shape features part of the trajectory motion target.

4 EXPERIMENTS

Datasets. We evaluate our M3Video on two large-scale datasets, namely Kinetics-400 (K400) (Car-
reira & Zisserman, 2017) and Something-Something V2 (SSV2) (Goyal et al., 2017). The K400
dataset contains 240k training videos and 20k validation videos that span 400 action categories.
Compared with K400, SSV2 involves more human-object interactions. Recognizing these actions
requires the model to focus more on the motion instead of background information. SSV2 contains
168k training videos and 24k validation videos in 174 action categories. We also evaluate on smaller
action recognition datasets, i.e., UCF101 (Soomro et al., 2012) (9.5k/3.7k videos for train/test) with
101 classes and HMDB51 (Kuehne et al., 2011) (3.5k/1.5k videos for train/test) with 51 classes.

Implementation details. Unless otherwise stated, we follow previous trails (Tong et al., 2022) and
feed the model a 224×224 16-frame clip with strides 4 and 2 for K400 and SSV2 respectively. We
use vanilla ViT-Base (Tong et al., 2022) as the backbone in all experiments. As for the motion target,
we set the trajectory length to L = 6 and the number of trajectories in each patch to K = 4. Our
models are trained on 16 NVIDIA-3090 GPUs. See Appendix for further details.

4.1 ABLATION STUDY

To reduce training time, for all experiments in the ablation study, we randomly select 25% of data in
the Something-Something V2 training set for pre-training. We pre-train models for 200 epochs and
fine-tune it for 50 epochs.

4.1.1 EFFECTIVENESS OF TRAJECTORY MOTION TARGET

Baselines: We compare our proposed trajectory motion target with two types of static targets and
three types of short-term motion targets.

• Static target baselines: 1) HOG: predicting HOG features (Dalal & Triggs, 2005) in the middle
frame of each 3D patch (Wei et al., 2022). 2) Pixel: predicting all the pixels of each 3D patch (He
et al., 2022; Tong et al., 2022; Feichtenhofer et al., 2022).

• Short-term motion target baselines: 1) Flow: predicting the dense optical flow map of the
masked patches. 2) HOF: predicting the histogram of optical flow orientation. 3) MBH: predict-
ing the motion boundary histogram, which is the second-order local statistic of optical flow.
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Table 3: Trajectory length.

Length Acc@1

L = 0 61.1
L = 2 61.4
L = 4 63.2
L = 6 64.1
L = 8 63.3

Table 4: Trajectories density.
Dense trajectories work the best.

Trajectory density Acc@1

Dense 64.1
Sparse (Mean) 60.2
Sparse (Max) 61.8

Table 5: Trajectory normalization.
Patch normalization performs better.

Setting Acc@1

w/o patch norm. 62.3
w/ patch norm. 64.1

Table 6: Sampling stride.
Sampling stride s = 2 on
SSV2 performs the best.

Stride Acc@1

s = 4 62.9
s = 3 63.4
s = 2 64.1
s = 1 62.7

Table 7: Spatial masking. Tube
masking with a 70% ratio per-
forms the best.

Ratio Type Acc@1

90% Tube 62.7
70% Tube 64.1
40% Tube 61.3
40% Cube 61.2

Table 8: Decoder setting. Sep.
means adopt two parallel decoder. A
slight decoder performs the best

Type Depth FLOPs Acc@1

Joint 1 51G 64.1
2 55G 63.4

Sep. 1 56G 63.4
2 65G 63.3

Results: In Tab 1, two types of static targets (i.e., Pixel and HOG) perform similarly. Based on the
HOG baseline, adding short-term motion targets brings slight improvement (at least by 0.2%) except
for adding a Flow target (decreases by 0.2%). We suspect that predicting the dense flow map for
each pixel is too hard for a model and thus harms the performance. Instead, the histogram version
of flow (i.e., HOF and MBH) help to reduce the prediction ambiguity (Wei et al., 2022), resulting
in better results. Furthermore, after adding our slight variant of trajectory motion target (i.e., with
position features but without shape features shown in Eq (3)), the performance improves signifi-
cantly compared to both static target baselines (by 2.4%) and short-term motion target baselines (by
2.1%). On top of this variant, adding trajectory-aligned shape features further brings additional gain
by 0.6%. We believe predicting both shape and position changes of moving objects helps the model
to learn more long-term motion clues for recognizing actions.

4.1.2 EFFECTIVENESS OF TRAJECTORY INTERPOLATION

In M3Video, we feed temporally sparse video to the model and push it to interpolate temporally
dense trajectories. We are interested in whether interpolating static target (i.e., HOG) or short-term
motion target (i.e., MBH) benefits learning fine-grained motion details. To this end, we conduct
experiments to predict dense HOG and MBH, i.e., predicting these features of all frames within a
masked patch even though these frames are not sampled as input. In Tab 2, interpolating HOG or
MBH bring little improvement. We suspect this is because these dense targets still can not represent
the continuous movement of objects because they have not explicitly tracked the moving objects. In
contrast, our temporally dense trajectory motion target tracks the object densely, providing temporal
fine-grained information for learning. The trajectory interpolation improves our M3Video by 1.9%.

4.1.3 ABLATION STUDY ON M3VIDEO DESIGN

In this section, we ablate to find the best settings for M3Video task.

Trajectory length. Trajectory length L indicates how many frames we track an object for extracting
the motion target. If L = 0, our method degrades to Wei et al. (2022), which only predicts HOG
features in the masked patch. In Tab 3, as the length grows, the performance of M3Video grows
and the best performance is achieved when L = 6. This is because a longer trajectory provides
more motion information for learning. But if the trajectory is too long, the drift of flow introduces
accumulated noise when tracking the objects, which may harm the performance.

Trajectory density. In our experiments, we spatially dense track K = 4 trajectories as motion
targets. We conduct experiments to evaluate whether it is necessary to densely track multiple trajec-
tories in a patch. Specifically, we assume only one object exists in a patch, and thus the 4 trajectories
are similar. We merge these 4 trajectories as one by averaging or selecting the most salient one. We
then consider the merged trajectory as the motion target. In Tab 4, using dense trajectories signif-
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Table 9: Comparison with state-of-the-arts on Something-Something V2.

Method Backbone Pre-train Label Epoch Frames GFLOPs Param Acc@1

TimeSformer (Bertasius et al., 2021) ViT-B IN-21K ! 15 8 196×1×3 121M 59.5
ViViT-L (Arnab et al., 2021) ViT-L IN-21K+K400 ! 35 16 3992× 3× 4 311M 65.4
Motionformer (Patrick et al., 2021) ViT-B IN-21K+K400 ! 35 16 370× 1× 3 109M 66.5
SlowFast (Feichtenhofer et al., 2019) ResNet-101 K400 ! 196 8+32 106× 1× 3 53M 63.1
MViT (Fan et al., 2021) MViT-B K400 ! 100 64 455× 1× 3 37M 67.7

SVT (Ranasinghe et al., 2022) ViT-B IN-21K+K400 % 20 8+64 196×1×3 121M 59.6
LSTCL (Wang et al., 2021c) Swin-B K400 % 200 16 360×5×1 88M 67.0
BEVT (Wang et al.) Swin-B K400+DALL-E % 150 32 282×1×3 88M 67.1
VIMPAC (Tan et al., 2021) ViT-L HowTo100M+DALLE % 100 10 N/A×10× 3 307M 68.1
VideoMAE (Tong et al., 2022) ViT-B SSV2 % 400 16 180×2×3 87M 67.6

M3Video (Ours) ViT-B SSV2 % 400 16 180×2×3 87M 69.2
M3Video (Ours) ViT-B K400 % 400 16 180×2×3 87M 69.7

icantly outperform the merged baselines. We suspect the spatial dense trajectories provide more
motion information for learning.

Trajectory normalization. Due to the irregular distribution of motion and shape information in
the video, the trajectory values in different patches vary a lot. To help the model better model the
trajectory, we adopt the patch norm method to normalize the trajectory values in each patch into a
standard normal distribution, as has also been done in He et al. (2022). The mean and variance are
calculated by all K = 4 trajectories in a patch. Tab 5 shows the effectiveness of adopting patch
norm.

Sampling stride. In order to controls the difficulty of interpolating the trajectory motion target,
we ablate different temporal sampling stride leading to different level of sparse input video. With
a medium sampling stride (s = 2), our M3Video achieves the best performance. We also found
that the performance decreases when the input video shares the same stride as the dense trajectory
motion target (s = 1). One possible reason is that the model can not learn to anticipate fine-grained
motion details in this case.

Spatial masking strategy. We ablated study different spatial masking strategies and ratios in
Tab 7. We start from the default setting of Wei et al. (2022) that use a cube masking strategy with
40% masking ratio, then we increase the masking ratio and adopt the tube masking strategy proposed
by Tong et al. (2022). Using tube masking with a medium masking ratio (70%) performs the best.

Decoder setting. We use several transformer blocks as decoder to reconstruct motion targets from
extracted video features. We ablate different architecture of the decoder in Tab 8. Using a slight
decoder with 1 transformer block performs the best, with the lowest computational cost. Increasing
the depth of the decoder or using two parallel decoders to separately predict position and shape
features of motion targets introduces more computational cost but brings little improvement.

4.2 COMPARISONS WITH STATE-OF-THE-ARTS

Fine-tuning. We compare our M3Video with the previous state-of-the-art self-supervised and su-
pervised methods on Something-Something V2 and Kinetics400 datasets. The results are reported
in Tab 9 and Tab 10. On both dataset our method achieved state-of-the-art compared to previ-
ous self-supervised video representation learning methods, drawing the improvement by 1.6% on
Something-Something V2 and 0.9% on Kinetics-400. The improvement on Kinetics-400 is rela-
tively small, due to the dataset bias that rely more on appearance information (Wang et al., 2021b;
Wang et al.; Tong et al., 2022). Besides, we found that our M3Video significantly outperform the
Motionformer (Patrick et al., 2021), which is equipped with a carefully designed trajectory atten-
tion mechanism to capture motion information. Last but not least, pre-training on the Kinetics-400
and transferring to the Something-Something V2 brings larger improvement, compared to directly
pre-trained on Something-Something V2. This indicates that our M3Video can leverage motion
information in the extra videos to learn better video representation.

Our M3Video also achieves state-of-the-art action recognition result on the UCF101 and HMDB51
dataset in Tab 11. It is worth noting that we only pre-trained 400 epochs on Kinetics-400, while
previous state-of-the-art method (Tong et al., 2022) has pre-trained for 3200 epochs.
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Table 10: Comparison with state-of-the-arts on Kinetics-400.

Method Backbone Pre-train Label Epoch Frames GFLOPs Param Acc@1

TimeSformer (Bertasius et al., 2021) ViT-B IN-21K ! 15 8 196×1×3 121M 78.3
Motionformer ViT-B IN-21K ! 35 16 370×10×3 121M 79.7

LSTCL (Wang et al., 2021c) Swin-B K400 % 200 16 360×5×1 88M 81.5
BEVT (Wang et al.) Swin-B K400+DALL-E % 150 32 282×1×3 88M 76.2
VIMPAC (Tan et al., 2021) ViT-L HowTo100M+DALLE % 100 10 N/A×10× 3 307M 77.4
SVT (Ranasinghe et al., 2022) ViT-B IN-21K+K400 % 20 8+64 196×1×3 121M 78.1
VideoMAE (Tong et al., 2022) ViT-B K400 % 400 16 180×5×3 87M 78.8

M3Video (Ours) ViT-B K400 % 400 16 180×5×3 87M 79.7

Table 11: Comparison with state-of-the-arts on UCF101
and HMDB51.

Methods Backbone Pre-train UCF101 HMDB51

RSPNet (Chen et al., 2021) S3D-G K400 93.7 64.7
CVRL (Qian et al., 2021) R152 K600 94.4 70.6
VideoMAE ViT-B K400 96.1 73.3

M3Video (Ours) ViT-B K400 96.1 75.4

Table 12: Linear Probing on Something-
Something V2.

Methods Backbone Pre-train Acc@1

TimeSformer ViT-B IN-21K 14.0
SVT ViT-B IN-21K+K400 18.3
VideoMAE ViT-B SSV2 24.3

M3Video (Ours) ViT-B SSV2 29.2

Linear probing. We further evaluate our M3Video under liner probing setting on the Something-
Something V2 as this dataset focuses more on the action. We follow Ranasinghe et al. (2022) to fix
the transformer backbone and train a linear layer for 20 epochs. In Tab 12, our method significantly
outperform previous contrastive-based method (Ranasinghe et al., 2022) by 10.9% and masked video
modeling methods (Tong et al., 2022) by 4.9%. These results indicate that the representation learned
from our M3Video task contains more motion clues for action recognition.

4.3 VISUALIZATION OF PREDICTED MOTION

𝑡 = 1

𝑡 = 2

Figure 4: Visualization of trajectory motion tar-
gets. Each column represents: (a) Masked frames; (b)
ground-truth; (c) prediction; (d) original frame. Trajec-
tories are colored dark to light in chronological order.

We visualize the predicted trajectory mo-
tion target in Fig 4. The model is able
to reconstruct the spatially and tempo-
rally dense trajectories of different object
parts from a temporally sparse input video.
Even without seeing the object in the cur-
rent frame (the hand being masked out),
the model is able to locate it in contextual
frames and accurately estimate its move-
ment (the dense trajectories). Our predic-
tion of HOG features has similar quali-
tative results to the previous work (Wei
et al., 2022). Thus we do not show it in
this paper. See Appendix for more visual-
ization results.

5 CONCLUSION

We present Masked Motion Modeling (M3Video), a simple mask-and-predict task that learns video
representation by reconstructing model details of masked regions. In particular, we introduce tra-
jectory motion targets as the reconstruction target, which is a hand-crafted motion descriptor that
tracks moving objects densely to record their position and shape changes. By reconstructing this
target, the model learns long-term fine-grained motion clues from sparse input videos. Empirical
results demonstrate that our M3Video outperforms the state-of-the-art mask-and-predict methods on
Kinetics-400, Something-Something V2, UCF-101, and HMDB-51 datasets for action recognition.
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REPRODUCIBILITY STATEMENT

In this work, we implement our method with ViT-Base models on four action recognition datasets,
including Something-Something V2, Kinetics-400, UCF101, and HMDB51. Reproducing all the
results in our paper depends on the following three aspects:

DATASET. All the adopted datasets are widely used and large-scale benchmark for video represen-
tation learning. In the first paragraph of Section 4 and Appendix A.4, we provide the details of the
dataset and the download url.

MODEL. All the adopted datasets are widely used and large-scale benchmarks for video represen-
tation learning. In the first paragraph of Section 4 and Appendix A.4, we provide the details of the
dataset and the download url.

PROTOCOLS OF EACH METHOD. Appendix A provides the implementation details of all com-
pared methods and our M3Video. The source code of M3Video will be released as soon as this
paper is accepted.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 EXTRACTING OPTICAL FLOW

Removing camera motion. To alleviate the influence of camera motion, we follow previous
work (Wang & Schmid, 2013) to warp the optical flow, which is also be applied in two stream
video action recognition method (Wang et al., 2018). Specifically, by matching SURF (Bay et al.,
2006) interest point in two frames to estimate the camera motion using RANSC (Fischler & Bolles,
1981) algorithm. Then the camera motion is removed by rectifying the frame, and the optical flow
is re-calculated using the warped frame. This also relieves the model from being disturbed by the
background and makes it pay more attention to the moving objects in the foreground.

Pre-extracting optical flow. We use the denseflow1 tool box to pre-extract warp optical flow before
training following Wang & Schmid (2013); Wang et al. (2018). We set the upper bound of flow
value to 20. The stride of flow is set to sflow = 1 if perform motion target interpolation, otherwise
is equal to the sampling stride of the input rgb frames sflow = srgb. The whole video dataset is split
into chunks and processed on 4 nodes, each node is equipped with 2 Intel Xeon CPUs (32 cores per
CPU) for video codec and 8 TITAN X GPUs for optical flow calculation speed-up. The extraction
process spends about 1 day on the Kinetics400 dataset.

A.2 GENERATING TRAJECTORIES

Tracking the trajectories. With the calculated warp optical flow ω, we are able to track the position
transition of each densely sampled grid point to produce a continuous trajectory, i.e.

pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ωt)(xt,yt), (6)

where ωt is the optical flow at step t. M is the median filter kernel shapes 3 × 3 and ∗ denotes the
convolution operator.

Pre-extracting trajectories. To reduce the io overhead of loading and decoding flow image during
pre-training, we pre-process the dataset to generate dense trajectories of each video and pack them
in the compressed pickle files. In pre-training, we use a special dataloader to sample K trajectories
with length L starting from the first frame of each input 3D patch. During pre-training, we then crop
and resize the trajectories in the spatial dimension to maintain the corresponding area with the input
RGB frames.

Masking inaccurate loss. We notice that in most of the video samples, the objects move out of the
range of the camera FOV. This circumstance often occurs on the objects that are at the edge of the
video. The tracked trajectories in this case could be inaccurate, as visualized in Fig 5. We use an
loss mask to remove these trajectories from the loss calculation:

LM =
1

Np

Np∑
i=1

mi · Li (7)

mi =

{
1, pt ∈ P

0, otherwise
(8)

where Np is the total number of unmasked patches, P = {(xt, yt) | 0<xt<W, 0<yt<H} represents
the points in the video clip.

A.3 EXTRACTING DIFFERENT PREDICTION TARGETS

HOG. In our experiment, we utilize the successful application of the HOG feature (Dalal & Triggs,
2005) in masked video modeling (Wei et al., 2022) to represent appearance information. HOG is

1https://github.com/yjxiong/dense_flow
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Figure 5: Illustration of the inaccurate trajectories, which are caused by objects moving out of
the camera FOV.

the statistic histogram of image gradients in RGB channels. To speedup the calculation, we re-
implement the HOG extractor by convolution operator with sobel kernel and the scatter method in
the PyTorch (Paszke et al., 2019) Tensor API, and thus the calculation process can be conducted
on the GPU. With the exception of the L2 normalization, which does not work in our practice, we
precisely follow the recipe in Wei’s work (Wei et al., 2022) to calculate a feature map of the entire
image and then fetch the 9-bins HOG feature in each RGB channel.

HOF and MBH. These two features are spatial-temporal local features that have been widely used
in the action recognition task since the 2010s. Similar to the HOG feature, these two features are the
histogram of optical flow (Laptev et al., 2008), the only difference is that MBH is the second order
histogram of the optical flow (Dalal et al., 2006). We implement them based on the HOG extractor
that deals with optical flow.

Table 13: Pre-training setting.

config SSV2 K400

optimizer AdamW (Loshchilov & Hutter, 2019)
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999 (Chen et al., 2020)
batch size 512
learning rate schedule cosine decay (Loshchilov & Hutter, 2017)
warmup epochs 40
training epochs 400
flip augmentation no yes
augmentation MultiScaleCrop

Table 14: Fine-tuning setting.

config SSV2 K400 UCF101 HMDB51

optimizer AdamW
base learning rate 1e-3
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
layer-wise lr decay 0.75 (Bao et al.)
batch size 512
learning rate schedule cosine decay
warmup epochs 5
training epochs 50 100 100 100
flip augmentation no yes yes yes
RandAug (9,0.5) (Cubuk et al., 2020)
label smoothing (Szegedy et al., 2016) 0.1
mixup (Zhang et al., 2018) 0.8
cutmix (Yun et al., 2019) 1.0
drop path 0.1
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Table 15: Training speed-up versus perfor-
mance decrease. We report the total time cost
of entire pre-training and fine-tuning procedure.

Data ratio Input patches Acc@1 Speed-up

100% 100% 64.8 1.0×
25% 50% 61.1 2.5×

Table 16: Without the additional short-term
motion targets features draws competitive re-
sult.

Additional targets Acc@1

Traj. + MBH + HOF 63.5
Traj. (ours) 63.5

A.4 PRE-TRAINING AND FINE-TUNING SETTINGS

Something-Something V2.2 The default settings for pre-training and fine-tuning on Something-
Something V2 (SSV2) are shown in Tab 13 and Tab 14. We take the same recipe as in Tong et al.
(2022).

Kinetics-400.3 The default settings for pre-training and fine-tuning on Kinetics-400 (K400) are
shown in Tab 13 and Tab 14. We take the same recipe as in Tong et al. (2022).

UCF101.4 We pre-train the model on the Kinetics-400 for 400 epochs and then transfer to the
UCF101. The default settings of fine-tuning are shown in Tab 14.

HMDB51.5 The default setting is the same as in UCF101.

B ADDITIONAL RESULTS

B.1 TRAINING SPEED-UP VERSUS PERFORMANCE DECREASE

To speed up the training procedure during the ablation study, we (1) randomly select 25% videos
from the training set of Something-Something V2 dataset to pre-train the model, (2) randomly drop
50% patches following Qing et al. (2022), specifically, we adopt a random masking strategy to
select 50% input patches to reduce computation of self-attention. We provide a comparison across
the speed-up and performance decrease due to these techniques in Tab 15. Notice that with an
acceptable performance drop (-3.7%), we speed up the ablation experiment by 2.5 times.

B.2 COMPARING WITH THE ORIGINAL VERSION OF DENSE TRAJECTORY.

The original version of dense trajectories (Wang et al., 2013; Wang & Schmid, 2013) combines
short-term motion targets, including HOF and MBH features to represent motion. However, we
found that only using the position changes to represent objects’ movement is enough, see Tab 16.

C MORE VISUALIZATION RESULTS

We provide more visualization results of our trajectory motion targets. Videos are sampled from the
Something-Something V2 validation set. For each 3D cube patch shape 2 × 16 × 16, we visualize
the first frame and the trajectories start from it. All the trajectories are with length L = 6 as our
default setting.

2
https://developer.qualcomm.com/software/ai-datasets/something-something

3https://www.deepmind.com/open-source/kinetics
4https://www.crcv.ucf.edu/data/UCF101.php
5https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
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Figure 6: Visualization of trajectory motion targets. Each column represents: (a) Masked frames;
(b) ground-truth; (c) prediction; (d) original frame. Trajectories are colored dark to light in chrono-
logical order.
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Figure 7: Visualization of trajectory motion targets. Each column represents: (a) Masked frames;
(b) ground-truth; (c) prediction; (d) original frame. Trajectories are colored dark to light in chrono-
logical order.
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